Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomedicine ; 35: 102404, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33932593

RESUMO

Intracellular distribution of doxorubicin (DOX) and its squalenoylated (SQ-DOX) nanoparticles (NPs) form in murine lung carcinoma M109 and human breast carcinoma MDA-MB-231 cells was investigated by Raman microspectroscopy. Pharmacological data showed that DOX induced higher cytotoxic effect than SQ-DOX NPs. Raman data were obtained using single-point measurements and imaging on the whole cell areas. These data showed that after DOX treatment at 1 µM, the spectral features of DOX were not detected in the M109 cell cytoplasm and nucleus. However, the intracellular distribution of SQ-DOX NPs was higher than DOX in the same conditions. In addition, SQ-DOX NPs were localized into both cell cytoplasm and nucleus. After 5 µM treatment, Raman bands of DOX at 1211 and 1241 cm-1 were detected in the nucleus. Moreover, the intensity ratio of these bands decreased, indicating DOX intercalation into DNA. However, after treatment with SQ-DOX NPs, the intensity of these Raman bands increased. Interestingly, with SQ-DOX NPs, the intensity of 1210/1241 cm-1 ratio was higher suggesting a lower fraction of intercalated DOX in DNA and higher amount of non-hydrolyzed SQ-DOX. Raman imaging data confirm this subcellular localization of these drugs in both M109 and MDA-MB-231 cells. These finding brings new insights to the cellular characterization of anticancer drugs at the molecular level, particularly in the field of nanomedicine.


Assuntos
Neoplasias da Mama , Doxorrubicina , Neoplasias Pulmonares , Nanopartículas , Análise de Célula Única , Esqualeno , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Análise Espectral Raman , Esqualeno/química , Esqualeno/farmacocinética , Esqualeno/farmacologia
2.
Int J Pharm ; 582: 119345, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32311470

RESUMO

Despite the great advances accomplished in the treatment of pediatric cancers, recurrences and metastases still exacerbate prognosis in some aggressive solid tumors such as neuroblastoma and osteosarcoma. In view of the poor efficacy and toxicity of current chemotherapeutic treatments, we propose a single multitherapeutic nanotechnology-based strategy by co-assembling in the same nanodevice two amphiphilic antitumor agents: squalenoyl-gemcitabine and edelfosine. Homogeneous batches of nanoassemblies were easily formulated by the nanoprecipitation method. Their anticancer activity was tested in pediatric cancer cell lines and pharmacokinetic studies were performed in mice. In vitro assays revealed a synergistic effect when gemcitabine was co-administered with edelfosine. Squalenoyl-gemcitabine/edelfosine nanoassemblies were found to be capable of intracellular translocation in patient-derived metastatic pediatric osteosarcoma cells and showed a better antitumor profile than squalenoyl-gemcitabine nanoassemblies alone. The intravenous administration of this combinatorial nanomedicine in mice exhibited a controlled release behavior of gemcitabine and diminished edelfosine plasma peak concentrations. These findings make it a suitable pre-clinical candidate for childhood cancer therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Neoplasias Ósseas/tratamento farmacológico , Nanoconjugados/uso terapêutico , Nanopartículas , Neuroblastoma/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Éteres Fosfolipídicos/farmacologia , Esqualeno/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/química , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Composição de Medicamentos , Sinergismo Farmacológico , Feminino , Concentração Inibidora 50 , Injeções Intravenosas , Camundongos Nus , Nanoconjugados/administração & dosagem , Nanoconjugados/química , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Éteres Fosfolipídicos/administração & dosagem , Éteres Fosfolipídicos/química , Éteres Fosfolipídicos/farmacocinética , Esqualeno/administração & dosagem , Esqualeno/química , Esqualeno/farmacocinética , Esqualeno/uso terapêutico
3.
Regul Toxicol Pharmacol ; 108: 104436, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31381939

RESUMO

BACKGROUND: In recent years, there has been great interest from academia, industry and government scientists for an increased understanding of the mode of action of vaccine adjuvants to characterize the safety and efficacy of vaccines. In this context, pharmacokinetic (PK) and biodistribution studies are useful for quantifying the concentration of vaccine adjuvants in mechanistically or toxicologically relevant target tissues. METHODS: In this study, we conducted a comparative analysis of the PK and biodistribution profile of radiolabeled squalene for up to 336 h (14 days) after intramuscular injection of mice with adjuvanted H5N1 influenza vaccines. The evaluated adjuvants included an experimental-grade squalene-in-water (SQ/W) emulsion (AddaVax®) and an adjuvant system (AS03®) that contained squalene and α-tocopherol in the oil phase of the emulsion. RESULTS: The half-life of the initial exponential decay from quadriceps muscle was 1.5 h for AS03 versus 12.9 h for AddaVax. At early time points (1-6 h), there was about a 10-fold higher concentration of labeled squalene in draining lymph nodes following AS03 injection compared to AddaVax. The area-under-concentration curve up to 336 h (AUC0-336hr) and peak concentration of squalene in spleen (immune organ) was about 1.7-fold higher following injection of AS03 than AddaVax. The peak systemic tissue concentration of squalene from the two adjuvants, with or without antigen, remained below 1% of injected dose for toxicologically relevant target tissues, such as spinal cord, brain, and kidney. The pharmacokinetics of AS03 was unaffected by the presence of H5N1 antigen. CONCLUSIONS: This study demonstrates a rapid decline of AS03 from the quadriceps muscles of mice as compared to conventional SQ/W emulsion adjuvant, with an increased transfer to mechanistically relevant tissues such as local lymph nodes. Systemic tissue exposure to potential toxicological target tissues was very low.


Assuntos
Adjuvantes Imunológicos/farmacocinética , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/farmacocinética , Polissorbatos/farmacocinética , Esqualeno/farmacocinética , alfa-Tocoferol/farmacocinética , Animais , Antígenos/imunologia , Combinação de Medicamentos , Emulsões , Feminino , Injeções Intramusculares , Linfonodos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Músculo Quadríceps/metabolismo , Distribuição Tecidual
4.
Regul Toxicol Pharmacol ; 81: 113-119, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27498239

RESUMO

Squalene is a component of oil-in-water emulsion adjuvants developed for potential use in some influenza vaccines. The biodistribution of the squalene-containing emulsion adjuvant (AddaVax™) alone and as part of complete H5N1 vaccine was quantified in mechanistically and toxicologically relevant target tissues up to 336 h (14 days) following injection into quadriceps muscle. At 1 h, about 55% of the intramuscularly injected dose of squalene was detected in the local quadriceps muscles and this decreased to 26% at 48 h. Twenty-four hours after the injection, approximately 5%, 1%, and 0.6% of the injected dose was detected in inguinal fat, draining lymph nodes, and sciatic nerve, respectively. The peak concentration for kidney, brain, spinal cord, bone marrow, and spleen was each less than 1% of the injected dose, and H5N1 antigen did not significantly alter the biodistribution of squalene to these tissues. The area-under-blood-concentration curve (AUC) and peak blood concentration (Cmax) of squalene were slightly higher (20-25%) in the presence of H5N1 antigen. A population pharmacokinetic model-based statistical analysis identified body weight and H5N1 antigen as covariates influencing the clearance of squalene. The results contribute to the body of knowledge informing benefit-risk analyses of squalene-containing emulsion vaccine adjuvants.


Assuntos
Adjuvantes Imunológicos/farmacocinética , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/farmacocinética , Polissorbatos/farmacocinética , Esqualeno/farmacocinética , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/sangue , Adjuvantes Imunológicos/toxicidade , Animais , Área Sob a Curva , Simulação por Computador , Emulsões , Feminino , Meia-Vida , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/sangue , Vacinas contra Influenza/toxicidade , Injeções Intramusculares , Masculino , Taxa de Depuração Metabólica , Camundongos Endogâmicos BALB C , Modelos Biológicos , Dinâmica não Linear , Polissorbatos/administração & dosagem , Polissorbatos/toxicidade , Medição de Risco , Esqualeno/administração & dosagem , Esqualeno/sangue , Esqualeno/toxicidade , Distribuição Tecidual , Toxicocinética
5.
Biomaterials ; 105: 136-144, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27521616

RESUMO

New treatments for glioblastoma multiforme (GBM) are desperately needed, as GBM prognosis remains poor, mainly due to treatment resistance, poor distribution of therapeutics in the tumor tissue, and fast metabolism of chemotherapeutic drugs in the brain extracellular space. Convection-enhanced delivery (CED) of nanoparticles (NPs) has been shown to improve the delivery of chemotherapeutic drugs to the tumor bed, providing sustained release, and enhancing survival of animals with intracranial tumors. Here we administered gemcitabine, a nucleoside analog used as a first line treatment for a wide variety of extracranial solid tumors, within squalene-based NPs using CED, to overcome the above-mentioned challenges of GBM treatment. Small percentages of poly(ethylene) glycol (PEG) dramatically enhanced the distribution of squalene-gemcitabine nanoparticles (SQ-Gem NPs) in healthy animals and tumor-bearing animals after administration by CED. When tested in an orthotopic model of GBM, SQ-Gem-PEG NPs demonstrated significantly improved therapeutic efficacy compared to free gemcitabine, both as a chemotherapeutic drug and as a radiosensitizer. Furthermore, MR contrast agents were incorporated into the SQ-Gem-PEG NP formulation, providing a way to non-invasively track the NPs during infusion.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Desoxicitidina/análogos & derivados , Glioblastoma/química , Glioblastoma/tratamento farmacológico , Nanocápsulas/administração & dosagem , Polietilenoglicóis/química , Absorção Fisico-Química , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/farmacocinética , Neoplasias Encefálicas/química , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Desoxicitidina/farmacocinética , Difusão , Relação Dose-Resposta a Droga , Glioblastoma/patologia , Humanos , Imagem Molecular/métodos , Nanocápsulas/química , Ratos , Esqualeno/administração & dosagem , Esqualeno/química , Esqualeno/farmacocinética , Resultado do Tratamento , Gencitabina
6.
Eksp Klin Farmakol ; 78(6): 30-6, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26292512

RESUMO

The review of literature demonstrates that squalene, known to most experts as an intermediate product in the synthesis of cholesterol, has several pharmacological properties including hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene is effective in the treatment of diabetes mellitus type 2 and can potentiate the activity of some antitumor (antiblastoma) preparations and reduce their undesired side effects. This bioactive substance has low toxicity and, in therapeutic doses, does not produce any damaging action on the human organism. A promising source of raw material for the commercial production of squalene is offered by amaranth seed oil.


Assuntos
Antioxidantes/farmacologia , Cardiotônicos/farmacologia , Colesterol/biossíntese , Colesterol/farmacologia , Hipolipemiantes/farmacologia , Esqualeno , Animais , Humanos , Esqualeno/metabolismo , Esqualeno/farmacocinética
7.
Microsc Microanal ; 21(4): 791-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26223548

RESUMO

Adjuvants are substances that enhance adaptive immune responses when formulated in a vaccine. Alum and MF59 are two vaccine adjuvants licensed for human vaccination. Their mode of action has not been completely elucidated. Here we show the first ultrastructural visualization of Alum and MF59 interaction with immune cells in vitro and in vivo. We observed that Alum is engulfed by cells as inclusions of laminae that are detectable within draining lymph nodes. MF59 is instead engulfed by cells in vitro as low-electron-dense lipid-like inclusions that display a vesicle pattern, as confirmed by confocal microscopy using fluorescently labeled MF59. However, lipid-like inclusions with different high- and low-electron-dense content are detected within cells of draining lymph nodes when injecting MF59. As high-electron-dense lipid-like inclusions are also detected upon injection of Alum, our results suggest that the low-electron-dense inclusions are formed by engulfed MF59, whereas the high-electron-dense inclusions are proper lipid inclusions. Thus, we demonstrated that vaccine adjuvants are engulfed as inclusions by lymph node cells and hypothesize that adjuvant treatment may modify lipid metabolism.


Assuntos
Adjuvantes Imunológicos/farmacocinética , Compostos de Alúmen/farmacocinética , Polissorbatos/farmacocinética , Esqualeno/farmacocinética , Adjuvantes Imunológicos/administração & dosagem , Compostos de Alúmen/administração & dosagem , Animais , Endocitose , Corpos de Inclusão/ultraestrutura , Camundongos Endogâmicos C57BL , Microscopia , Polissorbatos/administração & dosagem , Esqualeno/administração & dosagem
8.
J Control Release ; 212: 50-8, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26087468

RESUMO

Adenosine is a pleiotropic endogenous nucleoside with potential neuroprotective pharmacological activity. However, clinical use of adenosine is hampered by its extremely fast metabolization. To overcome this limitation, we recently developed a new squalenoyl nanomedicine of adenosine [Squalenoyl-Adenosine (SQAd)] by covalent linkage of this nucleoside to the squalene, a natural lipid. The resulting nanoassemblies (NAs) displayed a dramatic pharmacological activity both in cerebral ischemia and spinal cord injury pre-clinical models. The aim of the present study was to investigate the plasma profile and tissue distribution of SQAd NAs using both Squalenoyl-[(3)H]-Adenosine NAs and [(14)C]-Squalenoyl-Adenosine NAs as respective tracers of adenosine and squalene moieties of the SQAd bioconjugate. This study was completed by radio-HPLC analysis allowing to determine the metabolization profile of SQAd. We report here that SQAd NAs allowed a sustained circulation of adenosine under its prodrug form (SQAd) for at least 1h after intravenous administration, when free adenosine was metabolized within seconds after injection. Moreover, the squalenoylation of adenosine and its formulation as NAs also significantly modified biodistribution, as SQAd NAs were mainly captured by the liver and spleen, allowing a significant release of adenosine in the liver parenchyma. Altogether, these results suggest that SQAd NAs provided a reservoir of adenosine into the bloodstream which may explain the previously observed neuroprotective efficacy of SQAd NAs against cerebral ischemia and spinal cord injury.


Assuntos
Adenosina , Nanopartículas , Pró-Fármacos , Esqualeno , Adenosina/administração & dosagem , Adenosina/química , Adenosina/farmacocinética , Animais , Radioisótopos de Carbono , Cromatografia Líquida de Alta Pressão , Masculino , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Esqualeno/administração & dosagem , Esqualeno/química , Esqualeno/farmacocinética , Distribuição Tecidual , Trítio
9.
Regul Toxicol Pharmacol ; 71(3): 353-64, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25683773

RESUMO

Alpha (α)-tocopherol is a component of a new generation of squalene-containing oil-in-water (SQ/W) emulsion adjuvants that have been licensed for use in certain influenza vaccines. Since regulatory pharmacokinetic studies are not routinely required for influenza vaccines, the in vivo fate of this vaccine constituent is largely unknown. In this study, we constructed a physiologically based pharmacokinetic (PBPK) model for emulsified α-tocopherol in human adults and infants. An independent sheep PBPK model was also developed to inform the local preferential lymphatic transfer and for the purpose of model evaluation. The PBPK model predicts that α-tocopherol will be removed from the injection site within 24h and rapidly transfer predominantly into draining lymph nodes. A much lower concentration of α-tocopherol was estimated to peak in plasma within 8h. Any systemically absorbed α-tocopherol was predicted to accumulate slowly in adipose tissue, but not in other tissues. Model evaluation and uncertainty analyses indicated acceptable fit, with the fraction of dose taken up into the lymphatics as most influential on plasma concentration. In summary, this study estimates the in vivo fate of α-tocopherol in adjuvanted influenza vaccine, may be relevant in explaining its immunodynamics in humans, and informs current regulatory risk-benefit analyses.


Assuntos
Adjuvantes Imunológicos/farmacocinética , Vacinas contra Influenza/química , Modelos Biológicos , Polissorbatos/farmacocinética , Esqualeno/farmacocinética , alfa-Tocoferol/farmacocinética , Tecido Adiposo/metabolismo , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/efeitos adversos , Adjuvantes Imunológicos/sangue , Adjuvantes Imunológicos/química , Adulto , Animais , Química Farmacêutica , Simulação por Computador , Combinação de Medicamentos , Emulsões , Humanos , Lactente , Injeções Intramusculares , Sistema Linfático/metabolismo , Modelos Animais , Polissorbatos/administração & dosagem , Polissorbatos/efeitos adversos , Polissorbatos/química , Medição de Risco , Ovinos , Esqualeno/administração & dosagem , Esqualeno/efeitos adversos , Esqualeno/sangue , Esqualeno/química , alfa-Tocoferol/administração & dosagem , alfa-Tocoferol/efeitos adversos , alfa-Tocoferol/sangue , alfa-Tocoferol/química
10.
J Pharmacokinet Pharmacodyn ; 40(5): 545-56, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23912214

RESUMO

Squalene is used in the oil phase of certain emulsion vaccine adjuvants, but its fate as a vaccine component following intramuscular (IM) injection in humans is unknown. In this study, we constructed a physiologically-based pharmacokinetic (PBPK) model for intramuscularly injected squalene-in-water (SQ/W) emulsion, in order to make a quantitative estimation of the tissue distribution of squalene following a single IM injection in humans. The PBPK model incorporates relevant physicochemical properties of squalene; estimates of the time course of cracking of a SQ/W emulsion; anatomical and physiological parameters at the injection site and beyond; and local, preferential lymphatic transport. The model predicts that a single dose of SQ/W emulsion will be removed from human deltoid muscle within six days following IM injection. The major proportion of the injected squalene will be distributed to draining lymph nodes and adipose tissues. The model indicates slow decay from the latter compartment most likely due to partitioning into neutral lipids and a low rate of squalene biotransformation there. Parallel pharmacokinetic modeling for mouse muscle suggests that the kinetics of SQ/W emulsion correspond to the immunodynamic time course of a commercial squalene-containing adjuvant reported in that species. In conclusion, this study makes important pharmacokinetic predictions of the fate of a squalene-containing emulsion in humans. The results of this study may be relevant for understanding the immunodynamics of this new class of vaccine adjuvants and may be useful in future quantitative risk analyses that incorporate mode-of-action data.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacocinética , Esqualeno/imunologia , Esqualeno/farmacocinética , Vacinas/imunologia , Vacinas/farmacocinética , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Animais , Emulsões/administração & dosagem , Humanos , Injeções Intramusculares/métodos , Cinética , Linfonodos/imunologia , Linfonodos/metabolismo , Camundongos , Modelos Biológicos , Distribuição Tecidual/imunologia
11.
Eur J Pharm Biopharm ; 79(3): 612-20, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21784150

RESUMO

We have designed an amphiphilic prodrug of the anticancer agent gemcitabine (dFdC), by covalent coupling to squalene. This bioconjugate, which self-assembled into nanoparticles (NPs) in water, was previously found to display an impressive anticancer activity both in vitro and in vivo. The present study aims to investigate the impact of SQdFdC nanoparticles on cellular membranes. MTT assays showed that, in the nanomolar range, squalenoyl gemcitabine (SQdFdC) was slightly less active than dFdC on a panel of human cancer cell lines, in vitro. However, above 10 µmol L(-1) SQdFdC was considerably more cytotoxic than dFdC. Contrarily to its parent drug, SQdFdC also induced cell lysis in a few hours, as evidenced by LDH release assays. Erythrocytes were used as an experimental model insensitive to the antimetabolic activity of dFdC to further investigate the putative membrane-related cytotoxic activity of SQdFdC. The bioconjugate also induced hemolysis in a time- and dose-dependent fashion, unlike squalene or dFdC, which clearly proved that SQdFdC could permeabilize cellular membranes. Structural X-ray diffraction and calorimetry studies were conducted in order to elucidate the mechanism accounting for these observations. They confirmed that SQdFdC could be transferred from NPs to phospholipid bilayers and that the insertion of the prodrug within model membranes resulted in the formation of nonlamellar structures, which are known to promote membrane leakage. As a whole, our results suggested that due to its amphiphilic nature, the cell uptake of SQdFdC resulted in its insertion into cellular membranes, which could lead to the formation of nonlamellar structures and to membrane permeation. Whether this mechanism could be the source of toxicity in vivo, however, remains to be established, since preclinical studies have clearly proven that squalenoyl gemcitabine displayed a good toxicity profile.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Membrana Celular/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Pró-Fármacos/farmacologia , Esqualeno/análogos & derivados , Tensoativos/farmacologia , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/farmacocinética , Varredura Diferencial de Calorimetria , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Desoxicitidina/farmacocinética , Desoxicitidina/farmacologia , Eritrócitos/efeitos dos fármacos , Feminino , Hemólise/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos , Fosfolipídeos/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Esqualeno/administração & dosagem , Esqualeno/química , Esqualeno/farmacocinética , Esqualeno/farmacologia , Tensoativos/administração & dosagem , Tensoativos/química , Tensoativos/farmacocinética , Difração de Raios X
12.
J Control Release ; 147(2): 163-70, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20691740

RESUMO

We have designed an amphiphilic prodrug of gemcitabine (dFdC) by its covalent coupling to a derivative of squalene, a natural lipid. The resulting bioconjugate self-assembled spontaneously in water as nanoparticles that displayed a promising in vivo anticancer activity. The aim of the present study was to provide further insight into the in vitro subcellular localization and on the metabolization pathway of the prodrug. Cells treated with radiolabelled squalenoyl gemcitabine (SQdFdC) were studied by differential detergent permeation, and microautography coupled to fluorescent immunolabeling and confocal microscopy. This revealed that the bioconjugate accumulated within cellular membranes, especially in those of the endoplasmic reticulum. Radio-chromatography analysis proved that SQdFdC delivered dFdC directly in the cell cytoplasm. Mass spectrometry studies confirmed that gemcitabine was then either converted into its biologically active triphosphate metabolite or exported from the cells through membrane transporters. To our knowledge, this is the first description of such an intracellular drug delivery pathway. In vitro cytotoxicity assays revealed that SQdFdC was more active than dFdC on a transporter-deficient human resistant leukemia model, which was explained by the subcellular distribution of the drugs and their metabolites. The squalenoylation drug delivery strategy might, therefore, dramatically improve the efficacy of gemcitabine on transporter-deficient resistant cancer in the clinical context.


Assuntos
Antimetabólitos Antineoplásicos/farmacocinética , Membrana Celular/metabolismo , Desoxicitidina/análogos & derivados , Portadores de Fármacos/química , Nanopartículas/química , Pró-Fármacos/farmacocinética , Esqualeno/análogos & derivados , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacologia , Autorradiografia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacocinética , Desoxicitidina/farmacologia , Composição de Medicamentos , Humanos , Tamanho da Partícula , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacologia , Esqualeno/administração & dosagem , Esqualeno/farmacocinética , Esqualeno/farmacologia , Frações Subcelulares/metabolismo , Tensoativos/química , Espectrometria de Massas em Tandem , Distribuição Tecidual , Gencitabina
13.
Basic Clin Pharmacol Toxicol ; 104(6): 483-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19371265

RESUMO

Fullerene-C60 (C60) is mainly applied in the aqueous phase by wrapping with water-soluble polymer or by water-solublizing chemical-modification, whereas C60 dissolved in oil is scarcely applied; still less explicable is its toxicity.We dissolved C60 in squalane at near-saturated or higher concentrations (220-500 ppm), named LipoFullerene (LF-SQ),and examined its biological safety. LF-SQ was administered at doses of 0.49-1000 microg/ml to fibroblast cells Balb/3T3, and showed that cell viability was almost equal to that of the control regardless of the UVA- or sham-irradiation, indicating no phototoxicity. Reverse mutation by LF-SQ was examined on four histidine-demanding strains of Salmonella typhimurium and a tryptophan-demanding strain of Escherichia coli. As for the dosages of LF-SQ (313-5000 microg/plate), the dose-dependency of the number of reverse mutation colonies of each strain did not show a marked difference when compared with the negative control, regardless of the metabolic activation, in contrast to twice or more differences for five positive controls(sodium azide, N-ethyl-N'-nitro-N-nitrosoguanidine, 2-nitrofluorene, 9-aminoacridine, and 2-aminoanthracene). In human skin biopsy built in a diffusion chamber, C60 permeated into the epidermis at 33.6 nmol/g tissue (24.2 ppm), on administration with LF-SQ containing 223 ppm of C60, but not detected in the dermis even after 24 hrs, as analysed by HPLC. It is presumed that LF-SQ can permeate into the epidermis via the corneum but can not penetrate the basement membrane,and so can not reach into the dermis, suggesting no necessity for considering a toxicity of C60 due to systemic circulation via dermal veins. Thus, C60 dissolved in squalane may not give any significant biological toxic effects such as photocytotoxicity,bacterial reverse mutagenicity, and permeability into the human skin.


Assuntos
Fulerenos/toxicidade , Pele/metabolismo , Esqualeno/análogos & derivados , Adulto , Animais , Células 3T3 BALB , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Derme/metabolismo , Epiderme/metabolismo , Feminino , Fulerenos/farmacocinética , Humanos , Técnicas In Vitro , Camundongos , Pessoa de Meia-Idade , Testes de Mutagenicidade , Permeabilidade , Salmonella typhimurium/efeitos dos fármacos , Absorção Cutânea , Soluções , Esqualeno/farmacocinética , Esqualeno/toxicidade , Raios Ultravioleta
14.
Anticancer Drugs ; 19(10): 999-1006, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18827565

RESUMO

In an earlier report, we demonstrated the superior anticancer efficacy of orally administered squalenoyl gemcitabine (SQdFdC) nanomedicine over its parent drug gemcitabine on rats bearing RNK-16 large granular lymphocytic (LGL) leukemia. In the present communication, we investigated the mechanisms behind this observation both at the cell and tissue level. The mechanisms were investigated by performing cytotoxicity, cell uptake, and biodistribution experiments. In the presence of cytidine deaminase, SQdFdC nanoassemblies resisted deamination and exerted significant anticancer activity in vitro against RNK-16 LGL leukemia cells, whereas the cytotoxicity of free gemcitabine decreased by approximately 83-fold, indicating its degradation due to deamination. Additionally, the SQdFdC showed considerably higher intracellular accumulation and retention compared with gemcitabine (P<0.05). Unlike gemcitabine, the cellular access to SQdFdC was not influenced by nucleoside transporters. When administered orally to rats, unlike H-gemcitabine, the H-SQdFdC absorbed slowly, but exhibited an improved pharmacokinetics and tissue distribution profile, particularly in the lymphoid organs (the major organs of metastasis). The resistance to deamination, followed by the improved pharmacokinetic and tissue distribution, and greater accumulation and retention at the level of cancer cells, are the key factors for the superiority of SQdFdC nanoassemblies over free gemcitabine against RNK-16 LGL leukemia in rats.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Leucemia Experimental/tratamento farmacológico , Nanomedicina , Esqualeno/análogos & derivados , Administração Oral , Animais , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacocinética , Desoxicitidina/farmacologia , Ratos , Ratos Endogâmicos F344 , Esqualeno/administração & dosagem , Esqualeno/farmacocinética , Esqualeno/farmacologia , Gencitabina
15.
Eur J Nutr ; 47 Suppl 2: 69-72, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18458836

RESUMO

Olive oil, one of the oldest vegetable oils consumed without any refining, is associated with a reduced risk of a number of common cancers. Minor constituents of virgin olive oil have been suggested to be among the major chemopreventive components. A brief overview is presented of recent findings concerning the bioavailability of certain important olive oil minor components including efficient antioxidant polyphenols, the triterpene hydrocarbon squalene and beta-sitosterol, considered as putative nutritional biomarkers, in relation to the incidence of cancer.


Assuntos
Anticarcinógenos/farmacocinética , Antioxidantes/farmacocinética , Neoplasias/prevenção & controle , Óleos de Plantas/química , Anticarcinógenos/administração & dosagem , Antioxidantes/administração & dosagem , Disponibilidade Biológica , Biomarcadores/sangue , Biomarcadores/urina , Humanos , Azeite de Oliva , Fenóis/administração & dosagem , Fenóis/farmacocinética , Fitosteróis/administração & dosagem , Fitosteróis/farmacocinética , Óleos de Plantas/administração & dosagem , Esqualeno/administração & dosagem , Esqualeno/farmacocinética
16.
J Control Release ; 128(1): 89-97, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18384902

RESUMO

To make stable and biocompatible non-viral gene carriers for therapeutic gene therapy, we developed a cationic lipid-based emulsion (CLE) prepared by an oil-in-water (O/W) emulsion method, wherein squalene oil was used as an oil core and the cationic lipid, 1,2-dioleoyl-sn-glycero-3-trimethylammonium-propane (DOTAP), was employed as an emulsifier. To evaluate in vivo characteristics such as toxicity and time-dependent gene expression, a bioluminescence reporter gene in pCMV-luc plasmid DNA was simply mixed with CLE in aqueous condition, resulting in a CLE/DNA complex. The CLE/DNA complex was optimized to form a compact and stable nano-sized particle by adding different amounts of plasmid DNA, and an optimal cationic lipid-to-DNA (C/D) weight ratio of 4 was identified. Freshly prepared CLE/DNA complex, with a C/D of 4, showed a high transfection efficiency and minimal cytotoxicity in vitro, compared to controls of a liposome (DOTAP)/DNA complex and a branched poly(ethyleneimine) (Mw=25 kDa) (bPEI)/DNA complex, respectively. The in vivo characteristics of the CLE/DNA complex were evaluated after intravenous injection into Balb/c mice. Time-dependent gene expression data in vivo were obtained using a non-invasive, whole animal bioluminescence imaging system. These data showed that the CLE/DNA complex offered prolonged high-level gene expression for 1 week, particularly in the liver and spleen. On the other hand, the controls of DOTAP/DNA complex and bPEI/DNA complex showed a relatively lower gene expression, because of the unstable and toxic properties of the control carriers. Our in vivo gene expression data demonstrate the potential of the CLE/DNA complex as a non-viral gene carrier for in vivo gene delivery.


Assuntos
DNA/farmacocinética , Emulsificantes/farmacocinética , Ácidos Graxos Monoinsaturados/farmacocinética , Técnicas de Transferência de Genes , Luciferases/genética , Nanopartículas , Compostos de Amônio Quaternário/farmacocinética , Esqualeno/farmacocinética , Animais , Células COS , Chlorocebus aethiops , DNA/química , DNA/genética , Emulsificantes/química , Emulsões , Ácidos Graxos Monoinsaturados/química , Feminino , Expressão Gênica , Genes Reporter/genética , Terapia Genética , Vetores Genéticos , Luminescência , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Plasmídeos/genética , Compostos de Amônio Quaternário/química , Esqualeno/química , Distribuição Tecidual
17.
J Control Release ; 124(1-2): 20-7, 2007 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-17878060

RESUMO

Gemcitabine is an anticancer nucleoside analogue active against various solid tumors. However, it possesses important drawbacks like a poor biological half-life and the induction of resistance. With the objective of overcoming the above drawbacks, we designed a new nanomedicine of gemcitabine and studied its anticancer efficacy against leukemia at preclinic. Gemcitabine has been covalently coupled with 1,1',2-tris-nor-squalenic acid to obtain the new anticancer nanomedicine 4-(N)-Tris-nor-squalenoyl-gemcitabine (SQdFdC NA). The SQdFdC NA exhibited, in comparison to gemcitabine, 3.26- and 3.22-folds higher cytotoxicity respectively, in murine resistant leukemia L1210 10K cells and in human leukemia resistant cell line CEM/ARAC8C. Following intravenous treatment of murine aggressive metastatic leukemia L1210 wt bearing mice, the SQdFdC NA caused significant increase in survival time compared to gemcitabine and also led to long-term survivals, which was not the case after gemcitabine treatment. This was attributed to significantly higher deposition of SQdFdC NA in spleen and liver (P<0.05), the major metastatic organs. In comparison to gemcitabine, SQdFdC NA displayed greater ability to induce S-phase arrest of the cancer cells followed by increased apoptotic induction. Interestingly, like gemcitabine, SQdFdC NA didn't induce appreciable differences in blood parameters even at doses higher than those used for anticancer evaluation. The preclinical data obtained in vitro and in vivo with SQdFdC NA demonstrate that this nanomedicine represents a new therapeutic system for the effective treatment of leukemia.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia L1210/tratamento farmacológico , Nanomedicina/métodos , Nanopartículas , Esqualeno/análogos & derivados , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Desoxicitidina/farmacocinética , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Humanos , Leucemia L1210/metabolismo , Leucemia L1210/patologia , Camundongos , Camundongos Endogâmicos DBA , Estrutura Molecular , Nanopartículas/administração & dosagem , Nanopartículas/uso terapêutico , Esqualeno/administração & dosagem , Esqualeno/química , Esqualeno/farmacocinética , Esqualeno/farmacologia , Esqualeno/uso terapêutico , Distribuição Tecidual
18.
Nutr Cancer ; 50(1): 101-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15572303

RESUMO

The eventual chemopreventive effect of squalene (SQ), a triterpene present in olive oil, was evaluated when administered to Wistar rats during a period comprising the initiation and selection/promotion of the "resistant hepatocyte" (RH) model of hepatocarcinogenesis. During 8 consecutive wk, animals received by gavage SQ (100 or 150 mg/100 g body weight) dissolved in corn oil (CO) daily. Animals treated with only CO and submitted to the RH model were used as controls. Treatments with SQ did not result in inhibition of macroscopically visible hepatocyte nodules (P > 0.05) or of hepatic placental glutathione S-transferase- positive preneoplastic lesions (PNL; P > 0.05). Hepatic cell proliferation and apoptosis indexes were not different (P > 0.05) among the different experimental groups, both regarding PNL and surrounding normal tissue areas. There were no significant differences (P > 0.05) among comets presented by rats treated with the two SQ doses or with CO. On the other hand, SQ increased total plasma cholesterol levels when administered at both doses (P < 0.05). This indicates that the isoprenoid was absorbed. Thus, SQ did not present chemopreventive activity during hepatocarcinogenesis and had a hypercholesterolemic effect, suggesting caution when considering its use in chemoprevention of cancer.


Assuntos
Quimioprevenção/métodos , Colesterol/sangue , Neoplasias Hepáticas Experimentais/prevenção & controle , Esqualeno/farmacologia , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Quimioprevenção/efeitos adversos , Colesterol/metabolismo , Ensaio Cometa , Óleo de Milho/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Absorção Intestinal , Masculino , Azeite de Oliva , Óleos de Plantas/farmacologia , Lesões Pré-Cancerosas/patologia , Distribuição Aleatória , Ratos , Ratos Wistar , Esqualeno/efeitos adversos , Esqualeno/farmacocinética
19.
Clin Chim Acta ; 344(1-2): 83-93, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15149875

RESUMO

BACKGROUND: While plant stanols are known to upregulate low density lipoprotein (LDL) receptors, we studied the effects of plant stanol (STA) and sterol (STE) ester spreads on triglyceride-rich lipoprotein (TRL) removal in statin-treated patients with familial hypercholesterolemia (FH) using intravenous Intralipid-squalene fat tolerance test. METHODS: Five patients consumed STA and STE in a randomized, crossover study for 4 weeks. TRL removal was studied at baseline and at the end of both periods. Serum, chylomicron (CM), and very low density lipoprotein lipids, squalene, and plant sterols were measured. RESULTS: LDL cholesterol was decreased by both spreads (15-16%, p<0.05). Plant sterol concentrations were doubled in serum and CM by STE vs. STA. After the injection of Intralipid, CM squalene and sitosterol, but not triglycerides (TG), reached higher peak levels (and area under the incremental curve (AUIC) of squalene) by both spreads than at baseline. Despite different plant sterol concentrations by STE vs. STA, the incremental curves for plant sterols were similar by the spreads. CONCLUSIONS: Despite the retarded removal of TRL lipids by STA and STE in the statin-treated subjects with FH, improvement of the fasting lipid profile was suggested important in consideration of combination of cholesterol absorption inhibitor with statins even in FH.


Assuntos
Colesterol/metabolismo , Emulsões Gordurosas Intravenosas/farmacocinética , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Absorção , Adulto , Colesterol/biossíntese , Colesterol/sangue , LDL-Colesterol/sangue , Estudos Cross-Over , Método Duplo-Cego , Emulsões Gordurosas Intravenosas/administração & dosagem , Feminino , Humanos , Hiperlipoproteinemia Tipo II/sangue , Lipídeos/sangue , Masculino , Fitosteróis/administração & dosagem , Fitosteróis/sangue , Fitosteróis/farmacologia , Sitosteroides/administração & dosagem , Sitosteroides/sangue , Sitosteroides/farmacologia , Esqualeno/administração & dosagem , Esqualeno/sangue , Esqualeno/farmacocinética , Triglicerídeos/sangue
20.
Biofactors ; 18(1-4): 289-97, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14695946

RESUMO

The concentration of Vitamin E (vit E) and ubiquinone (CoQ10), which together with squalene (SQ), play a key role against external oxidative insult, has been shown to decrease significantly during ageing. The aim of the present study is to inquire the effect of the combined use of topical bio-cosmetics containing natural active principles (including sebum-like lipid fractions, sebum and epidermal lipophilic and hydrophilic antioxidants), and oral antioxidant supplements on the antioxidant content of sebum and stratum corneum. We therefore treated the face and the back of 50 female volunteers aged 21-40, daily for two months, with a base cream containing 0.05% ubiquinone, 0.1% vit E, and 1% squalene. In addition 50 mg of CoQ10 + 50 mg of d-RRR-alpha-tocopheryl acetate + 50 microg of selenium were administered orally to half of the volunteers (Group A). Group B was represented by 25 volunteers who were treated only topically. Every 15 days during treatment the levels of CoQ10, vit E and SQ were verified in sebum, stratum corneum, and plasma. The daily topical application of the cream led to a significant increase, that peaked after 60 days, of the levels of CoQ10, d-RRR-alpha-tocopherol and SQ in the sebum (Group B), without significantly affecting the stratum corneum or plasma concentrations of the redox couple CoQ10H2/CoQ10 and vit E. The concomitant oral admistration of antioxidants produced in Group A a significant increase of the levels of CoQ10H2/CoQ10 and vit E both in plasma and stratum corneum after 15 and 30 days treatment respectively, compared to Group B. However the sebum levels of lipophilic antioxidants and SQ did not show a significant increase. After the treatments, the levels of CoQ10H2/CoQ10, vit E and SQ went back to basal levels within 6-8 days in sebum, 12-16 days in the stratum corneum, and 3-6 days in plasma. Therefore topical application of the antioxidants was able to increase their level in sebum, while the concomitant oral administration also affected the levels of vit E and CoQ10 in the stratum corneum.


Assuntos
Antioxidantes/administração & dosagem , Antioxidantes/análise , Epiderme/química , Sebo/química , Ubiquinona/análogos & derivados , alfa-Tocoferol/análogos & derivados , Administração Oral , Administração Tópica , Adulto , Antioxidantes/farmacocinética , Coenzimas , Quimioterapia Combinada , Feminino , Humanos , Cinética , Oxirredução , Selênio/administração & dosagem , Esqualeno/administração & dosagem , Esqualeno/análise , Esqualeno/farmacocinética , Tocoferóis , Ubiquinona/administração & dosagem , Ubiquinona/análise , Ubiquinona/farmacocinética , Vitamina E/administração & dosagem , Vitamina E/análise , Vitamina E/farmacocinética , alfa-Tocoferol/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA