Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.323
Filtrar
1.
Luminescence ; 39(5): e4762, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698695

RESUMO

Broadband near-infrared (NIR) spectroscopy has gained significant attention due to its versatile application in various fields. In the realm of NIR phosphors, Fe3+ ion is an excellent activator known for its nontoxic and harmless nature. In this study, we prepared an Fe3+-activated SrGa12O19 (SGO) NIR phosphor and analyzed its phase and luminescence properties. Upon excitation at 326 nm, the SGO:Fe3+ phosphor exhibited a broadband emission in the range 700-1000 nm, peaking at 816 nm. The optical band gap of SGO:Fe3+ was evaluated. To enhance the long-lasting phosphorescence, an oxygen vacancy-rich SGO:Fe3+ (VO-SGO:Fe3+) sample was prepared for activation. Interestingly, the increase in the oxygen-vacancy concentration indeed contributed to the activation of persistent luminescence of Fe3+ ions. The VO-SGO:Fe3+ sample has a long duration and high charge storage capacity, allowing it to perform efficiently in various applications. This work provides the foundation for further design of Cr3+-free PersL phosphors with efficient NIR PersL.


Assuntos
Luminescência , Substâncias Luminescentes , Oxigênio , Oxigênio/química , Substâncias Luminescentes/química , Estrôncio/química , Medições Luminescentes , Compostos Férricos/química , Gálio/química , Ferro/química , Espectroscopia de Luz Próxima ao Infravermelho
2.
ACS Appl Bio Mater ; 7(5): 2762-2780, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38629138

RESUMO

In the present study, we have discussed the influence of forging temperature (623 K (FT623), 723 K (FT723) and 823 K (FT823)) on microstructure and texture evolution and its implication on mechanical behavior, in vitro-in vivo biocorrosion, antibacterial response, and cytocompatibility of microalloyed Mg-Zr-Sr-Ce alloy. Phase analysis, SEM, and TEM characterization confirm the presence of Mg12Ce precipitate, and its stability was further validated by performing ab initio molecular dynamic simulation study. FT723 exhibits strengthened basal texture, higher fraction of second phases, and particle-stimulated nucleation-assisted DRX grains compared to other two specimens, resulting in superior strength with comparable ductility. FT723 also exhibits superior corrosion resistance mainly due to the strengthened basal texture and lower dislocation density. All the specimens exhibit excellent antibacterial behavior with Gram-negative E. coli, Gram-positive Staphylococcus aureus, and Pseudomonas aeruginosa bacteria. 100% reduction of bacterial growth is observed within 24 h of culture of the specimens. Cytocompatibility was determined by challenging specimen extracts with the MC3T3-E1 cell lines. FT723 specimen exhibits the highest cell proliferation and alkaline phosphatase activity (ALP) because of its superior corrosion resistance. The ability of the specimens to be used in orthopedic implant application was evaluated by in vivo study in rabbit femur. Neither tissue-related infection nor the detrimental effect surrounding the implant was confirmed from histological analysis. Significant higher bone regeneration surrounding the FT723 specimen was observed in SEM analysis and fluorochrome labeling. After 60 days, the FT723 specimen exhibits the highest bone formation, suggesting it is a suitable candidate for orthopedic implant application.


Assuntos
Ligas , Antibacterianos , Materiais Biocompatíveis , Teste de Materiais , Osteogênese , Antibacterianos/farmacologia , Antibacterianos/química , Ligas/química , Ligas/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Camundongos , Zircônio/química , Zircônio/farmacologia , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Diferenciação Celular/efeitos dos fármacos , Coelhos , Magnésio/química , Magnésio/farmacologia , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Estrôncio/química , Estrôncio/farmacologia , Simulação de Dinâmica Molecular , Linhagem Celular , Temperatura
3.
Luminescence ; 39(5): e4754, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38679894

RESUMO

Near-infrared mechanoluminescence is a phenomenon that produces high penetrating near-infrared light under external stimulation. Near-infrared light coincides with the biological window, lower optical loss, and the fact that the mechanoluminescence material is a medium that converts mechanical energy into light energy. The near-infrared mechanoluminescence material has potential application prospects in the fields of biological imaging, medical diagnosis, and monitoring of building materials. In this article, we report on a perovskite-type Sr3Sn2O7:Nd3+ near-infrared mechanoluminescence material, and its peaks locate in the first near-infrared window (800-1000 nm) and the second near-infrared window (1080, 1350 nm), respectively. Under the condition of pre-sintering with Li2CO3 as flux, the best sintering conditions are obtained, and the luminescence of material is in perfect agreement with the applied mechanical stress. In addition, a near-infrared mechanoluminescence sensor is proposed to solve the problem of building damage and timely maintenance.


Assuntos
Raios Infravermelhos , Medições Luminescentes , Titânio , Luminescência , Óxidos/química , Estrôncio/química , Neodímio/química , Compostos de Cálcio/química
4.
Environ Sci Pollut Res Int ; 31(20): 30059-30071, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594560

RESUMO

In this study, a high-efficiency strontium-doped hydroxyapatite (Sr-HAP) adsorbent was synthesized by a sol-gel method for removing cobaltous ions (Co(II)) from water. The effects of adsorbent dose, initial solution pH, initial Co(II) concentration and temperature on the removal performance of Co(II) were investigated. Experimental results indicated that the optimum Sr-HAP dose was 0.30 g/50 mL solution, the Sr-HAP adsorbent could effectively remove Co(II) in a wide pH range of 3-8. Increasing temperature was conducive to the adsorption, and the maximum Co(II) adsorption capacity by Sr-HAP reached 48.467 mg/g at 45 °C. The adsorption of Co(II) followed the pseudo-second-order kinetic model, indicating that the Co(II) adsorption by Sr-HAP was attributed mainly to chemisorption. The isothermal adsorption results showed that at lower Co(II) equilibrium concentration, the Langmuir model fitted the data better than the Freundlich model but opposite at higher Co(II) equilibrium concentration. Therefore, the adsorption of Co(II) was a process from monolayer adsorption to multilayer adsorption with the increase of the Co(II) equilibrium concentration. The diffusion analysis of Co(II) to Sr-HAP indicated that the internal diffusion and surface adsorption were the rate-controlled steps of Co(II) adsorption. Thermodynamic study demonstrated that the Co(II) adsorption process was spontaneous and endothermic. The mechanism study revealed that in addition to chemisorption, Sr-HAP also removed Co(II) ions from water via ion exchange and surface complexation.


Assuntos
Cobalto , Durapatita , Estrôncio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cobalto/química , Estrôncio/química , Poluentes Químicos da Água/química , Durapatita/química , Purificação da Água/métodos , Cinética , Concentração de Íons de Hidrogênio , Íons , Água/química
5.
Biomed Mater ; 19(4)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653261

RESUMO

Artificial bone graft with osteoconductivity, angiogenesis, and immunomodulation is promising clinical therapeutics for the reluctant healing process of bone defects. Among various osteogenic substitutes, polymethyl methacrylate (PMMA) bone cement is a quit competitive platform due to its easy deployment to the bone defects with irregular shape and biomimetic mechanical properties. However, the biologically inert essence of PMMA is reliant on the passive osseointegration and cannot provide sufficient biologic cues to induce fast bone repair. Bioactive glass could serve as an efficient platform for the active osteogenesis of PMMA via ionic therapy and construction of alkaline microenvironment. However, the direct of deployment of bioactive glass into PMMA may trigger additional cytotoxicity and hinder cell growth on its surface. Hence we incorporated ionic therapy as osteogenic cue into the PMMA to enhance the biomedical properties. Specifically, we synthesized core-shell microspheres with a strontium-doped bioactive glass (SrBG) core and hydroxyapatite (HA) shell, and then composited them with PMMA to introduce multifunctional effects of HA incorporation, alkaline microenvironment construction, and functional ion release by adding microsphere. We preparedxSrBG@HA/PMMA cements (x= 30, 40, 50) with varied microsphere content and evaluated impacts on mechanical/handling properties, ion release, and investigated the impacts of different composite cements on proliferation, osteogenic differentiation, angiogenic potential, and macrophage polarization. These findings provide new perspectives and methodologies for developing advanced bone biomaterials to promote tissue regeneration.


Assuntos
Cimentos Ósseos , Durapatita , Microesferas , Osteogênese , Polimetil Metacrilato , Estrôncio , Cimentos Ósseos/química , Polimetil Metacrilato/química , Osteogênese/efeitos dos fármacos , Porosidade , Estrôncio/química , Animais , Camundongos , Durapatita/química , Materiais Biocompatíveis/química , Teste de Materiais , Proliferação de Células/efeitos dos fármacos , Osseointegração/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Cerâmica/química , Vidro/química , Humanos , Substitutos Ósseos/química
6.
J Cell Physiol ; 239(5): e31256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591855

RESUMO

Osteosarcoma (OS) cancer treatments include systemic chemotherapy and surgical resection. In the last years, novel treatment approaches have been proposed, which employ a drug-delivery system to prevent offside effects and improves treatment efficacy. Locally delivering anticancer compounds improves on high local concentrations with more efficient tumour-killing effect, reduced drugs resistance and confined systemic effects. Here, the synthesis of injectable strontium-doped calcium phosphate (SrCPC) scaffold was proposed as drug delivery system to combine bone tissue regeneration and anticancer treatment by controlled release of methotrexate (MTX) and doxorubicin (DOX), coded as SrCPC-MTX and SrCPC-DOX, respectively. The drug-loaded cements were tested in an in vitro model of human OS cell line SAOS-2, engineered OS cell line (SAOS-2-eGFP) and U2-OS. The ability of doped scaffolds to induce OS cell death and apoptosis was assessed analysing cell proliferation and Caspase-3/7 activities, respectively. To determine if OS cells grown on doped-scaffolds change their migratory ability and invasiveness, a wound-healing assay was performed. In addition, the osteogenic potential of SrCPC material was evaluated using human adipose derived-mesenchymal stem cells. Osteogenic markers such as (i) the mineral matrix deposition was analysed by alizarin red staining; (ii) the osteocalcin (OCN) protein expression was investigated by enzyme-linked immunosorbent assay test, and (iii) the osteogenic process was studied by real-time polymerase chain reaction array. The delivery system induced cell-killing cytotoxic effects and apoptosis in OS cell lines up to Day 7. SrCPC demonstrates a good cytocompatibility and it induced upregulation of osteogenic genes involved in the skeletal development pathway, together with OCN protein expression and mineral matrix deposition. The proposed approach, based on the local, sustained release of anticancer drugs from nanostructured biomimetic drug-loaded cements is promising for future therapies aiming to combine bone regeneration and anticancer local therapy.


Assuntos
Apoptose , Neoplasias Ósseas , Fosfatos de Cálcio , Osteogênese , Osteossarcoma , Alicerces Teciduais , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Alicerces Teciduais/química , Linhagem Celular Tumoral , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Osteogênese/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Doxorrubicina/farmacologia , Proliferação de Células/efeitos dos fármacos , Estrôncio/farmacologia , Estrôncio/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Movimento Celular/efeitos dos fármacos
7.
ACS Appl Mater Interfaces ; 16(13): 15687-15700, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511302

RESUMO

Polyethylene terephthalate (PET) artificial ligaments, renowned for their superior mechanical properties, have been extensively adopted in anterior cruciate ligament (ACL) reconstruction surgeries. However, the inherent bio-inertness of PET introduces formidable barriers to graft-bone integration, a critical aspect of rehabilitation. Previous interventions, ranging from surface roughening to chemical modifications, have aimed to address this challenge; however, consistently effective techniques for inducing graft-bone integration remain scarce. Our study employed advanced surface-coating methodologies to introduce strontium-doped hydroxyapatite (SrHA) onto PET ligaments. Detailed scanning electron microscopy (SEM) examinations revealed a uniform and integrative coating of SrHA on PET fibers. Furthermore, spectroscopic analysis confirmed the steady release of strontium ions from the coated surface under physiological conditions. In-depth cellular studies proved that extracellular strontium emanating from SrHA-coated PET (PET@SrHA) ligaments actively steers the M2 macrophage polarization. Additionally, macrophages (Mφs) manifested a heightened secretion of prohealing cytokines when exposed to PET@SrHA. Subsequent investigations showed that these cytokines acted as mediators, activating integrin signaling pathways among macrophages, vascular endothelial cells, and osteoblasts. As a direct consequence, an increased rate of angiogenesis and osteogenic differentiation was observed, vital for graft-bone integration following ACL reconstruction with PET@SrHA ligaments. From a biochemical standpoint, our results pinpoint strontium ions as influential immunomodulators, sculpting the graft-bone interface's immune environment. This insight presents the SrHA-coating technique as a viable therapeutic strategy, holding sound promise for improving angiogenesis and osseointegration outcomes during ACL reconstruction using PET-based grafts.


Assuntos
Integrinas , Osteogênese , Citocinas , Angiogênese , Células Endoteliais , Hidroxiapatitas/química , Estrôncio/farmacologia , Estrôncio/química , Transdução de Sinais , Íons/farmacologia
8.
Dalton Trans ; 53(15): 6501-6506, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38511607

RESUMO

In the crystals of alkaline earth metal compounds strontium and barium with the non-steroidal anti-inflammatory drug nimesulide, the strontium cation is nine-coordinated with a distorted tricapped trigonal prismatic geometry TCTPR-9, whereas the ten-coordinated barium ion exhibits a distorted tetracapped trigonal prismatic geometry TCTPR-10.


Assuntos
Metais Alcalinoterrosos , Estrôncio , Sulfonamidas , Bário/química , Estrôncio/química , Metais Alcalinoterrosos/química , Anti-Inflamatórios não Esteroides
9.
Adv Sci (Weinh) ; 11(18): e2307269, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38445899

RESUMO

Surface modification is an important approach to improve osseointegration of the endosseous implants, however it is still desirable to develop a facile yet efficient coating strategy. Herein, a metal-phenolic network (MPN) is proposed as a multifunctional nanocoating on titanium (Ti) implants for enhanced osseointegration through early immunomodulation. With tannic acid (TA) and Sr2+ self-assembled on Ti substrates, the MPN coatings provided a bioactive interface, which can facilitate the initial adhesion and recruitment of bone marrow mesenchymal stem cells (BMSCs) and polarize macrophage toward M2 phenotype. Furthermore, the TA-Sr coatings accelerated the osteogenic differentiation of BMSCs. In vivo evaluations further confirmed the enhanced osseointegration of TA-Sr modified implants via generating a favorable osteoimmune microenvironment. In general, these results suggest that TA-Sr MPN nanocoating is a promising strategy for achieving better and faster osseointegration of bone implants, which can be easily utilized in future clinical applications.


Assuntos
Imunomodulação , Células-Tronco Mesenquimais , Osseointegração , Titânio , Osseointegração/efeitos dos fármacos , Animais , Titânio/química , Imunomodulação/efeitos dos fármacos , Taninos/farmacologia , Taninos/química , Propriedades de Superfície , Próteses e Implantes , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Camundongos , Estrôncio/química , Estrôncio/farmacologia , Modelos Animais , Ratos
10.
Dent Mater ; 40(5): 811-823, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490919

RESUMO

OBJECTIVES: Evaluate the ability of strontium fluoride on bond strength and enamel integrity after incorporation within orthodontic adhesive system as a delivery vehicle. METHODS: Experimental orthodontic adhesive system Transbond™ XT were modified with 1% Sr2+, 0.5% SrF2, 1% strontium, 0.5% Sr2+, 1% F-, 0.5% F-, and no additions were control. Mixing of formulation was monitored using Fourier transform infrared spectroscopy. Small-molecule drug-discovery suite was used to gain insights into Sr2+, F-, and SrF2 binding. Shear bond testing was performed after 6-months of ageing. Enamel blocks were cut, and STEM pictures were recorded. Specimens were indented to evaluate elastic modulus. Raman microscope was used to collect Raman spectra and inspected using a scanning electron microscope. Crystal structural analysis was performed using X-ray diffraction. Effect of material on cellular proliferation was determined. Confocal was performed to evaluate the effect of formulation on biofilms. RESULTS: FTIR of modified adhesives depicted peak changes within range due to various functional groups existing within samples. TEM represented structurally optimized hexagonal unit-cell of hydroxyapatite. Mean shear bond strength is recorded highest for Transbond XT with 1% SrF2. Dead bacterial percentage appeared higher in 0.5% SrF2 and 1% F- specimens. Crystal lengths showed an increase in 0.5% and 1% SrF2 specimens. Phase contrast within TEM images showed a union of 0.5% SrF2 crystal with enamel crystal with higher elastic modulus and highly mineralized crystalline hydroxyapatite. Intensity of ν1 PO43- and ν1 CO32- along with carbonate - / ν1PO43- ratio displayed good association with strontium fluoride. The formulation showed acceptable cell biocompatibility (p < 0.353). All specimens displayed characteristic diffraction maxima of different apatite angles within XRD. SIGNIFICANCE: Experimental results suggested good biocompatibility, adequate mechanical strength, and far-ranging crystallization ability. This would provide a new strategy to overcome the two major challenges of fixed orthodontics, biofilm growth, and demineralization of enamel.


Assuntos
Esmalte Dentário , Módulo de Elasticidade , Teste de Materiais , Microscopia Eletrônica de Varredura , Cimentos de Resina , Análise Espectral Raman , Esmalte Dentário/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Técnicas In Vitro , Cimentos de Resina/química , Colagem Dentária , Difração de Raios X , Remineralização Dentária/métodos , Estrôncio/química , Estrôncio/farmacologia , Resistência ao Cisalhamento , Humanos , Fluoretos/química , Fluoretos/farmacologia , Propriedades de Superfície , Biofilmes/efeitos dos fármacos
11.
Dent Mater ; 40(4): 716-727, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395738

RESUMO

OBJECTIVES: This study aimed to compare two types of bioactive additives which were strontium-containing fluorinated bioactive glass (SrBGF) or strontium-containing fluorapatite (SrFA) added to sol-gel derived glass ionomer cement (SGIC). The objective was to develop antibacterial and mineralisation properties, using bioactive additives, to minimize the occurrence of caries lesions in caries disease. METHODS: Synthesized SrBGF and SrFA nanoparticles were added to SGIC at 1 wt% concentration to improve antibacterial properties against S. mutans, promote remineralisation, and hASCs and hDPSCs viability. Surface roughness and ion-releasing behavior were also evaluated to clarify the effect on the materials. Antibacterial activity was measured via agar disc diffusion and bacterial adhesion. Remineralisation ability was assessed by applying the material to demineralised teeth and subjecting them to a 14-day pH cycle, followed by microCT and SEM-EDS analysis. RESULTS: The addition of SrFA into SGIC significantly improved its antibacterial property. SGIC modified with either SrBGF or SrFA additives could similarly induce apatite crystal precipitation onto demineralised dentin and increase dentin density, indicating its ability to remineralise dentin. Moreover, this study also showed that SGIC modified with SrBGF or SrFA additives had promising results on the in vitro cytotoxicity of hASC and hDPSC. SIGNIFICANT: SrFA has superior antibacterial property as compared to SrBGF while demonstrating equal remineralisation ability. Furthermore, the modified SGIC showed promising results in reducing the cytotoxicity of hASCs and hDPSCs, indicating its potential for managing caries.


Assuntos
Cárie Dentária , Fluoretos , Humanos , Fluoretos/farmacologia , Fluoretos/química , Cimentos de Ionômeros de Vidro/farmacologia , Cimentos de Ionômeros de Vidro/química , Estrôncio/farmacologia , Estrôncio/química , Antibacterianos/farmacologia , Antibacterianos/química , Apatitas/farmacologia , Cárie Dentária/terapia , Teste de Materiais
12.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338415

RESUMO

Tissue engineering is an interdisciplinary field of science that has been developing very intensively over the last dozen or so years. New ways of treating damaged tissues and organs are constantly being sought. A variety of porous structures are currently being investigated to support cell adhesion, differentiation, and proliferation. The selection of an appropriate biomaterial on which a patient's new tissue will develop is one of the key issues when designing a modern tissue scaffold and the associated treatment process. Among the numerous groups of biomaterials used to produce three-dimensional structures, hydroxyapatite (HA) deserves special attention. The aim of this paper was to discuss changes in the double electrical layer in hydroxyapatite with an incorporated boron and strontium/electrolyte solution interface. The adsorbents were prepared via dry and wet precipitation and low-temperature nitrogen adsorption and desorption methods. The specific surface area was characterized, and the surface charge density and zeta potential were discussed.


Assuntos
Boro , Hidroxiapatitas , Humanos , Hidroxiapatitas/química , Alicerces Teciduais/química , Durapatita , Materiais Biocompatíveis/química , Estrôncio/química , Propriedades de Superfície
13.
J Biomed Mater Res A ; 112(7): 1083-1092, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38411355

RESUMO

Porous titanium exhibits low elastic modulus and porous structure is thought to be a promising implant in bone defect repair. However, the bioinert and low mechanical strength of porous titanium have limited its clinical application, especially in load-bearing bone defect repair. Our previous study has reported an infiltration casting and acid corrosion (IC-AC) method to fabricate a novel porous titanium (pTi) with 40% porosity and 0.4 mm pore diameter, which exerts mechanical property matching with cortical bone and interconnected channels. In this study, we introduced a nanoporous coating and incorporated an osteogenic element strontium (Sr) on the surface of porous titanium (named as Sr-micro arch oxidation [MAO]) to improve the osteogenic ability of the pTi by MAO. Better biocompatibility of Sr-MAO was verified by cell adhesion experiment and cell counting kit-8 (CCK-8) test. The in vitro osteogenic-related tests such as immunofluorescence staining, alkaline phosphatase staining and real-time polymerase chain reaction (RT-PCR) demonstrated better osteogenic ability of Sr-MAO. Femoral bone defect repair model was employed to evaluate the osseointegration of samples in vivo. Results of micro-CT scanning, sequential fluorochrome labeling and Van Gieson staining suggested that Sr-MAO showed better in vivo osteogenic ability than other groups. Taking results of both in vitro and in vivo experiment together, this study indicated the Sr-MAO porous titanium could be a promising implant load-bearing bone defect.


Assuntos
Osteogênese , Titânio , Suporte de Carga , Titânio/química , Porosidade , Animais , Osteogênese/efeitos dos fármacos , Propriedades de Superfície , Coelhos , Osseointegração/efeitos dos fármacos , Estrôncio/química , Estrôncio/farmacologia , Masculino , Fêmur/patologia , Teste de Materiais , Camundongos
14.
Environ Res ; 250: 118486, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365057

RESUMO

The facile synthesis approach for the adsorbent preparation and recyclability during decontamination of radioactive pollutants is a significant concern in water treatment. The objective of this study is to, synthesis via solid-state reaction of the nanostructured CaTiO3 for the removal and recovery of strontium (Sr2+) from the various water sources. The influence of the adsorption-dependent parameters including, initial concentration, adsorbent dose, pH, contact time and co-existing ions interference were investigated. The prepared adsorbent was characterized by different analytical techniques like FT-IR, SEM with EDAX, TEM, TGA-DTG, Powder XRD and BET surface analysis. The kinetic models were also used, and according to the kinetic models, a pseudo-second-order kinetic model (R2 = 0.999) was better fitted to the adsorption of Sr2+ ions onto CaTiO3 rather than pseudo-first-order kinetics, which could properly represent the observed adsorption of Sr2+. For the isotherm study, the results are best fitted to the Langmuir isotherm model (R2 = 0.98) with a maximum adsorption capacity of 102.04 mg/g. The common ions (Na+, Mg2+, Ca2+, and K+) and Sr2+ having a concentration of 1:2, 1:3, and 1:4, where 82.8, 79.5, and 68.2 % removal was achieved of Sr2+ in each respective matrix. In addition, the adsorption and corresponding recovery and removal for the different Sr2+spiked matrices in deionized water, tap water, well water, lake water, and seawater were investigated with 97, 65.6, 76.5, 73.9 and 17.8 % removal respectively. Also, the CaTiO3 showed excellent recyclability with minimal loss even after 5 consecutive recyclability cycles and >90% removal of strontium achieved. Hence, prepared nanostructured CaTiO3 could be considered a promising adsorbent for the removal and recovery of Sr2+ions from contaminated water bodies.


Assuntos
Nanoestruturas , Óxidos , Estrôncio , Titânio , Purificação da Água , Estrôncio/química , Adsorção , Titânio/química , Óxidos/química , Purificação da Água/métodos , Nanoestruturas/química , Compostos de Cálcio/química , Poluentes Químicos da Água/química , Cinética , Poluentes Radioativos da Água/química , Poluentes Radioativos da Água/isolamento & purificação
15.
Adv Healthc Mater ; 13(12): e2303975, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38235953

RESUMO

Magnesium (Mg) alloys are widely used in bone fixation and bone repair as biodegradable bone-implant materials. However, their clinical application is limited due to their fast corrosion rate and poor mechanical stability. Here, the development of Mg-2Zn-0.5Ca-0.5Sr (MZCS) and Mg-2Zn-0.5Ca-0.5Zr (MZCZ) alloys with improved mechanical properties, corrosion resistance, cytocompatibility, osteogenesis performance, and antibacterial capability is reported. The hot-extruded (HE) MZCZ sample exhibits the highest ultimate tensile strength of 255.8 ± 2.4 MPa and the highest yield strength of 208.4 ± 2.8 MPa and an elongation of 15.7 ± 0.5%. The HE MZCS sample shows the highest corrosion resistance, with the lowest corrosion current density of 0.2 ± 0.1 µA cm-2 and the lowest corrosion rate of 4 ± 2 µm per year obtained from electrochemical testing, and a degradation rate of 368 µm per year and hydrogen evolution rate of 0.83 ± 0.03 mL cm-2 per day obtained from immersion testing. The MZCZ sample shows the highest cell viability in relation to MC3T3-E1 cells among all alloy extracts, indicating good cytocompatibility except at 25% concentration. Furthermore, the MZCZ alloy shows good antibacterial capability against Staphylococcus aureus.


Assuntos
Ligas , Antibacterianos , Magnésio , Teste de Materiais , Osteogênese , Antibacterianos/farmacologia , Antibacterianos/química , Ligas/química , Ligas/farmacologia , Corrosão , Animais , Osteogênese/efeitos dos fármacos , Camundongos , Magnésio/química , Magnésio/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Implantes Absorvíveis , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Zinco/química , Zinco/farmacologia , Linhagem Celular , Estrôncio/química , Estrôncio/farmacologia , Zircônio/química , Zircônio/farmacologia
16.
Biol Trace Elem Res ; 202(4): 1559-1567, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37491616

RESUMO

The promotion of early osseointegration is crucial for the success of biomedical titanium implants. Physical and chemical modifications to the material surface can significantly compensate for the lack of biocompatibility and early osseointegration of the implant. In this study, we implanted strontium onto titanium plates and analyzed the effect of strontium-doped materials on angiogenesis and biocompatibility in the human bone structure. Our findings demonstrated that strontium-loaded titanium sheet materials effectively promote human umbilical vein endothelial cell (HUVEC) biocompatibility and vascular differentiation ability, as evidenced by proliferation-apoptosis assays, RT-qPCR for vascular neogenesis markers, ELISA for vascular endothelial growth factor (VEGF) levels, and nitric oxide (NO) analysis. Mechanism studies based on RNAseq and Western blotting analysis revealed that strontium can promote titanium material biocompatibility with HUVEC cells and vascular neovascularization ability by activating the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. Meanwhile, blocking the ERK1/2 signaling pathway could reverse the promotional effect of vascular formation. Overall, we have successfully fabricated a multifunctional biocompatible bone implant with better histocompatibility and angiogenesis compared to uncoated implants.


Assuntos
Estrôncio , Titânio , Humanos , Titânio/farmacologia , Titânio/química , Estrôncio/farmacologia , Estrôncio/química , Fator A de Crescimento do Endotélio Vascular , Proteína Quinase 3 Ativada por Mitógeno , Angiogênese , Sistema de Sinalização das MAP Quinases , Propriedades de Superfície
17.
Int J Biol Macromol ; 254(Pt 3): 127780, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37907172

RESUMO

Dentine hypersensitivity (DH) is a common oral health issue and occlusion of the exposed dentinal tubules (DTs) is regarded as the most effective therapeutic treatment nowadays. However, it is still difficult to develop easy and effective strategies for deep occlusion of DTs. In this study, we develop a strategy for occluding DTs deeply and compactly via simple application of occlusion media including (poly-L-aspartic acid)­strontium (PAsp­strontium) and phosphate/fluoride. The bonding of strontium ions to poly-L-aspartic acid formed a positively charged PAsp­strontium complexes. After application of 15 min each, the PAsp­strontium and phosphate/fluoride rapidly penetrated into the DTs in turn via the electrostatic interaction, then occluded the DTs with crystals up to a depth of 150 µm. The occlusion within DTs was resistant to abrasive and acidic challenges. The occlusion media performed better than commercial desensitizers Duraphat and Gluma. Moreover, this strategy possessed sufficient biocompatible and excellent performance in vivo. The application of occlusion media would shed light on in the management of DH.


Assuntos
Sensibilidade da Dentina , Fluoretos , Humanos , Fluoretos/química , Estrôncio/química , Sensibilidade da Dentina/tratamento farmacológico , Ácido Aspártico/farmacologia , Fosfatos , Dentina , Microscopia Eletrônica de Varredura
18.
Dent Mater ; 40(2): 210-218, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37977993

RESUMO

OBJECTIVES: Apatite minerals can have various anions and cations in their crystal structure in addition to phosphate ion (PO4³â») and calcium ion (Ca2+). The aim of this study is to investigate effects of the borate, fluoride and strontium ions on biomimetic nucleation of calcium phosphate. METHODS: Nano-crystalline hydroxyapatite (H-Ap) was obtained from a supersaturated buffered solution containing 4.12 mM HPO42- and 5.88 mM Ca2+ (H-Ap). Four additives were used in solid solution methods: (i) 0.588 mM F- (F-Ap), (ii) 5.88 mM Sr2+ (Sr-Ap), (iii) 4.12 mM BO33- (BO3-Ap), and (iv) a surface pre-reacted glass ionomer (S-PRG) filler eluate that contained 0.17 mM Sr2+, 0.588 mM F-, 11.1 mM BO33-- (SPRG-Ap). Apatite crystallization was investigated using a solid-state magic-angle spinning NMR spectroscopy and X-ray diffraction (XRD) with the Rietveld analysis. RESULTS: A 2D 1H-31P heteronuclear-correlation NMR showed F- ion incorporation in the apatite structure of the F-Ap and SPRG-Ap. The peaks on the 31P axis of the F-Ap, Sr-Ap, and BO3-Ap were different from that of the H-Ap, and the full width at half maximum increased in the following order: H-Ap∼F-Ap∼BO3-Ap< SPRG-Ap< Sr-Ap, suggesting the incorporation of the F-, Sr2+ and BO33-. The incorporation of F and BO3 was further confirmed by 19F and 11B NMR. The XRD revealed that Sr2+ was preferentially incorporated into the CaII site. SIGNIFICANCE: The F-, Sr2+ and BO33-ions might be involved in modifying the crystallization of apatite precipitation, producing a variety of apatite. S-PRG filler that release these ions may have an effect on remineralization, i.e., the reformation of apatite lost due to caries.


Assuntos
Boratos , Fluoretos , Difração de Raios X , Estrôncio/química , Biomimética , Fosfatos de Cálcio/química , Apatitas/química , Durapatita/química , Espectroscopia de Ressonância Magnética , Íons
19.
Int J Dev Biol ; 67(4): 137-146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37975329

RESUMO

For the past 50 years, hydroxyapatite (HA) has been widely used in bone defect repair because it is the main inorganic component of the mineral phase of a human bone. Extensive preclinical and clinical studies have shown that strontium (Sr) can safely and effectively help prevent and treat bone diseases, including osteoporosis. These findings have resulted in the concept of integrating Sr and HA for bone disease management. The doped Sr can improve the physicochemical properties of HA and enhance its angiogenic and bone regeneration ability. Nevertheless, no study has reviewed the design strategy of Sr-doped HA (Sr-HA) to understand its biological roles. Therefore, in this article, we review recent developments in Sr-HA preparation and its effect on osteogenesis and angiogenesis in vitro and in vivo along with key suggestions for future research and development.


Assuntos
Angiogênese , Osteogênese , Humanos , Hidroxiapatitas/química , Hidroxiapatitas/farmacologia , Durapatita/química , Durapatita/farmacologia , Estrôncio/farmacologia , Estrôncio/química
20.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833940

RESUMO

Food and drinks can be contaminated with pollutants such as lead and strontium, which poses a serious danger to human health. For this reason, a number of effective sensors have been developed for the rapid and highly selective detection of such contaminants. TBA, a well-known aptamer developed to selectively target and thereby inhibit the protein of clinical interest α-thrombin, is receiving increasing attention for sensing applications, particularly for the sensing of different cations. Indeed, TBA, in the presence of these cations, folds into the stable G-quadruplex structure. Furthermore, different cations produce small but significant changes in this structure that result in changes in the electrical responses that TBA can produce. In this article, we give an overview of the expected data regarding the use of TBA in the detection of lead and strontium, calculating the expected electrical response using different measurement techniques. Finally, we conclude that TBA should be able to detect strontium with a sensitivity approximately double that achievable for lead.


Assuntos
Aptâmeros de Nucleotídeos , Quadruplex G , Humanos , Aptâmeros de Nucleotídeos/química , Cátions , Trombina/metabolismo , Estrôncio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA