Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768338

RESUMO

Mutations in parkin, a neuroprotective protein, are the predominant cause of autosomal recessive juvenile Parkinson's disease. Neuroinflammation-derived nitrosative stress has been implicated in the etiology of the chronic neurodegeneration. However, the interactions between genetic predisposition and nitrosative stress contributing to the degeneration of dopaminergic (DA) neurons remain incompletely understood. Here, we used the SH-SY5Y neuroblastoma cells to investigate the function of parkin and its pathogenic mutants in relation to cell survival under nitric oxide (NO) exposure. The results showed that overexpression of wild-type parkin protected SH-SY5Y cells from NO-induced apoptosis in a reactive oxygen species-dependent manner. Under nitrosative stress conditions, parkin selectively upregulated the inositol-requiring enzyme 1α/X-box binding protein 1 (IRE1α/XBP1) signaling axis, an unfolded protein response signal through the sensor IRE1α, which controls the splicing of XBP1 mRNA. Inhibition of XBP1 mRNA splicing either by pharmacologically inhibiting IRE1α endoribonuclease activity or by genetically knocking down XBP1 interfered with the protective activity of parkin. Furthermore, pathogenic parkin mutants with a defective protective capacity showed a lower ability to activate the IRE1α/XBP1 signaling. Finally, we demonstrated that IRE1α activity augmented by parkin was possibly mediated through interacting with IRE1α to regulate its phosphorylation/oligomerization processes, whereas mutant parkin diminished its binding to and activation of IRE1α. Thus, these results support a direct link between the protective activity of parkin and the IRE1α/XBP1 pathway in response to nitrosative stress, and mutant parkin disrupts this function.


Assuntos
Estresse Nitrosativo , Proteínas Serina-Treonina Quinases , Humanos , Morte Celular/genética , Morte Celular/fisiologia , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/metabolismo , Neuroblastoma , Estresse Nitrosativo/genética , Estresse Nitrosativo/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
2.
Oxid Med Cell Longev ; 2022: 4048543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251471

RESUMO

Hypoxia is a recognized inducer of oxidative stress during prolonged physical activity. Nevertheless, previous studies have not systematically examined the effects of normoxia and hypoxia during acute physical exercise. The study is aimed at evaluating the relationship between enzymatic and nonenzymatic antioxidant barrier, total antioxidant/oxidant status, oxidative and nitrosative damage, inflammation, and lysosomal function in different acute exercise protocols under normoxia and hypoxia. Fifteen competitive athletes were recruited for the study. They were subjected to two types of acute cycling exercise with different intensities and durations: graded exercise until exhaustion (GE) and simulated 30 km individual time trial (TT). Both exercise protocols were performed under normoxic and hypoxic (FiO2 = 16.5%) conditions. The number of subjects was determined based on our previous experiment, assuming the test power = 0.8 and α = 0.05. We demonstrated enhanced enzymatic antioxidant systems during hypoxic exercise (GE: ↑ catalase (CAT), ↑ superoxide dismutase; TT: ↑ CAT) with a concomitant decrease in plasma reduced glutathione. In athletes exercising in hypoxia, redox status was shifted in favor of oxidation reactions (GE: ↑ total oxidant status, ↓ redox ratio), leading to increased oxidation/nitration of proteins (GE: ↑ advanced oxidation protein products (AOPP), ↑ ischemia-modified albumin, ↑ 3-nitrotyrosine, ↑ S-nitrosothiols; TT: ↑ AOPP) and lipids (GE: ↑ malondialdehyde). Concentrations of nitric oxide and its metabolites (peroxynitrite) were significantly higher in the plasma of hypoxic exercisers with an associated increase in inflammatory mediators (GE: ↑ myeloperoxidase, ↑ tumor necrosis factor-alpha) and lysosomal exoglycosidase activity (GE: ↑ N-acetyl-ß-hexosaminidase, ↑ ß-glucuronidase). Our study indicates that even a single intensive exercise session disrupts the antioxidant barrier and leads to increased oxidative and nitrosative damage at the systemic level. High-intensity exercise until exhaustion (GE) alters redox homeostasis more than the less intense exercise (TT, near the anaerobic threshold) of longer duration (20.2 ± 1.9 min vs. 61.1 ± 5.4 min-normoxia; 18.0 ± 1.9 min vs. 63.7 ± 3.0 min-hypoxia), while hypoxia significantly exacerbates oxidative stress, inflammation, and lysosomal dysfunction in athletic subjects.


Assuntos
Exercício Físico/fisiologia , Homeostase/fisiologia , Hipóxia/sangue , Lisossomos/metabolismo , Estresse Nitrosativo/fisiologia , Transdução de Sinais/fisiologia , Adolescente , Adulto , Produtos da Oxidação Avançada de Proteínas/sangue , Antioxidantes/metabolismo , Atletas , Biomarcadores/sangue , Catalase/sangue , Humanos , Inflamação/sangue , Masculino , Malondialdeído/sangue , Oxirredução , Albumina Sérica Humana , Superóxido Dismutase/sangue , Adulto Jovem
3.
Neurochem Int ; 154: 105281, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038460

RESUMO

Glioma cells use intermediate levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) for growth and invasion, and suppressing these reactive molecules thus may compromise processes that are vital for glioma survival. Increased oxidative stress has been identified in glioma cells, in particular in glioma stem-like cells. Studies have shown that these cells harbor potent antioxidant defenses, although endogenous protection against nitrosative stress remains understudied. The enhancement of oxidative or nitrosative stress offers a potential target for triggering glioma cell death, but whether oxidative and nitrosative stresses can be combined for therapeutic effects requires further research. The optimal approach of harnessing oxidative stress for anti-glioma therapy should include the induction of free radical-induced oxidative damage and the suppression of antioxidant defense mechanisms selectively in glioma cells. However, selective induction of oxidative/nitrosative stress in glioma cells remains a therapeutic challenge, and research into selective drug delivery systems is ongoing. Because of multifactorial mechanisms of glioma growth, progression, and invasion, prospective oncological therapies may include not only therapeutic oxidative/nitrosative stress but also inhibition of oncogenic kinases, antioxidant molecules, and programmed cell death mediators.


Assuntos
Glioma , Estresse Oxidativo , Glioma/tratamento farmacológico , Humanos , Estresse Nitrosativo/fisiologia , Estudos Prospectivos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Nitrogênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo
4.
Cell Tissue Res ; 387(1): 143-157, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34729646

RESUMO

The preconditioning of human sperm with sublethal nitrosative stress before cryopreservation can potentially improve the thawed sperm quality. However, the underlying mechanisms behind this protective strategy are not entirely understood. We compared the cryosurvival of human sperm exposed to 0.01 µM nitric oxide (NO) throughout the cryopreservation and used multiplexed quantitative proteomics approach to identify changes in the proteome profile of preconditioned sperm cells. Semen samples were obtained from 30 normospermia donors and then each sample was divided into three equal parts: fresh (F), frozen-control (C), and frozen exposed to nitric oxide (NO). The sperm undergoing mild sublethal stress showed higher values for motility and viability compared to the frozen control sperm. Moreover, out of 2912 identified proteins, 248 proteins were detected as differentially abundant proteins (DAPs) between cryopreserved groups and fresh group (F) (p < 0.05). Gene ontology (GO) analysis of differentially abundant proteins indicated that the abundance of proteins associated with glycolysis, gluconeogenesis, and fertilization processes was reduced while oxidative phosphorylation pathway was increased in abundance in cryopreserved sperm compared to the fresh sperm. Moreover, redox protein such as thioredoxin 17 was increased in abundance in the NO group compared to the control freezing group. Therefore, the pre-conditioning of sperm prior to cryopreservation may play an important role in maintaining the redox balance in mitochondria of sperm after freezing. Overall, our results indicate that arylsulfatase A (ARSA), serine protease 37 (PRSS37), and sperm surface protein (SP17) may potentially serve as protein biomarkers associated with screening the fertilization potential of the thawed sperm.


Assuntos
Criopreservação/métodos , Estresse Nitrosativo/fisiologia , Proteômica/métodos , Espermatozoides/patologia , Humanos , Masculino
5.
Nitric Oxide ; 119: 41-49, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942379

RESUMO

Nitric oxide synthase (NOS) catalyzes NO formation from the substrate l-arginine (Arg). Previously, NOS with distinct biochemical properties were characterized from two photosynthetic microorganisms, the unicellular algae Ostreococcus tauri (OtNOS) and the cyanobacteria Synechococcus PCC 7335 (SyNOS). In this work we studied the effect of recombinant OtNOS and SyNOS expressed under IPTG-induced promoter in E. coli, a bacterium that lacks NOS. Results show that OtNOS and SyNOS expression promote E. coli growth in a nutrient replete medium and allow to better metabolize Arg as N source. In LB medium, OtNOS induces the expression of the NO dioxygenase hmp in E. coli, in accordance with high NO levels visualized with the probe DAF-FM DA. In contrast, SyNOS expression does not induce hmp and show a slight increase of NO production compared to OtNOS. NOS expression reduces ROS production and increases viability of E. coli cultures growing in LB. A strong nitrosative stress provoked by the addition of 1 mM of the NO donors sodium nitroprusside (SNP) and nitrosoglutathione (GSNO) inhibits bacterial growth rate. Under these conditions, the expression of OtNOS or SyNOS counteracts NO donor toxicity restoring bacterial growth. Finally, using bioinformatic tools and ligand docking analyses, we postulate that tetrahydromonapterin (MH4), an endogenous pterin found in E. coli, could act as cofactor required for NOS catalytic activity. Our findings could be useful for the development of biotechnological applications using NOS expression to improve growth in NOS-lacking bacteria.


Assuntos
Biopterinas/análogos & derivados , Coenzimas/metabolismo , Escherichia coli/crescimento & desenvolvimento , Óxido Nítrico Sintase/metabolismo , Estresse Nitrosativo/fisiologia , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biopterinas/química , Biopterinas/metabolismo , Clorófitas/enzimologia , Coenzimas/química , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/química , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Synechococcus/enzimologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-34826557

RESUMO

The endocannabinoid system (ECS) appears to regulate metabolic, cardiovascular, immune, gastrointestinal, lung, and reproductive system functions, as well as the central nervous system. There is also evidence that neuropsychiatric disorders are associated with ECS abnormalities as well as oxidative and nitrosative stress pathways. The goal of this mechanistic review is to investigate the mechanisms underlying the ECS's regulation of redox signalling, as well as the mechanisms by which activated oxidative and nitrosative stress pathways may impair ECS-mediated signalling. Cannabinoid receptor (CB)1 activation and upregulation of brain CB2 receptors reduce oxidative stress in the brain, resulting in less tissue damage and less neuroinflammation. Chronically high levels of oxidative stress may impair CB1 and CB2 receptor activity. CB1 activation in peripheral cells increases nitrosative stress and inducible nitric oxide (iNOS) activity, reducing mitochondrial activity. Upregulation of CB2 in the peripheral and central nervous systems may reduce iNOS, nitrosative stress, and neuroinflammation. Nitrosative stress may have an impact on CB1 and CB2-mediated signalling. Peripheral immune activation, which frequently occurs in response to nitro-oxidative stress, may result in increased expression of CB2 receptors on T and B lymphocytes, dendritic cells, and macrophages, reducing the production of inflammatory products and limiting the duration and intensity of the immune and oxidative stress response. In conclusion, high levels of oxidative and nitrosative stress may compromise or even abolish ECS-mediated redox pathway regulation. Future research in neuropsychiatric disorders like mood disorders and deficit schizophrenia should explore abnormalities in these intertwined signalling pathways.


Assuntos
Endocanabinoides/metabolismo , Transtornos Mentais , Estresse Nitrosativo/fisiologia , Transdução de Sinais , Animais , Encéfalo , Humanos , Inflamação , Transtornos Mentais/metabolismo , Transtornos Mentais/fisiopatologia , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Receptor CB2 de Canabinoide/fisiologia
7.
Turk J Gastroenterol ; 32(9): 765-773, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34609306

RESUMO

BACKGROUND: Wilson disease (WD) is an autosomal recessive inherited disorder of copper (Cu2+) metabolism, resulting in Cu2+ accumulation and liver and central nervous system toxicity. Oxidative stress may have a role in the pathogenesis of Wilson disease, but the roles of thiol/disulfide homeostasis and nitrosative stress have not been examined. The purpose of this study was to evaluate whether there is a modification in thiol/disulfide homeostasis and nitrosative stress in patients with Wilson disease. METHODS: A total of 50 patients with Wilson disease (42 under drug treatment and 8 newly diagnosed patients with no drug treatment) and 50 healthy gender- and age-matched controls were enrolled for this study. Serum native thiol and total thiol levels were measured with a spectrophotometric method. The number of disulfide bonds and the related ratios were determined from these measurements. Serum nitric oxide (NO) and 3-nitrotyrosine (3-NT) levels were analyzed using chemiluminescence and ELISA assays, respectively. RESULTS: The average native thiol levels of the patient group under drug treatment were found to be markedly higher than the levels of controls (P < .05). We detected no marked changes in total thiol and disulfide levels, and disulfide/total thiol, disulfide/native thiol, or native thiol/total thiol ratios between groups. We found significant elevations in NO levels in Wilson disease group before drug treatment, and the 3-NT levels in the Wilson disease groups prior to (P < .05) and under drug treatment (P < .01), when compared to controls. CONCLUSION: Our data are the first to show that nitrosative stress and thiol/disulfide homeostasis can contribute to the pathogenesis of Wilson disease.


Assuntos
Degeneração Hepatolenticular , Homeostase , Estresse Nitrosativo , Dissulfetos/metabolismo , Degeneração Hepatolenticular/fisiopatologia , Homeostase/fisiologia , Humanos , Estresse Nitrosativo/fisiologia , Compostos de Sulfidrila/metabolismo
8.
Eur Rev Med Pharmacol Sci ; 25(18): 5653-5663, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34604957

RESUMO

OBJECTIVE: In our previous genomic studies in human intracranial aneurysms, we observed downregulations in the expression of a number of ribosomal protein genes and the c-Myc-related gene MYC target 1 (MYCT1). So far there is no information about the roles of MYCT1 in vascular cells. Our study aims to investigate the functional roles of MYCT1 in vascular smooth muscle cells (SMCs). MATERIALS AND METHODS: Primary SMCs were isolated from rat thoracic aorta and cultured in vitro. The mRNA and protein expressions were determined by real-time PCR and western blot respectively. Apoptosis was detected by measuring caspase 3/7 activity. Collagen production was determined with ELISA. RESULTS: Using PCR, we validated our previous genomic data showing that the expressions of MYCT1 and ribosomal protein genes were decreased in human aneurysm tissues. In vascular SMCs, we showed that nitrosative stress downregulated the expression of both MYCT1 and ribosomal proteins. Knockdown of MYCT1 mimicked the effects of nitrosative stress on ribosomal protein expressions, whereas overexpression of MYCT1 blunted the effects of nitrosative stress. MYCT1-dependent downregulation of ribosomal proteins compromised the protein translational capacity of the cells for collagen production. Moreover, the endogenously expressed MYCT1 in vascular SMCs was involved in maintaining normal cellular functions including survival, proliferation and migration. CONCLUSIONS: MYCT1-dependent gene regulation may, at least partly, explain the downregulated expressions of ribosomal proteins observed in human intracranial aneurysms. It is suggested that MYCT1 may represent a novel molecular target for counteracting the decreased activity of aneurysmal SMCs for tissue repairmen/regeneration.


Assuntos
Regulação para Baixo/genética , Regulação da Expressão Gênica/genética , Expressão Gênica/genética , Músculo Liso Vascular/metabolismo , Estresse Nitrosativo/genética , Estresse Nitrosativo/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Animais , Células Cultivadas , Humanos , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/fisiopatologia , Masculino , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Proteínas Nucleares/metabolismo , Ratos Sprague-Dawley
9.
J Parasitol ; 107(5): 810-816, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34648629

RESUMO

Macrophages, within which Leishmania species replicate, generate large amounts of reactive oxygen species (ROS) and reactive nitrogen species (RNS) to kill these parasites. The present study assessed the oxidative and nitrosative stress, and specific immune enzymes in the serum of patients with cutaneous leishmaniasis (Cl) before and after treatment and in the control individuals. Serum activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), L-arginase, myeloperoxidase (MPO), and adenosine deaminase (ADA) and the levels of reduced glutathione, malondialdehyde (MDA), and nitric oxide (NO) were studied. The activities of L-arginase, MPO, and ADA and the levels of MDA and NO were significantly elevated (P < 0.001), while the activities of SOD, CAT, and GSH-Px, and the levels of reduced glutathione (GSH) were significantly (P < 0.001) reduced in untreated patients as compared with values of patients after treatment and of control individuals. The treatment, which included intramuscular injection of sodium stibogluconate and meglumine antimoniate, ameliorated these factors in comparison to the untreated group. These results suggest that oxidative and nitrosative stress may play an important role in the pathogenesis of untreated cutaneous leishmaniasis. Furthermore, the reduction in oxidative and nitrosative stress in the treated Cl patients may be due to the drug decreasing energy production by the parasite, which eventually leads to its death.


Assuntos
Antiprotozoários/uso terapêutico , Leishmaniose Cutânea/metabolismo , Estresse Nitrosativo/fisiologia , Estresse Oxidativo/fisiologia , Gluconato de Antimônio e Sódio/uso terapêutico , Estudos de Casos e Controles , Humanos , Leishmaniose Cutânea/tratamento farmacológico , Macrófagos/metabolismo , Masculino , Antimoniato de Meglumina/uso terapêutico , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Neurochem Int ; 150: 105183, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34508785

RESUMO

We previously reported that inhibition of nitric oxide (NO) production promotes rat reconnected facial nerve regeneration. However, the underlying mechanism is obscure. Microtubule assembly is known to be essential to axon regeneration; nevertheless, tubulins and microtubule-associated proteins (MAPs) have been demonstrated as targets for NO and peroxynitrite. Thus, we hypothesized that NO and/or peroxynitrite may affect facial nerve regeneration via influencing on microtubule assembly. First, tubulins and tau (a MAP) were extracted from facial nerves of normal rats, treated with NO donor or peroxynitrite, and processed for microtubule assembly assay. We found that peroxynitrite, DEA NONOate, and Angeli's salt reduced the tubulin polymerization activity to a greater extent than GSNO, SIN-1, and SNAP. Additionally, SIN-1, peroxynitrite, and Angeli's salt impaired the ability of tau to promote microtubule assembly. Next, nitrosative stress biomarkers 3-nitrotyrosine (3-NT) and S-nitrosylated cysteine (SNO-Cys) were immunolabeled in facial nerves. Both biomarkers were highly upregulated in proximal and distal stumps of reconnected facial nerves at 3 days and 1 week after neurorrhaphy. Notably, the expression of 3-NT was greatly reduced at 2 weeks, whereas that of SNO-Cys was maintained. Conversely, inhibition of NO production with L-NAME prevented the upregulation of SNO-Cys. Further, we used tubulins and tau extracted from facial nerves of sham-operated, nerve suture + vehicle treatment, and nerve suture + L-NAME treatment rats to perform microtubule assembly assay. We found that L-NAME treatment enhanced polymerization activity of tubulins and ability of tau to promote microtubule assembly. It is noteworthy that α-tubulin plays a more important role than ß-tubulin since the activity of microtubule assembly using α-tubulin extracted from L-NAME-treated rats was greatly elevated, whereas that using ß-tubulin extracted from L-NAME-treated rats was not. Overall, our findings support that inhibition of NO production reduces nitrosative stress, and may thus facilitate microtubule assembly and facial nerve regeneration.


Assuntos
Nervo Facial/metabolismo , Microtúbulos/metabolismo , Óxido Nítrico/metabolismo , Polimerização , Tubulina (Proteína)/metabolismo , Proteínas tau/metabolismo , Animais , Inibidores Enzimáticos/farmacologia , Nervo Facial/patologia , Masculino , Microtúbulos/patologia , Óxido Nítrico/antagonistas & inibidores , Doadores de Óxido Nítrico/farmacologia , Estresse Nitrosativo/efeitos dos fármacos , Estresse Nitrosativo/fisiologia , Ácido Peroxinitroso/farmacologia , Polimerização/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
11.
Mikrochim Acta ; 188(8): 278, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34322749

RESUMO

A chemiluminometric method is introduced for the determination of the stress biomarker, 3-nitrotyrosine (3-NT) based on the H2O2-NaIO4 reaction enhanced by cobalt and nitrogen-doped carbon dots (Co,N-CDs). In this chemiluminescence (CL) system, the emission proved to be originated from the excited-state Co,N-CDs (λmax = 504 nm). Comparing the effect of Co,N-CDs with that of some other metal ion-doped CDs and undoped CDs indicated the high efficiency of Co,N-CDs in the CL amplification (about 1980-fold). This was attributed to the fact that Co,N-CDs, in addition to other functions, could act as catalytic center, to accelerate the decomposition of H2O2 and to increase the number of hydroxyl radicals. It was found that 3-NT inhibits the action of Co,N-CDs by an electron transfer process, leading to a decline in the CL intensity of the system. Therefore, a new CL sensing platform was introduced for the assay of 3-NT in the range 5.0 to 300 nM with a detection limit of 1.5 nM. The probe was utilized for the analysis of biological samples.


Assuntos
Biomarcadores/análise , Carbono/química , Cobalto/química , Substâncias Luminescentes/química , Nitrogênio/química , Estresse Nitrosativo/fisiologia , Pontos Quânticos/química , Catálise , Radicais Livres/química , Peróxido de Hidrogênio , Limite de Detecção , Medições Luminescentes , Reprodutibilidade dos Testes
12.
Histol Histopathol ; 36(9): 947-965, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34132382

RESUMO

Infection by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) leads to multi-organ failure associated with a cytokine storm and septic shock. The virus evades the mitochondrial production of interferons through its N protein and, from that moment on, it hijacks the functions of these organelles. The aim of this study was to show how the virus kidnaps the mitochondrial machinery for its benefit and survival, leading to alterations of serum parameters and to nitrosative stress (NSS). In a prospective cohort of 15 postmortem patients who died from COVID-19, six markers of mitochondrial function (COX II, COX IV, MnSOD, nitrotyrosine, Bcl-2 and caspase-9) were analyzed by the immune colloidal gold technique in samples from the lung, heart, and liver. Biometric laboratory results from these patients showed alterations in hemoglobin, platelets, creatinine, urea nitrogen, glucose, C-reactive protein, albumin, D-dimer, ferritin, fibrinogen, Ca²âº, K⁺, lactate and troponin. These changes were associated with alterations in the mitochondrial structure and function. The multi-organ dysfunction present in COVID-19 patients may be caused, in part, by damage to the mitochondria that results in an inflammatory state that contributes to NSS, which activates the sepsis cascade and results in increased mortality in COVID-19 patients.


Assuntos
COVID-19/patologia , Mitocôndrias/patologia , Estresse Nitrosativo/fisiologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2
13.
J Toxicol Sci ; 46(6): 273-282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34078834

RESUMO

Quantum dots (QDs) are new types of fluorescent nanomaterials which can be utilized as ideal agents for intracellular tracking, drug delivery, biomedical imaging and diagnosis. It is urgent to understand their potential toxicity and the interactions with the toxin-susceptible vascular system, especially vascular endothelial cells. In this study, we intended to explore whether the cytotoxicity of CdTe (cadmium telluride) QDs was partly induced by nitrosative stress in vascular endothelial cells. Our results showed that the intracellular amount of CdTe QDs was gradually increased in a dose- and time-dependent manner, and a concentration-dependent decrease in viability were observed when incubated with CdTe QDs of 20-80 nM. The peroxynitrite level was significantly up-regulated by QDs treatment, which indicated the nitrosative stress was activated. Furthermore, nitrotyrosine level was increased after 24 hr CdTe QDs exposure in a dose-dependent manner, which suggested that CdTe QDs-induced nitrosative stress was associated with tyrosine nitration in EA.hy926. In addition, CdTe QDs induced EA.hy926 apoptosis, and the percentage of cells with low Δψm was increased after CdTe QDs treatment, indicating the mitochondrion depolarization was induced. The increased ROS fluorescence was observed in a QDs dose-dependent manner, which suggested that the oxidative stress was also involved in the CdTe QDs-induced endothelial cytotoxicity. Our work provided experimental evidence into QDs toxicity and potential vascular risks induced by nitrosative stress for the future applications of QDs.


Assuntos
Compostos de Cádmio/toxicidade , Células Endoteliais/efeitos dos fármacos , Estresse Nitrosativo/fisiologia , Pontos Quânticos/toxicidade , Telúrio/toxicidade , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Fatores de Tempo , Veias Umbilicais/citologia
14.
Reprod Sci ; 28(12): 3417-3430, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33929710

RESUMO

Lipopolysaccharide (LPS) - an endotoxin that is being extensively used in laboratory to mimic microbial infection that adversely affects male fertility. This study investigated the protective effects of melatonin on LPS-induced testicular nitro-oxidative stress, inflammation, and associated damages in the testes of male golden hamsters, Mesocricetus auratus. Hamsters were administered with melatonin and LPS for 7 days. Testes of LPS treated hamsters showed degenerative changes (appearance of vacuoles, exfoliation, and depletion of germ cells in the seminiferous tubules), adverse effects on spermatogenesis (sperm count and viability), and steroidogenesis (declined serum and testicular testosterone). Furthermore, LPS treatment decreased melatonin content, melatonin receptor (MT1), and antioxidant potential (catalase and SOD), and simultaneously increased nitro-oxidative stress (CRP, nitrate, TNFα). LPS upregulated NF-kB, COX-2, and iNOS expressions to increase testicular inflammatory load that resulted in the decrease of germ cell proliferation and survival, thus culminating into germ cell apoptosis as indicated by AO-EB staining and caspase-3 expression. Administration of melatonin with LPS showed improved testicular histoarchitecture, sperm parameters, and testosterone level. Melatonin increased testicular antioxidant status (SOD, catalase) to counteract the LPS-induced testicular ROS and thus reduced testicular nitro-oxidative stress. Furthermore, melatonin treatment upregulated testicular SIRT-1 expression to inhibit LPS-induced inflammatory proteins, i.e., NF-kB/COX-2/iNOS expression. The rescue effect of melatonin was further supported by increased germ cell survival (Bcl-2), proliferation (PCNA), and declined apoptosis (caspase-3). In conclusion, our result demonstrated that melatonin rescued testes from LPS-induced testicular nitro-oxidative stress, inflammation, and associated damages by upregulation of SIRT-1.


Assuntos
Ciclo-Oxigenase 2/biossíntese , Melatonina/farmacologia , NF-kappa B/biossíntese , Óxido Nítrico Sintase Tipo II/biossíntese , Sirtuína 1/biossíntese , Testículo/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Cricetinae , Inibidores de Ciclo-Oxigenase 2/farmacologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Mesocricetus , NF-kappa B/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Estresse Nitrosativo/efeitos dos fármacos , Estresse Nitrosativo/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Testículo/efeitos dos fármacos , Testículo/patologia
15.
Mol Microbiol ; 116(1): 29-40, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33706420

RESUMO

How anaerobic bacteria protect themselves against nitric oxide-induced stress is controversial, not least because far higher levels of stress were used in the experiments on which most of the literature is based than bacteria experience in their natural environments. This results in chemical damage to enzymes that inactivates their physiological function. This review illustrates how transcription control mechanisms reveal physiological roles of the encoded gene products. Evidence that the hybrid cluster protein, Hcp, is a major high affinity NO reductase in anaerobic bacteria is reviewed: if so, its trans-nitrosation activity is a nonspecific secondary consequence of chemical inactivation. Whether the flavorubredoxin, NorV, is equally effective at such low [NO] is unknown. YtfE is proposed to be an enzyme rather than a source of iron for the repair of iron-sulfur proteins damaged by nitrosative stress. Any reaction catalyzed by YtfE needs to be revealed. The concentration of NO that accumulates in the cytoplasm of anaerobic bacteria is unknown, but indirect evidence indicates that it is in the pM to low nM range. Also unknown are the functions of the NO-inducible cytoplasmic proteins YgbA, YeaR, or YoaG. Experiments to resolve some of these questions are proposed.


Assuntos
Bactérias Anaeróbias/metabolismo , Óxido Nítrico/metabolismo , Estresse Nitrosativo/fisiologia , Oxirredutases/metabolismo , Anaerobiose/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Transcrição Gênica/genética
16.
Neurotox Res ; 39(4): 1087-1102, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33721210

RESUMO

Cholinergic deficits and oxido-nitrosative stress are consistently associated with Alzheimer's disease (AD). Previous findings indicate that acetylcholine subdues Ca2+ current in the brain. Cholinergic antagonists (e.g., scopolamine) can instigate Ca2+-induced redox imbalance, inflammation, and cell-death pathways leading to AD-type memory impairment. Earlier, several Ca2+-channel blockers (CCB, e.g., dihydropyridine type) or cholinergic enhancers showed promising results in animal models of AD. In the present research, pretreatment effects of lacidipine (L-type CCB) on learning and memory functions were investigated using the scopolamine mouse model of AD. Swiss albino mice (20-25 g) were administered lacidipine (1 and 3 mg/kg) for 14 days. Scopolamine, an anti-muscarinic drug, was given (1 mg/kg) from days 8 to 14. The mice were subjected to elevated plus maze (EPM) and passive-avoidance (PA) paradigms. Bay-K8644 (a Ca2+-channel agonist) was administered before behavioral studies on days 13 and 14. Biochemical parameters of oxidative stress and acetylcholinesterase (AChE) activity were quantified using the whole brain. Behavioral studies showed an increase in transfer latency (TL) in the EPM test and a decrease in step-through latency (STL) in the PA test in scopolamine-administered mice. Scopolamine enhanced the AChE activity and oxidative stress in the brain of mice which resulted in memory impairment. Lacidipine prevented the amnesia against scopolamine and reduced the oxidative stress and AChE activity in the brain of mice. Bay-K8644 attenuated the lacidipine-induced improvement in memory and redox balance in scopolamine-administered mice. Lacidipine can prevent the oxidative stress and improve the cholinergic function in the brain. These properties of lacidipine can mitigate the pathogenesis of AD-type dementia.


Assuntos
Encéfalo/efeitos dos fármacos , Di-Hidropiridinas/farmacologia , Transtornos da Memória/prevenção & controle , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Escopolamina/toxicidade , Adjuvantes Anestésicos/toxicidade , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Encéfalo/metabolismo , Di-Hidropiridinas/uso terapêutico , Feminino , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Camundongos , Estresse Nitrosativo/fisiologia , Estresse Oxidativo/fisiologia
17.
Am J Physiol Endocrinol Metab ; 320(4): E691-E701, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33554777

RESUMO

Phosphorylase is one of the most carefully studied proteins in history, but knowledge of its regulation during intense muscle contraction is incomplete. Tyrosine nitration of purified preparations of skeletal muscle phosphorylase results in inactivation of the enzyme and this is prevented by antioxidants. Whether an altered redox state affects phosphorylase activity and glycogenolysis in contracting muscle is not known. Here, we investigate the role of the redox state in control of phosphorylase and glycogenolysis in isolated mouse fast-twitch (extensor digitorum longus, EDL) and slow-twitch (soleus) muscle preparations during repeated contractions. Exposure of crude muscle extracts to H2O2 had little effect on phosphorylase activity. However, exposure of extracts to peroxynitrite (ONOO-), a nitrating/oxidizing agent, resulted in complete inactivation of phosphorylase (half-maximal inhibition at ∼200 µM ONOO-), which was fully reversed by the presence of an ONOO- scavanger, dithiothreitol (DTT). Incubation of isolated muscles with ONOO- resulted in nitration of phosphorylase and marked inhibition of glycogenolysis during repeated contractions. ONOO- also resulted in large decreases in high-energy phosphates (ATP and phosphocreatine) in the rested state and following repeated contractions. These metabolic changes were associated with decreased force production during repeated contractions (to ∼60% of control). In contrast, repeated contractions did not result in nitration of phosphorylase, nor did DTT or the general antioxidant N-acetylcysteine alter glycogenolysis during repeated contractions. These findings demonstrate that ONOO- inhibits phosphorylase and glycogenolysis in living muscle under extreme conditions. However, nitration does not play a significant role in control of phosphorylase and glycogenolysis during repeated contractions.NEW & NOTEWORTHY Here we show that exogenous peroxynitrite results in nitration of phosphorylase as well as inhibition of glycogenolysis in isolated intact mouse skeletal muscle during short-term repeated contractions. However, repeated contractions in the absence of exogenous peroxynitrite do not result in nitration of phosphorylase or affect glycogenolysis, nor does the addition of antioxidants alter glycogenolysis during repeated contractions. Thus phosphorylase is not subject to redox control during repeated contractions.


Assuntos
Glicogenólise , Músculo Esquelético/metabolismo , Estresse Nitrosativo/fisiologia , Fosforilases/metabolismo , Animais , Glicogênio/metabolismo , Glicogenólise/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Nitratos/metabolismo , Nitratos/farmacologia , Ácido Peroxinitroso/metabolismo , Ácido Peroxinitroso/farmacologia , Fosforilases/efeitos dos fármacos
18.
PLoS One ; 16(1): e0244996, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33444362

RESUMO

Autophagy, a conserved cellular process in eukaryotes, has evolved to a sophisticated process to dispose of intracellular constituents and plays important roles in plant development, metabolism, and efficient nutrients remobilization under suboptimal nutrients conditions. Here, we show that OsATG8b, an AUTOPHAGY-RELATED8 (ATG8) gene in rice, was highly induced by nitrogen (N) starvation. Elevated expression of OsATG8b significantly increased ATG8 lipidation, autophagic flux, and grain yield in rice under both sufficient and deficient N conditions. Overexpressing of OsATG8b could greatly increase the activities of enzymes related to N metabolism. Intriguingly, the 15N-labeling assay further revealed that more N was remobilized to seeds in OsATG8b-overexpressing rice, which significantly increased the N remobilization efficiency (NRE), N harvest index, N utilization efficiency (NUE), and N uptake efficiency (NUpE). Conversely, the osatg8b knock-out mutants had the opposite results on these characters. The substantial transcriptional changes of the overexpressed transgenic lines indicated the presence of complex signaling to developmental, metabolic process, and hormone, etc. Excitingly, the transgenic rice under different backgrounds all similarly be boosted in yield and NUE with OsATG8b overexpression. This work provides an excellent candidate gene for improving N remobilization, utilization, and yield in crops simultaneously.


Assuntos
Autofagia/fisiologia , Nitrogênio/metabolismo , Estresse Nitrosativo/fisiologia , Oryza/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Plantas Geneticamente Modificadas
19.
Inflammation ; 44(4): 1381-1395, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33511484

RESUMO

Neuroinflammation and oxidative stress play critical roles in pathogenesis of depression. Diallyl disulfide (DADS), an active compound in garlic oil, has been shown to exhibit obvious anti-inflammatory and anti-oxidative activities. Preliminary evidence indicates that depression is associated with high levels of pro-inflammatory cytokines and oxidative markers, suggesting that inhibition of neuroinflammatory response and oxidative stress may be beneficial for depression interruption. Here, we investigated the antidepressant effect of DADS as well as it mechanisms in a depression-like model induced by lipopolysaccharide (LPS). Similarly to imipramine (10 mg/kg), a clinical antidepressant, DADS (40 or 80 mg/kg), which was administered 1 h before LPS treatment (pre-LPS) or 1.5 h and 23.5 h after LPS treatment (post-LPS), prevented and reversed LPS (100 µg/kg)-induced increase in immobility time in the tail suspension test (TST) and forced swim test (FST) in mice. Mechanistic studies revealed that DADS pre-treatment or post-treatment at the dose of 40 and 80 mg/kg prevented and reversed (i) LPS-induced increases in interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and nitric oxide (NO) levels in the hippocampus and prefrontal cortex, (ii) LPS-induced increases in contents of malondialdehyde (MDA), a parameter reflecting high levels of oxidative stress, and (iii) LPS-induced decreases in contents of GSH, a marker reflecting weakened anti-oxidative ability, in the hippocampus and prefrontal cortex in mice. These results indicate that DADS is comparable to imipramine in effectively ameliorating LPS-induced depression-like behaviors in mice, providing a potential value for DADS in prevention and/or therapy of depression.


Assuntos
Compostos Alílicos/administração & dosagem , Depressão/metabolismo , Dissulfetos/administração & dosagem , Lipopolissacarídeos/toxicidade , Doenças Neuroinflamatórias/metabolismo , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Anti-Hipertensivos/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Relação Dose-Resposta a Droga , Esquema de Medicação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/tratamento farmacológico , Estresse Nitrosativo/fisiologia , Estresse Oxidativo/fisiologia
20.
J Ethnopharmacol ; 268: 113560, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33161027

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Compound XiongShao Capsule (CXSC), a traditional herb formula, has been approved for using to treat diabetic peripheral neuropathy (DPN) by the Shanghai Food and Drug Administration, with significant efficacy in clinic. AIM OF THE STUDY: This study aimed to investigate the multidimensional pharmacological mechanisms and synergism of CXSC against DPN in rats. METHODS: The quality analysis of CXSC was performed by high-performance liquid chromatography (HPLC) and thin-layer chromatography. Rats with DPNinduced by streptozotocin/high-fat diet for 4 weeks were treated with CXSC at three doses (1.2 g/kg, 0.36 g/kg, and 0.12 g/kg), or epalrestat (15 mg/kg) daily for 8 weeks continuously. During the treatment period, body weight, serum glucose levels, and nerve function, including nerve conduction velocity (NCV), and mechanical and thermal hyperalgesia were tested and assessed every 4 weeks. In the 13th week, the histopathological examination in the sciatic nerve was performed using a transmission electron microscope. The expression of apoptosis-related proteins of BAX, BCL2, and caspase-3 in the sciatic nerve was examined using hematoxylin and eosin staining. The serum levels of advanced glycation end products (AGEs), oxidative-nitrosative stress biomarkers of superoxide dismutase (SOD), and nitric oxide synthase (NOS) were measured using a rat-specific ELISA kit. RESULTS: CXSC had no significant effect on body weight or serum glucose levels (P > 0.05), but it significantly improved mechanical hyperalgesia (F5,36 = 18.24, P < 0.0001), thermal hyperalgesia (F5,36 = 8.45, P < 0.0001), and NCV (motor NCV: F5,36 = 7.644, P < 0.0001, sensory NCV: F5,36 = 12.83, P < 0.0001). Besides, it maintained myelin and axonal structure integrity, downregulated the expression of apoptosis-related proteins in the sciatic nerve tissue, reduced AGEs and NOS levels, and enhanced antioxidant enzyme SOD activities in the serum. CONCLUSION: CXSC exerted neuroprotective effects against rats with DPN through multidimensional pharmacological mechanisms including antiapoptotic activity in the sciatic nerve and downregulation of the level of serum NOS, SOD and AGEs.


Assuntos
Apoptose/efeitos dos fármacos , Neuropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/fisiologia , Cápsulas , Neuropatias Diabéticas/induzido quimicamente , Neuropatias Diabéticas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , Masculino , Estresse Nitrosativo/fisiologia , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley , Estreptozocina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA