Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.883
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731945

RESUMO

The main hallmark in the development of both type 1 and type 2 diabetes is a decline in functional ß-cell mass. This decline is predominantly attributed to ß-cell death, although recent findings suggest that the loss of ß-cell identity may also contribute to ß-cell dysfunction. This phenomenon is characterized by a reduced expression of key markers associated with ß-cell identity. This review delves into the insights gained from single-cell omics research specifically focused on ß-cell identity. It highlights how single-cell omics based studies have uncovered an unexpected level of heterogeneity among ß-cells and have facilitated the identification of distinct ß-cell subpopulations through the discovery of cell surface markers, transcriptional regulators, the upregulation of stress-related genes, and alterations in chromatin activity. Furthermore, specific subsets of ß-cells have been identified in diabetes, such as displaying an immature, dedifferentiated gene signature, expressing significantly lower insulin mRNA levels, and expressing increased ß-cell precursor markers. Additionally, single-cell omics has increased insight into the detrimental effects of diabetes-associated conditions, including endoplasmic reticulum stress, oxidative stress, and inflammation, on ß-cell identity. Lastly, this review outlines the factors that may influence the identification of ß-cell subpopulations when designing and performing a single-cell omics experiment.


Assuntos
Células Secretoras de Insulina , Análise de Célula Única , Células Secretoras de Insulina/metabolismo , Humanos , Análise de Célula Única/métodos , Animais , Genômica/métodos , Estresse do Retículo Endoplasmático/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia
2.
Technol Cancer Res Treat ; 23: 15330338241241484, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725284

RESUMO

Introduction: Endoplasmic reticulum stress (ERS) was a response to the accumulation of unfolded proteins and plays a crucial role in the development of tumors, including processes such as tumor cell invasion, metastasis, and immune evasion. However, the specific regulatory mechanisms of ERS in breast cancer (BC) remain unclear. Methods: In this study, we analyzed RNA sequencing data from The Cancer Genome Atlas (TCGA) for breast cancer and identified 8 core genes associated with ERS: ELOVL2, IFNG, MAP2K6, MZB1, PCSK6, PCSK9, IGF2BP1, and POP1. We evaluated their individual expression, independent diagnostic, and prognostic values in breast cancer patients. A multifactorial Cox analysis established a risk prognostic model, validated with an external dataset. Additionally, we conducted a comprehensive assessment of immune infiltration and drug sensitivity for these genes. Results: The results indicate that these eight core genes play a crucial role in regulating the immune microenvironment of breast cancer (BRCA) patients. Meanwhile, an independent diagnostic model based on the expression of these eight genes shows limited independent diagnostic value, and its independent prognostic value is unsatisfactory, with the time ROC AUC values generally below 0.5. According to the results of logistic regression neural networks and risk prognosis models, when these eight genes interact synergistically, they can serve as excellent biomarkers for the diagnosis and prognosis of breast cancer patients. Furthermore, the research findings have been confirmed through qPCR experiments and validation. Conclusion: In conclusion, we explored the mechanisms of ERS in BRCA patients and identified 8 outstanding biomolecular diagnostic markers and prognostic indicators. The research results were double-validated using the GEO database and qPCR.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Estresse do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Humanos , Feminino , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Prognóstico , Estresse do Retículo Endoplasmático/genética , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Biologia Computacional/métodos , Bases de Dados Genéticas , Curva ROC , Estimativa de Kaplan-Meier , Transcriptoma
3.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732072

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease. Despite new methods of diagnostics and treatment as well as extensive biological and immunosuppressive treatment, the etiology of RA is not fully understood. Moreover, the problem of diagnosis and treatment of RA patients is still current and affects a large group of patients. It is suggested that endoplasmic reticulum (ER)-related features may impair adaptation to chronic stress, inferring the risk of rheumatoid arthritis. The main goal in this study was evaluation of changes in mRNA translation to determine chronic ER stress conditions in rheumatoid arthritis patients. The study group consist of 86 individuals including a total of 56 rheumatoid arthritis patients and 30 healthy controls. The expression level of mRNA form blood samples of RA patients as well as controls of the unfolded protein response (UPR)-associated genes (p-eIF2, BCL-2, PERK, ATF4, and BAX) were investigated using real-time qPCR. GAPDH expression was used as a standard control. Considering the median, the expression levels of PERK, BCL-2, p-eIF2, ATF4, and BAX were found to be significantly increased in the blood of RA patients compared with the control group. The p-value for the PERK gene was 0.0000000036, the p-value for the BCL-2 gene was 0.000000014, the p-value for the p-eIF2 gene was 0.006948, the p-value for the ATF4 gene was 0.0000056, and the p-value for the BAX gene was 0.00019, respectively. Thus, it can be concluded that the targeting of the components of the PERK-dependent UPR signaling pathway via small-molecule PERK inhibitors may contribute to the development of novel, innovative treatment strategies against rheumatoid arthritis.


Assuntos
Artrite Reumatoide , Estresse do Retículo Endoplasmático , Perfilação da Expressão Gênica , Resposta a Proteínas não Dobradas , eIF-2 Quinase , Humanos , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/sangue , Resposta a Proteínas não Dobradas/genética , Feminino , Masculino , Pessoa de Meia-Idade , Estresse do Retículo Endoplasmático/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Adulto , Idoso , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Estudos de Casos e Controles , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética
4.
Cell Death Dis ; 15(4): 240, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561354

RESUMO

Abnormal lipid metabolism and lipid accumulation are characteristic hallmarks of renal cell carcinoma (RCC). While there is prior evidence closely linking such lipid accumulation within RCC cells and consequent tumorigenesis, the mechanisms underlying this process remain incompletely understood. In this study, a series of bioinformatics analyses were initially performed by screening RCC databases and gene sets, ultimately leading to the identification of TRIB3 as an oncogene that functions as a central regulator of lipid metabolism. TRIB3 overexpression was observed in both RCC patient tumor tissues and cell lines, and this upregulation was correlated with a worse RCC patient prognosis. When TRIB3 was knocked down, this resulted in a reduction in lipid accumulation and the consequent induction of endoplasmic reticulum (ER) stress-related apoptotic cell death. At the molecular level, interactions between TRIB3 and PLIN2 were found to abrogate TEB4-mediated PLIN2 ubiquitination and consequent degradation, thus maintaining higher PLIN2 expression levels. This simultaneously helps facilitate the accumulation of lipids while preserving ER homeostasis, thus driving accelerated RCC tumor progression. This TRIB3-PLIN2 axis thus represents a promising new target for efforts to treat RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Humanos , Carcinoma de Células Renais/metabolismo , Gotículas Lipídicas/metabolismo , Estresse do Retículo Endoplasmático/genética , Neoplasias Renais/metabolismo , Lipídeos , Proteínas Repressoras/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo
5.
Invest Ophthalmol Vis Sci ; 65(4): 23, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38597723

RESUMO

Purpose: Vernal keratoconjunctivitis (VKC) is an ocular allergic disease characterized by a type 2 inflammation, tissue remodeling, and low quality of life for the affected patients. We investigated the involvement of endoplasmic reticulum (ER) stress and unfolded protein response in VKC. Methods: Conjunctival imprints from VKC patients and normal subjects (CTs) were collected, and RNA was isolated, reverse transcribed, and analyzed with the Affymetrix microarray. Differentially expressed genes between VKC patients and CTs were evaluated. Genes related to ER stress, apoptosis, and autophagy were further considered. VKC and CT conjunctival biopsies were analyzed by immunohistochemistry (IHC) with specific antibodies against unfolded protein response (UPR), apoptosis, and inflammation. Conjunctival fibroblast and epithelial cell cultures were exposed to the conditioned medium of activated U937 monocytes and analyzed by quantitative PCR for the expression of UPR, apoptosis, autophagy, and inflammatory markers. Results: ER chaperones HSPA5 (GRP78/BiP) and HYOU1 (GRP170) were upregulated in VKC patients compared to CTs. Genes encoding for ER transmembrane proteins, PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), ER-associated degradation (ERAD), and autophagy were upregulated, but not those related to apoptosis. Increased positive reactivity of BiP and ATF6 and unchanged expression of apoptosis markers were confirmed by IHC. Cell cultures in stress conditions showed an overexpression of UPR, proinflammatory, apoptosis, and autophagy markers. Conclusions: A significant overexpression of genes encoding for ER stress, UPR, and pro-inflammatory pathway components was reported for VKC. Even though these pathways may lead to ER homeostasis, apoptosis, or inflammation, ER stress in VKC may predominantly contribute to promote inflammation.


Assuntos
Conjuntivite Alérgica , Humanos , Conjuntivite Alérgica/genética , Qualidade de Vida , Resposta a Proteínas não Dobradas , Estresse do Retículo Endoplasmático/genética , Inflamação , Túnica Conjuntiva , Chaperona BiP do Retículo Endoplasmático
6.
Endocr Regul ; 58(1): 91-100, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656254

RESUMO

Objective. Glucose and glutamine supply as well as serine synthesis and endoplasmic reticulum (ER) stress are important factors of glioblastoma growth. Previous studies showed that the knockdown of ERN1 (ER to nucleus signaling 1) suppressed glioblastoma cell proliferation and modified the sensitivity of numerous gene expressions to nutrient deprivations. The present study is aimed to investigate the impact of glucose and glutamine deprivations on the expression of serine synthesis genes in U87MG glioblastoma cells in relation to ERN1 knockdown with the intent to reveal the role of ERN1 signaling pathway on the ER stress-dependent regulation of these gene expressions. Clarification of the regulatory mechanisms of serine synthesis is a great significance for glioblastoma therapy. Methods. The control U87MG glioblastoma cells (transfected by empty vector) and ERN1 knockdown cells (transfected by dominant-negative ERN1) were exposed under glucose and glutamine deprivation conditions for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of PHGDH (phosphoglycerate dehydrogenase), PSAT1 (phosphoserine amino-transferase 1), PSPH (phosphoserine phosphatase), ATF4 (activating transcription factor 4), and SHMT1 (serine hydroxymethyltransferase 1) genes was studied by real-time qPCR and normalized to ACTB. Results. It was found that the expression level of genes responsible for serine synthesis such as PHGDH, PSAT1, PSPH, and transcription factor ATF4 was up-regulated in U87MG glioblastoma cells under glucose and glutamine deprivations. Furthermore, inhibition of ERN1 significantly enhances the impact of glucose and especially glutamine deprivations on these gene expressions. At the same time, the expression of the SHMT1 gene, which is responsible for serine conversion to glycine, was down-regulated in both nutrient deprivation conditions with more significant changes in ERN1 knockdown glioblastoma cells. Conclusion. Taken together, the results of present study indicate that the expression of genes responsible for serine synthesis is sensitive to glucose and glutamine deprivations in gene-specific manner and that suppression of ERN1 signaling significantly modifies the impact of both glucose and glutamine deprivations on PHGDH, PSAT1, PSPH, ATF4, and SHMT1 gene expressions and reflects the ERN1-mediated genome reprograming introduced by nutrient deprivation condition.


Assuntos
Endorribonucleases , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Glucose , Glutamina , Fosfoglicerato Desidrogenase , Monoéster Fosfórico Hidrolases , Proteínas Serina-Treonina Quinases , Serina , Transaminases , Humanos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioblastoma/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina/metabolismo , Serina/biossíntese , Transdução de Sinais
7.
J Transl Med ; 22(1): 393, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685045

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with high probability of recurrence and distant metastasis. Liver metastasis is the predominant metastatic mode developed in most pancreatic cancer cases, which seriously affects the overall survival rate of patients. Abnormally activated endoplasmic reticulum stress and lipid metabolism reprogramming are closely related to tumor growth and metastasis. This study aims to construct a prognostic model based on endoplasmic reticulum stress and lipid metabolism for pancreatic cancer, and further explore its correlation with tumor immunity and the possibility of immunotherapy. METHODS: Transcriptomic and clinical data are acquired from TCGA, ICGC, and GEO databases. Potential prognostic genes were screened by consistent clustering and WGCNA methods, and the whole cohort was randomly divided into training and testing groups. The prognostic model was constructed by machine learning method in the training cohort and verified in the test, TCGA and ICGC cohorts. The clinical application of this model and its relationship with tumor immunity were analyzed, and the relationship between endoplasmic reticulum stress and intercellular communication was further explored. RESULTS: A total of 92 characteristic genes related to endoplasmic reticulum stress, lipid metabolism and liver metastasis were identified in pancreatic cancer. We established and validated a prognostic model for pancreatic cancer with 7 signatures, including ADH1C, APOE, RAP1GAP, NPC1L1, P4HB, SOD2, and TNFSF10. This model is considered to be an independent prognosticator and is a more accurate predictor of overall survival than age, gender, and stage. TIDE score was increased in high-risk group, while the infiltration levels of CD8+ T cells and M1 macrophages were decreased. The number and intensity of intercellular communication were increased in the high ER stress group. CONCLUSIONS: We constructed and validated a novel prognostic model for pancreatic cancer, which can also be used as an instrumental variable to predict the prognosis and immune microenvironment. In addition, this study revealed the effect of ER stress on cell-cell communication in the tumor microenvironment.


Assuntos
Estresse do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica , Metabolismo dos Lipídeos , Neoplasias Hepáticas , Neoplasias Pancreáticas , Análise de Célula Única , Transcriptoma , Humanos , Estresse do Retículo Endoplasmático/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Metabolismo dos Lipídeos/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/patologia , Transcriptoma/genética , Prognóstico , Masculino , Feminino , Pessoa de Meia-Idade , Perfilação da Expressão Gênica , Reprodutibilidade dos Testes , Estudos de Coortes
8.
Gene ; 917: 148464, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38615981

RESUMO

Cells sense, respond, and adapt to environmental conditions that cause stress. In a previous study using HeLa cells, we isolated reporter cells responding to the endoplasmic reticulum (ER) stress inducers, thapsigargin and tunicamycin, using a highly sensitive promoter trap vector system. Splinkerette PCR and 5' rapid amplification of cDNA ends (5' RACE) identified a novel transcript that is upregulated by ER stress. Its endogenous expression increased approximately 10-fold in response to thapsigargin and tunicamycin within 1 h, but was down-regulated after 4 h. Because the transcript starts from an intron of a long noncoding RNA known as LINC-PINT, we designated the newly identified transcript TISPL (transcript induced by stressors from LINC-PINTlocus). TISPL was also expressed under several other stress conditions. It was particularly increased > 10-fold upon glucose starvation and 7-fold by arsenite exposure. Furthermore, in silico analyses, including a ChIP-atlas search, revealed that there is an ATF4-binding region with a c/ebp-Atf response element (CARE) downstream of the transcription start site of TISPL. Based on these results, we hypothesized that TISPL may be induced by the phospho-eIF2α and ATF4- axis of the integrated stress response pathway, which is known to be activated by the stress conditions listed above. As expected, knockout of ATF4 abolished the stress-induced upregulation of TISPL. Our results indicate that TISPL may be a useful biomarker for detecting stress conditions that activate ATF4. Our highly sensitive trap vector system proved beneficial in discovering new biomarkers.


Assuntos
Fator 4 Ativador da Transcrição , Estresse do Retículo Endoplasmático , RNA Longo não Codificante , Regulação para Cima , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Humanos , Células HeLa , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Tapsigargina/farmacologia , Tunicamicina/farmacologia , Arsenitos/toxicidade , Arsenitos/farmacologia
9.
Nucleic Acids Res ; 52(9): 5209-5225, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38636948

RESUMO

RNA silencing is a post-transcriptional gene-silencing mechanism mediated by microRNAs (miRNAs). However, the regulatory mechanism of RNA silencing during viral infection is unclear. TAR RNA-binding protein (TRBP) is an enhancer of RNA silencing that induces miRNA maturation by interacting with the ribonuclease Dicer. TRBP interacts with a virus sensor protein, laboratory of genetics and physiology 2 (LGP2), in the early stage of viral infection of human cells. Next, it induces apoptosis by inhibiting the maturation of miRNAs, thereby upregulating the expression of apoptosis regulatory genes. In this study, we show that TRBP undergoes a functional conversion in the late stage of viral infection. Viral infection resulted in the activation of caspases that proteolytically processed TRBP into two fragments. The N-terminal fragment did not interact with Dicer but interacted with type I interferon (IFN) signaling modulators, such as protein kinase R (PKR) and LGP2, and induced ER stress. The end results were irreversible apoptosis and suppression of IFN signaling. Our results demonstrate that the processing of TRBP enhances apoptosis, reducing IFN signaling during viral infection.


Assuntos
Apoptose , Caspases , Proteínas de Ligação a RNA , Apoptose/genética , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Caspases/metabolismo , Caspases/genética , Ribonuclease III/metabolismo , Ribonuclease III/genética , Transdução de Sinais , Estresse do Retículo Endoplasmático/genética , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Células HEK293 , Interferon Tipo I/metabolismo , Interferon Tipo I/genética , Viroses/genética , Viroses/metabolismo , Células HeLa , Linhagem Celular
10.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 241-247, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650127

RESUMO

Oral squamous cell carcinoma (OSCC) is a common malignant tumor. Importin7 (IPO7) is responsible for nucleoplasmic transport of RNAs and proteins, and it has been confirmed to be involved in the development of human cancers. This study aimed to explore the function and mechanism of IPO7 in OSCC. IPO7 expression in tissues and cells was determined by RT-qPCR. Cell proliferative, migratory, and invasive capabilities were detected through transwell assay and colony formation assay. Mice xenograft models were established for evaluating tumor growth. Autophagy was estimated by the LC3 levels in cells through western blot and immunofluorescence (IF). Western blot was utilized to detect the key proteins in PERK/EIF2AK3/ATF4 pathway for assessing the endoplasmic reticulum stress (ERS). The interaction of IPO7 and homeobox A10 (HOXA10) was tested by GST pull-down assay and Co-IP assay. ChIP assay and luciferase reporter assay were utilized to determine the combination of HOXA10 and EIF2AK3. We proved that IPO7 was upregulated in OSCC tissues and cells, and its depletion reduced cell proliferation, migration, invasion and tumor growth. Furthermore, LC3 expression in cells was found to be reduced by IPO7 knockdown. IPO7 promoted OSCC tumor metastasis by activating autophagy. Additionally, we discovered that IPO7 could regulate ERS by activating the PERK/ATF4 pathway. EIF2AK3 upregulation can promote cell autophagy. Furthermore, IPO7 was proven to promote nuclear translocation of HOXA10 in cells. EIF2AK3 promoter can bind to HOXA10. Rescue assay confirmed that HOXA10 upregulation can reverse the effect of IPO7 silencing on OSCC progression. IPO7 can enhance proliferation, migration, invasion, and autophagy by nuclear translocation of HOXA10 and the activation of EIF2AK3/ATF4 pathway in OSCC.


Assuntos
Autofagia , Carcinoma de Células Escamosas , Movimento Celular , Núcleo Celular , Proliferação de Células , Proteínas Homeobox A10 , Proteínas de Homeodomínio , Neoplasias Bucais , alfa Carioferinas , eIF-2 Quinase , Humanos , Autofagia/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Movimento Celular/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Núcleo Celular/metabolismo , Camundongos , Estresse do Retículo Endoplasmático/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Transdução de Sinais , Carioferinas/metabolismo , Carioferinas/genética , Masculino , Camundongos Endogâmicos BALB C , Feminino , Invasividade Neoplásica
11.
J Affect Disord ; 356: 190-203, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604455

RESUMO

BACKGROUND: Several lines of evidence point to an interaction between genetic predisposition and environmental factors in the onset of major depressive disorder (MDD). This study is aimed to investigate the pathogenesis of MDD by identifying key biomarkers, associated immune infiltration using bioinformatic analysis and human postmortem sample. METHODS: The Gene Expression Omnibus (GEO) database of GSE98793 was adopted to identify hub genes linked to endoplasmic reticulum (ER) stress-related genes (ERGs) in MDD. Another GEO database of GSE76826 was employed to validate the novel target associated with ERGs and immune infiltration in MDD. Moreover, human postmortem sample from MDD patients was utilized to confirm the differential expression analysis of hub genes. RESULTS: We discovered 12 ER stress-related differentially expressed genes (ERDEGs). A LASSO Cox regression analysis helped construct a diagnostic model for these ERDEGs, incorporating immune infiltration analysis revealed that three hub genes (ERLIN1, SEC61B, and USP13) show the significant and consistent expression differences between the two groups. Western blot analysis of postmortem brain samples indicated notably higher expression levels of ERLIN1 and SEC61B in the MDD group, with USP13 also tending to increase compared to control group. LIMITATIONS: The utilization of the MDD gene chip in this analysis was sourced from the GEO database, which possesses a restricted number of pertinent gene chip samples. CONCLUSIONS: These findings indicate that ERDEGs especially including ERLIN1, SEC61B, and USP13 associated the infiltration of immune cells may be potential diagnostic indicators for MDD.


Assuntos
Transtorno Depressivo Maior , Estresse do Retículo Endoplasmático , Humanos , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/imunologia , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Biologia Computacional , Masculino , Feminino , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia
12.
Int J Biol Sci ; 20(5): 1547-1562, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481808

RESUMO

Renal ischemia-reperfusion injury (IRI) leads to endoplasmic reticulum (ER) stress, thereby initiating the unfolded protein response (UPR). When sustained, this response may trigger the inflammation and tubular cell death that acts to aggravate the damage. Here, we show that knockdown of the BET epigenetic reader BRD4 reduces the expression of ATF4 and XBP1 transcription factors under ER stress activation. BRD4 is recruited to the promoter of these highly acetylated genes, initiating gene transcription. Administration of the BET protein inhibitor, JQ1, one hour after renal damage induced by bilateral IRI, reveals reduced expression of ATF4 and XBP1 genes, low KIM-1 and NGAL levels and recovery of the serum creatinine and blood urea nitrogen levels. To determine the molecular pathways regulated by ATF4 and XBP1, we performed stable knockout of both transcription factors using CRISPR-Cas9 and RNA sequencing. The pathways triggered under ER stress were mainly XBP1-dependent, associated with an adaptive UPR, and partially regulated by JQ1. Meanwhile, treatment with JQ1 downmodulated most of the pathways regulated by ATF4 and related to the pathological processes during exacerbated UPR activation. Thus, BRD4 inhibition could be useful for curbing the maladaptive UPR activation mechanisms, thereby ameliorating the progression of renal disease.


Assuntos
Antineoplásicos , Traumatismo por Reperfusão , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Nucleares/genética , Estresse do Retículo Endoplasmático/genética , Resposta a Proteínas não Dobradas , Antineoplásicos/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
13.
Gen Physiol Biophys ; 43(2): 85-102, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38477602

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide. Chronic activation of endoplasmic reticulum stress (ERS) in hepatocytes may promote the development of NAFLD, yet endoplasmic reticulum stress-related genes (ERSGs) have not been studied in NAFLD. Our aim is to study the relationship between ERSGs and the immune microenvironment of NAFLD patients and to construct predictive models. We screened 48 endoplasmic reticulum stress-related differentially expressed genes (ERSR-DEGs) using data from two GEO datasets and the GeneCards database. Enrichment analysis revealed that ERSR-DEGs are closely associated with immune-related pathways and functions. The immune infiltration profile of NAFLD was obtained by single sample gene set enrichment analysis (ssGSEA). There were significant differences in immune cell infiltration and immune function between NAFLD group and control group. Using 113 NAFLD samples, we explored two molecular clusters based on ERSR-DEGs. A five-gene SVM model was selected as the best machine learning model, and a nomogram based on five-gene SVM model showed good predictive efficiency. The mRNA expression levels of POR, PPP1R15A, FOS and FAS were significantly different between NAFLD mice and healthy mice. In conclusion, ERS is closely associated with the development of NAFLD. We established a promising and SVM-based predictive model to assess the risk of disease in patients with ERS subtypes and NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse do Retículo Endoplasmático/genética , Hepatócitos
14.
Front Immunol ; 15: 1340997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495888

RESUMO

Background: Renal ischemia-reperfusion injury (RIRI) is an inevitable complication in the process of kidney transplantation and lacks specific therapy. The study aims to determine the underlying mechanisms of RIRI to uncover a promising target for efficient renoprotection. Method: Four bulk RNA-seq datasets including 495 renal samples of pre- and post-reperfusion were collected from the GEO database. The machine learning algorithms were utilized to ascertain pivotal endoplasmic reticulum stress genes. Then, we incorporated correlation analysis and determined the interaction pathways of these key genes. Considering the heterogeneous nature of bulk-RNA analysis, the single-cell RNA-seq analysis was performed to investigate the mechanisms of key genes at the single-cell level. Besides, 4-PBA was applied to inhibit endoplasmic reticulum stress and hence validate the pathological role of these key genes in RIRI. Finally, three clinical datasets with transcriptomic profiles were used to assess the prognostic role of these key genes in renal allograft outcomes after RIRI. Results: In the bulk-RNA analysis, endoplasmic reticulum stress was identified as the top enriched pathway and three endoplasmic reticulum stress-related genes (PPP1R15A, JUN, and ATF3) were ranked as top performers in both LASSO and Boruta analyses. The three genes were found to significantly interact with kidney injury-related pathways, including apoptosis, inflammatory response, oxidative stress, and pyroptosis. For oxidative stress, these genes were more strongly related to oxidative markers compared with antioxidant markers. In single-cell transcriptome, the three genes were primarily upregulated in endothelium, distal convoluted tubule cells, and collecting duct principal cells among 12 cell types of renal tissues in RIRI. Furthermore, distal convoluted tubule cells and collecting duct principal cells exhibited pro-inflammatory status and the highest pyroptosis levels, suggesting their potential as main effectors of three key genes for mediating RIRI-associated injuries. Importantly, inhibition of these key genes using 4-phenyl butyric acid alleviated functional and histological damage in a mouse RIRI model. Finally, the three genes demonstrated highly prognostic value in predicting graft survival outcomes. Conclusion: The study identified three key endoplasmic reticulum stress-related genes and demonstrated their prognostic value for graft survival, providing references for individualized clinical prevention and treatment of postoperative complications after renal transplantation.


Assuntos
Transplante de Rim , Traumatismo por Reperfusão , Animais , Camundongos , Transplante de Rim/efeitos adversos , Rim , Traumatismo por Reperfusão/genética , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/genética , Isquemia , RNA
15.
PeerJ ; 12: e17070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549776

RESUMO

Background: Endometriosis is one of the most common benign gynecological diseases and is characterized by chronic pain and infertility. Endoplasmic reticulum (ER) stress is a cellular adaptive response that plays a pivotal role in many cellular processes, including malignant transformation. However, whether ER stress is involved in endometriosis remains largely unknown. Here, we aimed to explore the potential role of ER stress in endometriosis, as well as its diagnostic value. Methods: We retrieved data from the Gene Expression Omnibus (GEO) database. Data from the GSE7305 and GSE23339 datasets were integrated into a merged dataset as the training cohort. Differentially expressed ER stress-related genes (DEG-ERs) were identified by integrating ER stress-related gene profiles downloaded from the GeneCards database with differentially expressed genes (DEGs) in the training cohort. Next, an ER stress-related gene signature was identified using LASSO regression analysis. The receiver operating characteristic curve was used to evaluate the discriminatory ability of the constructed model, which was further validated in the GSE51981 and GSE105764 datasets. Online databases were used to explore the possible regulatory mechanisms of the genes in the signature. Meanwhile, the CIBERSORT algorithm and Pearson correlation test were applied to analyze the association between the gene signature and immune infiltration. Finally, expression levels of the signature genes were further detected in clinical specimens using qRT-PCR and validated in the Turku endometriosis database. Results: In total, 48 DEG-ERs were identified in the training cohort. Based on LASSO regression analysis, an eight-gene-based ER stress-related gene signature was constructed. This signature exhibited excellent diagnostic value in predicting endometriosis. Further analysis indicated that this signature was associated with a compromised ER stress state. In total, 12 miRNAs and 23 lncRNAs were identified that potentially regulate the expression of ESR1, PTGIS, HMOX1, and RSAD2. In addition, the ER stress-related gene signature indicated an immunosuppressive state in endometriosis. Finally, all eight genes showed consistent expression trends in both clinical samples and the Turku database compared with the training dataset. Conclusions: Our work not only provides new insights into the impact of ER stress in endometriosis but also provides a novel biomarker with high clinical value.


Assuntos
Dor Crônica , Endometriose , MicroRNAs , Feminino , Humanos , Endometriose/diagnóstico , Estresse do Retículo Endoplasmático/genética , Algoritmos
16.
Theranostics ; 14(5): 1841-1859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505605

RESUMO

Rationale: The surge of severe liver damage underscores the necessity for identifying new targets and therapeutic agents. Endoplasmic reticulum (ER) stress induces ferroptosis with Gα12 overexpression. NF-κB essential modulator (NEMO) is a regulator of inflammation and necroptosis. Nonetheless, the regulatory basis of NEMO de novo synthesis and its impact on hepatocyte ferroptosis need to be established. This study investigated whether Nrf2 transcriptionally induces IKBKG (the NEMO gene) for ferroptosis inhibition and, if so, how NEMO induction protects hepatocytes against ER stress-induced ferroptosis. Methods: Experiments were conducted using human liver tissues, hepatocytes, and injury models, incorporating NEMO overexpression and Gα12 gene modulations. RNA sequencing, immunoblotting, immunohistochemistry, reporter assays, and mutation analyses were done. Results: NEMO downregulation connects closely to ER and oxidative stress, worsening liver damage via hepatocyte ferroptosis. NEMO overexpression protects hepatocytes from ferroptosis by promoting glutathione peroxidase 4 (GPX4) expression. This protective role extends to oxidative and ER stress. Similar shifts occur in nuclear factor erythroid-2-related factor-2 (Nrf2) expression alongside NEMO changes. Nrf2 is newly identified as an IKBKG (NEMO gene) transactivator. Gα12 changes, apart from Nrf2, impact NEMO expression, pointing to post-transcriptional control. Gα12 reduction lowers miR-125a, an inhibitor of NEMO, while overexpression has the opposite effect. NEMO also counters ER stress, which triggers Gα12 overexpression. Gα12's significance in NEMO-dependent hepatocyte survival is confirmed via ROCK1 inhibition, a Gα12 downstream kinase, and miR-125a. The verified alterations or associations within the targeted entities are validated in human liver specimens and datasets originating from livers subjected to exposure to other injurious agents. Conclusions: Hepatic injury prompted by ER stress leads to the suppression of NEMO, thereby facilitating ferroptosis through the inhibition of GPX4. IKBKG is transactivated by Nrf2 against Gα12 overexpression responsible for the increase of miR-125a, an unprecedented NEMO inhibitor, resulting in GPX4 induction. Accordingly, the induction of NEMO mitigates ferroptotic liver injury.


Assuntos
Ferroptose , Hepatopatias , MicroRNAs , Humanos , Estresse do Retículo Endoplasmático/genética , Ferroptose/genética , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Quinases Associadas a rho
17.
Mol Med ; 30(1): 40, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509524

RESUMO

The accumulation of unfolded or misfolded proteins within the endoplasmic reticulum (ER), due to genetic determinants and extrinsic environmental factors, leads to endoplasmic reticulum stress (ER stress). As ER stress ensues, the unfolded protein response (UPR), comprising three signaling pathways-inositol-requiring enzyme 1, protein kinase R-like endoplasmic reticulum kinase, and activating transcription factor 6 promptly activates to enhance the ER's protein-folding capacity and restore ER homeostasis. However, prolonged ER stress levels propels the UPR towards cellular demise and the subsequent inflammatory cascade, contributing to the development of human diseases, including cancer, neurodegenerative disorders, and diabetes. Notably, increased expression of all three UPR signaling pathways has been observed in these pathologies, and reduction in signaling molecule expression correlates with decreased proliferation of disease-associated target cells. Consequently, therapeutic strategies targeting ER stress-related interventions have attracted significant research interest. In this review, we elucidate the critical role of ER stress in cancer, metabolic, and neurodegenerative diseases, offering novel therapeutic approaches for these conditions.


Assuntos
Neoplasias , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/terapia , Estresse do Retículo Endoplasmático/genética , Resposta a Proteínas não Dobradas , Transdução de Sinais , Neoplasias/terapia
18.
Mol Biol Rep ; 51(1): 435, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520543

RESUMO

BACKGROUND: XIAP-associated factor 1 (XAF1) has been found to participate in the progression of multiple human cancers. Nevertheless, its role as well as the reaction mechanism in non-small cell lung cancer (NSCLC) still remains obscure. METHODS: In this study, the protein expression of XAF1 in NSCLC cell lines was evaluated using western blot. With the employment of CCK-8 assay, EdU staining, wound healing and transwell, capabilities of NSCLC cells to proliferate, migrate and invade were assessed. Cell apoptotic level and cell cycle were resolved utilizing flow cytometry. Western blot was applied for the estimation of apoptosis- and endoplasmic reticulum (ER) stress-related proteins. RESULTS: It was discovered that XAF1 expression was conspicuously reduced in NSCLC cell lines. XAF1 overexpression suppressed H1299 cell proliferative, invasive and migrative capabilities, but exhibited promotive effects on cell cycle arrest. Meanwhile, XAF1 overexpression inhibited cisplatin resistance in H1299 and H1299/DDP cells by promoting cell apoptosis and enhanced the expression levels of ER stress-related proteins CHOP, GRP78 and ATF4. What's more, 4-PBA treatment reversed the impacts of XAF1 overexpression on the proliferative, invasive, migrative and apoptotic capabilities of H1299 cells, as well as cell cycle and cisplatin resistance. CONCLUSION: In conclusion, XAF1 overexpression impeded the advancement of NSCLC and repressed cisplatin resistance of NSCLC cells through inducing ER stress, which indicated that XAF1 might be a novel targeted-therapy for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Estresse do Retículo Endoplasmático/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo
19.
Artigo em Chinês | MEDLINE | ID: mdl-38311942

RESUMO

Objective: To investigate the effects of carbon black and cadmium (Cd) combined exposure on autophagy and inflammatory response mediated by protein kinase R-like endoplasmic reticulum kinase (PERK) pathway in human bronchial epithelial (16HBE) cells. Methods: In January 2022, human bronchial epithelial (16HBE) cells were resuscitated and cultured. Carbon black nanoparticles (CBNPs) were oxidized to adsorb Cd ions to construct "CBNPs-Cd" complexes. CCK-8 assay was used to detect the effects of different concentrations and time combinations of CBNPs and Cd on the viability of 16HBE cells. The subsequent dose groups were exposed to 2 µg/ml Cd, 100 µg/ml CBNPs, 100 µg/ml CBNPs+2 µg/ml Cd for 24 h. The number of autophagosomes and autolysosomes was detected by transmission electron microscopy. Western blotting was used to detect the protein expressions of PERK, eukaryotic initiation factor 2α (eIf2α), activating transcription factor 4 (ATF4), sequestosome 1 (SQSTM1/P62), and microtubule-associated protein 1 light chain 3 (LC3). After PERK gene was silenced by siRNA technology, the changes of autophagy marker proteins P62 and LC3 were detected, and the expressions of inflammatory factors interleukin-6 (IL6) and interleukin-8 (IL8) were detected by fluorescence quantitative PCR technique. One-way ANOVA analysis was used to compare three groups or more. LSD test was used for comparison between two groups. Factorial analysis was used for multivariate component analysis. Results: There was no significant change in cell viability of 16HBE after 24 h exposure to CBNPs and Cd alone or combined (P>0.05). Compared with the control group, the expressions of P62 and LC3 in 16HBE cells were significantly increased in the CBNPs and Cd alone/combined exposure group (P<0.05), and the number of autophagosomes and autophagolysosomes in the combined exposure group was increased compared with other groups. Compared with the control group, CBNPs and Cd alone exposure group had no significant effects on p-PERK/PERK and p-eIf2α/eIf2α protein expression (P>0.05). However, the protein expressions of p-PERK/PERK and p-eIf2α/eIf2α and ATF4 were all increased in the combined exposure group (P<0.05), and the levels of IL6 and IL8 in 16HBE cells in the combined exposure group of CBNPs and Cd were significantly higher than those in the control group (P<0.05). The levels of LC3 protein, IL6 and IL8 were decreased in the CBNPs-Cd combined exposure group after knockdown of PERK gene (P<0.05). The results of factorial analysis showed that exposure to CBNPs and Cd had significant effects on the expression of P62, LC3 and IL6 (P<0.05), but the interaction between the two chemicals had no statistical significance (P>0.05) . Conclusion: CBNPs-Cd combined exposure may inhibit autophagy and increase inflammation in human bronchial epithelial cells through activation of PERK-eIf2α-ATF4 pathway.


Assuntos
Cádmio , Fuligem , Humanos , Cádmio/toxicidade , Fuligem/toxicidade , Interleucina-8 , Interleucina-6 , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , eIF-2 Quinase/farmacologia , Autofagia , Células Epiteliais/metabolismo , Estresse do Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Inflamação
20.
Nat Commun ; 15(1): 1534, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378748

RESUMO

Myotonic dystrophy type 2 (DM2) is a tetranucleotide CCTG repeat expansion disease associated with an increased prevalence of autoimmunity. Here, we identified an elevated type I interferon (IFN) signature in peripheral blood mononuclear cells and primary fibroblasts of DM2 patients as a trigger of chronic immune stimulation. Although RNA-repeat accumulation was prevalent in the cytosol of DM2-patient fibroblasts, type-I IFN release did not depend on innate RNA immune sensors but rather the DNA sensor cGAS and the prevalence of mitochondrial DNA (mtDNA) in the cytoplasm. Sublethal mtDNA release was promoted by a chronic activation of the ATF6 branch of the unfolded protein response (UPR) in reaction to RNA-repeat accumulation and non-AUG translated tetrapeptide expansion proteins. ATF6-dependent mtDNA release and resulting cGAS/STING activation could also be recapitulated in human THP-1 monocytes exposed to chronic endoplasmic reticulum (ER) stress. Altogether, our study demonstrates a novel mechanism by which large repeat expansions cause chronic endoplasmic reticulum stress and associated mtDNA leakage. This mtDNA is, in turn, sensed by the cGAS/STING pathway and induces a type-I IFN response predisposing to autoimmunity. Elucidating this pathway reveals new potential therapeutic targets for autoimmune disorders associated with repeat expansion diseases.


Assuntos
Doenças Autoimunes , Interferon Tipo I , Distrofia Miotônica , Humanos , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , DNA Mitocondrial/genética , Autoimunidade/genética , Leucócitos Mononucleares/metabolismo , RNA , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Estresse do Retículo Endoplasmático/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA