Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(17): 9680-9690, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634420

RESUMO

Plant pathogens have frequently shown multidrug resistance (MDR) in the field, often linked to efflux and sometimes metabolism of fungicides. To investigate the potential role of metabolic resistance in B. cinerea strains showing MDR, the azoxystrobin-sensitive strain B05.10 and -resistant strain Bc242 were treated with azoxystrobin. The degradation half-life of azoxystrobin in Bc242 (9.63 days) was shorter than that in B05.10 (28.88 days). Azoxystrobin acid, identified as a metabolite, exhibited significantly lower inhibition rates on colony and conidia (9.34 and 11.98%, respectively) than azoxystrobin. Bc242 exhibited higher expression levels of 34 cytochrome P450s (P450s) and 11 carboxylesterase genes (CarEs) compared to B05.10 according to RNA-seq analysis. The expression of P450 genes Bcin_02g01260 and Bcin_12g06380, along with the CarEs Bcin_12g06360 in Saccharomyces cerevisiae, resulted in reduced sensitivity to various fungicides, including azoxystrobin, kresoxim-methyl, pyraclostrobin, trifloxystrobin, iprodione, and carbendazim. Thus, the mechanism of B. cinerea MDR is linked to metabolism mediated by the CarE and P450 genes.


Assuntos
Botrytis , Carboxilesterase , Sistema Enzimático do Citocromo P-450 , Farmacorresistência Fúngica , Proteínas Fúngicas , Fungicidas Industriais , Pirimidinas , Estrobilurinas , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Estrobilurinas/farmacologia , Estrobilurinas/metabolismo , Estrobilurinas/química , Pirimidinas/farmacologia , Pirimidinas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Botrytis/genética , Botrytis/efeitos dos fármacos , Carboxilesterase/metabolismo , Carboxilesterase/genética , Farmacorresistência Fúngica/genética , Doenças das Plantas/microbiologia , Metacrilatos/farmacologia , Metacrilatos/metabolismo
2.
J Hazard Mater ; 471: 134397, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38677114

RESUMO

Biochar and organic compost are widely used in agricultural soil remediation as soil immobilization agents. However, the effects of biochar and compost on microbial community assembly processes in polluted soil under freezingthawing need to be further clarified. Therefore, a freezethaw cycle experiment was conducted with glyphosate (herbicide), imidacloprid (insecticide) and pyraclostrobin (fungicide) polluted to understand the effect of biochar and compost on microbial community assembly and metabolic behavior. We found that biochar and compost could significantly promote the degradation of glyphosate, imidacloprid and pyraclostrobin in freezethaw soil decrease the half-life of the three pesticides. The addition of immobilization agents improved soil bacterial and fungal communities and promoted the transformation from homogeneous dispersal to homogeneous selection. For soil metabolism, the combined addition of biochar and compost alleviated the pollution of glyphosate, imidacloprid and imidacloprid to soil through up-regulation of metabolites (DEMs) in amino acid metabolism pathway and down-regulation of DEMs in fatty acid metabolism pathway. The structural equation modeling (SEM) results showed that soil pH and DOC were the main driving factors affecting microbial community assembly and metabolites. In summary, the combined addition of biochar and compost reduced the adverse effects of pesticides residues.


Assuntos
Carvão Vegetal , Compostagem , Glicina , Glifosato , Herbicidas , Neonicotinoides , Nitrocompostos , Microbiologia do Solo , Poluentes do Solo , Estrobilurinas , Neonicotinoides/metabolismo , Neonicotinoides/toxicidade , Nitrocompostos/metabolismo , Nitrocompostos/toxicidade , Estrobilurinas/metabolismo , Estrobilurinas/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Carvão Vegetal/química , Glicina/análogos & derivados , Glicina/metabolismo , Glicina/toxicidade , Herbicidas/metabolismo , Herbicidas/toxicidade , Carbamatos/metabolismo , Carbamatos/toxicidade , Microbiota/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Pirazóis/metabolismo , Pirazóis/toxicidade , Inseticidas/metabolismo , Inseticidas/toxicidade , Biodegradação Ambiental , Solo/química , Bactérias/metabolismo , Bactérias/efeitos dos fármacos
3.
Environ Pollut ; 325: 121461, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934963

RESUMO

Azoxystrobin, a strobilurin widely used to control rice diseases, has raised concerns about possible adverse effects on aquatic ecosystems. At present, very little is known about the effects of azoxystrobin on courtship and aggressive behavior and the potential underlying mechanisms. In the present study, after exposing adult male and female zebrafish to worst-case scenario concentrations of azoxystrobin (0, 2 µg/L, 20 µg/L, and 200 µg/L) for 42 d, we observed a decrease in courtship behavior and an increase in aggressive behavior in both male and female zebrafish. In addition, to elucidate the molecular mechanism of the behavioral effects of azoxystrobin, we quantified the changes in the concentrations of kisspeptin, 5-HT, GnIH, and their corresponding receptor mRNA expression in the brain. The results showed that 200 µg/L azoxystrobin decreased the concentrations of kisspeptin and increased the concentration of GnIH in both male and female zebrafish brain. In addition, azoxystrobin also significantly reduced 5-HT concentration in female zebrafish brain. Further investigation revealed that altered courtship and aggressive behavior were associated with the expression levels of genes (kiss1, kiss2, gnrh3, gnrhr3, 5ht1a, and 5ht2a) involved in kisspeptin-GnIH signaling pathway. In conclusion, our study suggested that azoxystrobin may impair courtship and aggressive behavior in zebrafish by interfering with the kisspeptin-GnIH signaling pathway, which may have more profound effects on natural zebrafish populations.


Assuntos
Kisspeptinas , Peixe-Zebra , Animais , Feminino , Masculino , Peixe-Zebra/metabolismo , Estrobilurinas/toxicidade , Estrobilurinas/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Corte , Ecossistema , Serotonina , Transdução de Sinais
4.
Artigo em Inglês | MEDLINE | ID: mdl-36030005

RESUMO

Pyraclostrobin (PYR), a strobilurin fungicide, has been widely used to control fungal diseases, posing potential risk to aquatic organisms. However, the toxic effects of PYR to fish remained largely unknown. In this study, common carp (Cyprinus carpio L.) was exposed to environmentally relevant levels of PYR (0, 0.5 and 5.0 µg/L) for 30 days to assess its chronic toxicity and potential toxicity mechanism. The results showed that long-term exposure to PYR induced hepatopancreas damage as evident by increased in serum transaminase activities (AST and ALT). Moreover, PYR exposure remarkably enhanced the expressions of hsp70 and hsp90, decreased the levels of antioxidant enzymes and biomarkers and promoted the reactive oxygen species (H2O2 and O2-) and MDA contents in carp hepatopancreas. PYR exposure also upregulated apoptosis-related genes (bax, apaf-1, caspase-3 and caspase-9) and reduced anti-apoptosis gene bcl-2 in fish hepatopancreas. Moreover, PYR exposure altered the expressions of inflammatory cytokines (IL-1ß, IL-6, TNF-α and TGF-ß) in the serum and hepatopancreas and the level of NF-κB p65 in the hepatopancreas. Further research indicated that PYR exposure markedly changed the levels of immune parameters (LYZ, C3, IgM, ACP and AKP) in the serum and/or hepatopancreas, indicating that chronic PYR exposure also has immunotoxicity on fish. Additionally, we found that PYR exposure upregulated p38 and jnk MAPK transcription levels, suggesting that MAPK may be play important role in PYR-induced apoptosis and inflammatory response in the hepatopancreas of common carp. In summary, PYR exposure induced oxidative stress, triggered apoptosis, inflammatory and immune response in common carp, which can help to elucidate the possible toxicity mechanism of PYR in fish.


Assuntos
Carpas , Fungicidas Industriais , Animais , Antioxidantes/metabolismo , Carpas/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Fungicidas Industriais/toxicidade , Hepatopâncreas/metabolismo , Peróxido de Hidrogênio/metabolismo , Imunoglobulina M/metabolismo , Imunoglobulina M/farmacologia , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Estrobilurinas/metabolismo , Estrobilurinas/toxicidade , Transaminases , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo
5.
Chemosphere ; 306: 135495, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35772514

RESUMO

Trifloxystrobin (TRI) and kresoxim-methyl (KRE), as quinone outside inhibitor fungicides (QoIs), have broad applications due to their effective activity against fungi. Excessive usages of agrochemicals trigger environmental risks, such as aquatic organisms (fish). Research performed in recent years has focused on the ecotoxicology of TRI and KRE in fish containing histologic morphology, enzyme activity, protein and gene expression under chronic toxicity conditions, whereas less is known about the underlying mechanisms of toxicity and differences between TRI and KRE in fish under acute toxicity conditions. In the present study, in comparison to different exposure routes [whole-body exposure (WBE), head exposure (HE), trunk exposure (TE), and Oral administration (OA)], the external substances TRI and KRE entered the fish body mainly via gill organs and led to fish toxicity. Furthermore, gill organs and gill cells were vulnerable to TRI and KRE exposure, which indicated that the gill is a vital impaired organ. The 96 h-LC50 (sublethal concentration) value of KRE was 289.8 µg L-1 (R2 = 0.9855) with an approximate 10-fold difference in TRI toxicity. The cytotoxicity exposed to TRI was higher than that in KRE at the same concentration. The potential mechanisms of toxic differences could be various toxic effects in terms of MCIII (mitochondrial complex III) activity, ATP (Adenosine triphosphate) content, MA (mitochondrial activity), ROS (reactive oxygen species) levels, and cellular respiration. Furthermore, the disorder in MCIII activity was probably the main potential mechanisms of toxic differences. To some extent, this research provides not only new insight into the underlying toxic mechanism of TRI and KRE in fish but also a basis for the guidance of agrochemicals considering aquatic risks.


Assuntos
Fungicidas Industriais , Poluentes Químicos da Água , Acetatos , Animais , Fungicidas Industriais/metabolismo , Fungicidas Industriais/toxicidade , Iminas , Estrobilurinas/metabolismo , Estrobilurinas/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
6.
World J Microbiol Biotechnol ; 37(12): 203, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34669053

RESUMO

White mold disease, caused by the phytopathogen Sclerotinia sclerotiorum, provokes severe productivity losses in several economically important crops. Biocontrol agents, especially antagonist filamentous fungi, are environmentally friendly alternatives to the chemical fungicides used in white mold management. The objective of this study was to screen for basidiomycete fungi capable of inhibiting S. sclerotiorum and investigate their bioactive metabolites responsible for antifungal activities. Two out of 17 tested basidiomycete isolates inhibited the mycelial growth of S. sclerotiorum in pair culture experiments on agar plates, namely Oudemansiella canarii BRM-044600 and Laetisaria arvalis ATCC52088. O. canarii BRM-044600 liquid culture filtrate exhibited the greatest antifungal activity and was selected for further investigation. UHPLC-MS analysis suggests that six putative strobilurins, including strobilurin A and/or stereoisomers of this compound (m/z 259.1299, [M + H]+) and three putative strobilurins with m/z 257.1184 ([M + H]+) are likely responsible for the antifungal activity observed in the culture filtrate. For the first time, this work demonstrated the potential of O. canarii for white mold biocontrol and strobilurin production.


Assuntos
Agaricales/metabolismo , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Metabolismo Secundário , Basidiomycota , Agentes de Controle Biológico/farmacologia , Ácidos Graxos Insaturados/metabolismo , Fungicidas Industriais/farmacologia , Testes de Sensibilidade Microbiana , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Estereoisomerismo , Estrobilurinas/metabolismo
7.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33741617

RESUMO

Strobilurin fungicides are widely used in agricultural production due to their broad-spectrum and fungal mitochondrial inhibitory activities. However, their massive application has restrained the growth of eukaryotic algae and increased collateral damage in freshwater systems, notably harmful cyanobacterial blooms (HCBs). In this study, a strobilurin fungicide-degrading strain, Hyphomicrobium sp. strain DY-1, was isolated and characterized successfully. Moreover, a novel esterase gene, strH, responsible for the de-esterification of strobilurin fungicides, was cloned, and the enzymatic properties of StrH were studied. For trifloxystrobin, StrH displayed maximum activity at 50°C and pH 7.0. The catalytic efficiencies (kcat/Km ) of StrH for different strobilurin fungicides were 196.32 ± 2.30 µM-1 · s-1 (trifloxystrobin), 4.64 ± 0.05 µM-1 · s-1 (picoxystrobin), 2.94 ± 0.02 µM-1 · s-1 (pyraclostrobin), and (2.41 ± 0.19)×10-2 µM-1 · s-1 (azoxystrobin). StrH catalyzed the de-esterification of a variety of strobilurin fungicides, generating the corresponding parent acid to achieve the detoxification of strobilurin fungicides and relieve strobilurin fungicide growth inhibition of Chlorella This research will provide insight into the microbial remediation of strobilurin fungicide-contaminated environments.IMPORTANCE Strobilurin fungicides have been widely acknowledged as an essential group of pesticides worldwide. So far, their residues and toxic effects on aquatic organisms have been reported in different parts of the world. Microbial degradation can eliminate xenobiotics from the environment. Therefore, the degradation of strobilurin fungicides by microorganisms has also been reported. However, little is known about the involvement of enzymes or genes in strobilurin fungicide degradation. In this study, a novel esterase gene responsible for the detoxification of strobilurin fungicides, strH, was cloned in the newly isolated strain Hyphomicrobium sp. DY-1. This degradation process detoxifies the strobilurin fungicides and relieves their growth inhibition of Chlorella.


Assuntos
Esterases/metabolismo , Fungicidas Industriais/metabolismo , Hyphomicrobium/metabolismo , Estrobilurinas/metabolismo , Hyphomicrobium/enzimologia , Inativação Metabólica
8.
J Sci Food Agric ; 101(12): 4900-4906, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33543480

RESUMO

BACKGROUND: Wheat is one of the most important cereal crops worldwide, and use of fungicides is an essential part of wheat production. Both prothioconazole and fluoxastrobin give excellent control of important seed and soilborne pathogens. The combination of these two fungicides shows a complementary mode of action and has a wide usage around the world. But the residue levels of these fungicides in the wheat matrix are still unknown. RESULTS: In the current study, a simple, low-cost and highly sensitive method using modified QuECHERS procedure combined with high-performance liquid chromatography-tandem mass spectrometry was developed to simultaneously quantify E- and Z-fluoxastrobin and the main metabolite prothioconazole-desthio of prothioconazole in the wheat matrix. The recoveries of prothioconazole-desthio, E-fluoxastrobin and Z-fluoxastrobin ranged from 84% to 101%, with relative standard deviation of less than 13.2%. The terminal residues of prothioconazole-desthio and E- and Z-fluoxastrobin were studied in wheat grain and straw under field conditions. The results showed that the terminal residue of the target compounds ranged from <0.01 to 0.029 mg kg-1 and <0.05 to 7.6 mg kg-1 in wheat grain and straw (expressed as dry weight), respectively. The risk quotients of prothioconazole-desthio and fluoxastrobin were 0.2% and 3.2%. CONCLUSIONS: The residue levels of the target analytes in wheat grain were lower than the maximum residue limits recommended by the Chinese Ministry of Agriculture. And the calculated risk quotient values were far below 100%, indicating a low dietary intake health risk to consumers. © 2021 Society of Chemical Industry.


Assuntos
Resíduos de Drogas/análise , Fungicidas Industriais/análise , Estrobilurinas/metabolismo , Triazóis/análise , Triticum/química , Triticum/metabolismo , Cromatografia Líquida de Alta Pressão , Exposição Dietética/efeitos adversos , Resíduos de Drogas/efeitos adversos , Resíduos de Drogas/metabolismo , Ingestão de Alimentos , Ecossistema , Contaminação de Alimentos/análise , Fungicidas Industriais/efeitos adversos , Fungicidas Industriais/metabolismo , Humanos , Medição de Risco , Estrobilurinas/análise , Espectrometria de Massas em Tandem , Triazóis/efeitos adversos , Triazóis/metabolismo
9.
Environ Toxicol Chem ; 39(6): 1267-1272, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32239770

RESUMO

There is no use restriction associated with bees for many fungicides used in agriculture; however, this does not always mean that these pesticides are harmless for these nontarget organisms. We investigated whether the fungicide pyraclostrobin, which acts on fungal mitochondria, also negatively affects honey bee mitochondrial bioenergetics. Honey bees were collected from 5 hives and anesthetized at 4 °C. The thoraces were separated, and mitochondria were isolated by grinding, filtering, and differential centrifugation. An aliquot of 0.5 mg of mitochondrial proteins was added to 0.5 mL of a standard reaction medium with 4 mM succinate (complex II substrate) plus 50 nM rotenone (complex I inhibitor), and mitochondrial respiration was measured at 30 °C using a Clark-type oxygen electrode. Mitochondrial membrane potential was determined spectrofluorimetrically using safranin O as a probe, and adenosine triphosphate (ATP) synthesis was determined by chemiluminescence. Pyraclostrobin at 0 to 50 µM was tested on the mitochondrial preparations, with 3 repetitions. Pyraclostrobin inhibited mitochondrial respiration in a dose-dependent manner at concentrations of 10 µM and above, demonstrating typical inhibition of oxidative phosphorylation. Pyraclostrobin also promoted a decline in the mitochondrial membrane potential at doses of 5 µM and above and in ATP synthesis at 15 µM and above. We conclude that pyraclostrobin interferes with honey bee mitochondrial function, which is especially critical for the energy-demanding flight activity of foraging bees. Environ Toxicol Chem 2020;39:1267-1272. © 2020 SETAC.


Assuntos
Abelhas/efeitos dos fármacos , Fungos/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Mitocôndrias/efeitos dos fármacos , Estrobilurinas/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Fungos/metabolismo , Fungicidas Industriais/metabolismo , Inativação Metabólica/efeitos dos fármacos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Estrobilurinas/metabolismo
10.
Environ Monit Assess ; 191(10): 628, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31502086

RESUMO

The present study was done to assess the dissipation behavior, decontamination, and half-life time of ready-mix formulation of trifloxystrobin (25% w/w) and tebuconazole (50% w/w) in okra and soil under the crop after foliar spray at fruiting stage. Samples of okra and soil were collected periodically, i.e., zero (2 h after spray), 1, 3, 5, 7, 10, 15, 20, and 25 days after third application at a 7-day interval. Residues of these fungicides were determined by gas liquid chromatography (GLC) equipped with electron capture detector (ECD) and gas chromatography-tandem mass spectrometry (GCMS-triple quadruple). The limits of quantification (LOQ) and detection (LOD) for both the fungicides were 0.01 and 0.003 mg kg-1, respectively. Washing alone with faucet water was found successful in minimizing the residues. Soil was free from residual contamination at fifth day after spraying in case of both the fungicides and at both the doses.


Assuntos
Abelmoschus/metabolismo , Acetatos/metabolismo , Fungicidas Industriais/metabolismo , Iminas/metabolismo , Resíduos de Praguicidas/análise , Solo/química , Estrobilurinas/metabolismo , Triazóis/metabolismo , Abelmoschus/química , Acetatos/análise , Descontaminação , Monitoramento Ambiental , Frutas/química , Frutas/metabolismo , Fungicidas Industriais/análise , Meia-Vida , Iminas/análise , Estrobilurinas/análise , Triazóis/análise
11.
Microbiome ; 7(1): 128, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484554

RESUMO

BACKGROUND: Sharp increases in food production worldwide are attributable to agricultural intensification aided by heavy use of agrochemicals. This massive use of pesticides and fertilizers in combination with global climate change has led to collateral damage in freshwater systems, notably an increase in the frequency of harmful cyanobacterial blooms (HCBs). The precise mechanisms and magnitude of effects that pesticides exert on HCBs formation and proliferation have received little research attention and are poorly constrained. RESULTS: We found that azoxystrobin (AZ), a common strobilurin fungicide, can favor cyanobacterial growth through growth inhibition of eukaryotic competitors (Chlorophyta) and possibly by inhibiting cyanobacterial parasites (fungi) as well as pathogenic bacteria and viruses. Meta-transcriptomic analyses identified AZ-responsive genes and biochemical pathways in eukaryotic plankton and bacteria, potentially explaining the microbial effects of AZ. CONCLUSIONS: Our study provides novel mechanistic insights into the intertwined effects of a fungicide and eutrophication on microbial planktonic communities and cyanobacterial blooms in a eutrophic freshwater ecosystem. This knowledge may prove useful in mitigating cyanobacteria blooms resulting from agricultural intensification.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Fungicidas Industriais/metabolismo , Proliferação Nociva de Algas , Lagos/microbiologia , Pirimidinas/metabolismo , Estrobilurinas/metabolismo , China , Clorófitas/crescimento & desenvolvimento , Mudança Climática , Ecossistema , Microbiologia da Água
12.
J Environ Sci Health B ; 54(10): 843-857, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31271332

RESUMO

This study reports degradation of azoxystrobin (AZOXY) and imidacloprid (IMIDA) in the rice straw (RS)/corn cob (CC) and peat (P)/compost (C)-based biomixtures. The effect of biomixture preconditioning (10 days incubation prior to pesticide application), pesticide concentration and moisture content was evaluated. Results suggested that conditioning of biomixture greatly affected IMIDA degradation where half-life (t1/2) was reduced by 5-9 times. This was attributed to higher microbial biomass carbon content and dehydrogenase activity in the conditioned biomixtures. Pesticide application in the conditioned biomixture did not show any negative impact on soil microbial parameters. Both pesticides degraded at faster rate in the rice straw-based biomixtures than in the corn cob-based biomixtures. Degradation slowed down with increase in initial concentration of pesticides in biomixture and 1.6-3.0 (AZOXY) and 2.4-3.6 (IMIDA) times increase in t1/2 values was observed. The moisture content of biomixture showed positive effect on degradation which increased when moisture content was increased from 60 to 80% water holding capacity. The effect was significant for IMIDA degradation in the corn cob-based biomixtures and AZOXY degradation in the peat biomixtures. The rice straw-based biomixtures were better in degrading AZOXY and IMIDA and can be used in biopurification systems.


Assuntos
Compostagem , Neonicotinoides/metabolismo , Nitrocompostos/metabolismo , Pirimidinas/metabolismo , Poluentes do Solo/metabolismo , Estrobilurinas/metabolismo , Biodegradação Ambiental , Oryza , Praguicidas/metabolismo , Caules de Planta , Solo/química , Microbiologia do Solo , Clima Tropical , Zea mays
13.
Molecules ; 24(13)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284429

RESUMO

Xenobiotic detoxification in plant as well as in animals has mostly been studied in relationship to the deactivation of the toxic residues of the compound that, surely for azoxystrobin, is represented by its ß-methoxyacrylate portion. In maize roots treated for 96 h with azoxystrobin, the fungicide accumulated over time and detoxification compounds or conjugates appeared timewise. The main detoxified compound was the methyl ester hydrolysis product (azoxystrobin free acid, 390.14 m/z) thought to be inactive followed by the glutathione conjugated compounds identified as glutathione conjugate (711.21 m/z) and its derivative lacking the glycine residue from the GSH (654.19 m/z). The glycosylated form of azoxystrobin was also found (552.19 m/z) in a minor amount. The identification of these analytes was done by differential untargeted metabolomics analysis using Progenesis QI for label free spectral counting quantification and MS/MS confirmation of the compounds was carried out by either Data Independent Acquisition (DIA) and Data Dependent Acquisition (DDA) using high resolution LC-MS methods. Neutral loss scanning and comparison with MS/MS spectra of azoxystrobin by DDA and MSe confirmed the structures of these new azoxystrobin GSH conjugates.


Assuntos
Cromatografia Líquida/métodos , Glutationa/metabolismo , Metaboloma , Raízes de Plantas/metabolismo , Pirimidinas/metabolismo , Estrobilurinas/metabolismo , Espectrometria de Massas em Tandem/métodos , Zea mays/metabolismo , Glutationa/química , Íons , Pirimidinas/química , Estrobilurinas/química
14.
J Biol Chem ; 294(32): 12007-12019, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31182483

RESUMO

Cytochrome bc1 complexes (cyt bc1), also known as complex III in mitochondria, are components of the cellular respiratory chain and of the photosynthetic apparatus of non-oxygenic photosynthetic bacteria. They catalyze electron transfer (ET) from ubiquinol to cytochrome c and concomitantly translocate protons across the membrane, contributing to the cross-membrane potential essential for a myriad of cellular activities. This ET-coupled proton translocation reaction requires a gating mechanism that ensures bifurcated electron flow. Here, we report the observation of the Rieske iron-sulfur protein (ISP) in a mobile state, as revealed by the crystal structure of cyt bc1 from the photosynthetic bacterium Rhodobacter sphaeroides in complex with the fungicide azoxystrobin. Unlike cyt bc1 inhibitors stigmatellin and famoxadone that immobilize the ISP, azoxystrobin causes the ISP-ED to separate from the cyt b subunit and to remain in a mobile state. Analysis of anomalous scattering signals from the iron-sulfur cluster of the ISP suggests the existence of a trajectory for electron delivery. This work supports and solidifies the hypothesis that the bimodal conformation switch of the ISP provides a gating mechanism for bifurcated ET, which is essential to the Q-cycle mechanism of cyt bc1 function.


Assuntos
Proteínas de Bactérias/química , Complexo III da Cadeia de Transporte de Elétrons/química , Pirimidinas/química , Estrobilurinas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Dissulfetos/química , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mutagênese , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pirimidinas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Rhodobacter sphaeroides/metabolismo , Estrobilurinas/metabolismo
15.
J Sci Food Agric ; 99(14): 6167-6172, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31226227

RESUMO

BACKGROUND: Grape is an important fruit consumed either fresh or processed, therefore, fungicide misuse of grape has become an issue of global food safety and human health. Pyraclostrobin, and cyazofamid have been applied to grape frequently. RESULTS: Here a simple QuEChERS (quick, easy, cheap, effective, rugged, and safe) liquid chromatography mass spectrometry technique has been developed and validated for the determination of pyraclostrobin, cyazofamid and its metabolite CCIM in open field grape samples. The recoveries of these three in the range of 0.01 to 5 mg kg-1 (n = 5) ranged from 73.1% to 97.9%. The relative standard deviations (RSDs) were below 12% for all cases. The limits of quantitation of each analyte was 0.005 mg kg-1 , which was lower than maximum residue limits of not only pyraclostrobin but also cyazofamid. Not only dissipation kinetics but also residue determination was obtained in grape for those three pesticides. Furthermore, their half-lives in grapes were 10.7-30.1 days, recommending the pre-harvest intervals for these three of 14 days. The calculated hazard quotient and acute hazard index lower than 100% illustrated the safety of intake of grape for the Chinese population for not only long-term but also short-term dietary risk assessment. CONSLUSIONS: The less than 30 day half-life illustrated that pyraclostrobin and cyazofamid could degrade relatively easily in the environment. The long-term and short-term dietary risk assessment also illustrated the intake safety of these three. Thus, a 14 day pre-harvest interval was safe and recommended. The results of this study contributed to environmental protection, food safety and human health. © 2019 Society of Chemical Industry.


Assuntos
Resíduos de Drogas/química , Fungicidas Industriais/química , Imidazóis/química , Estrobilurinas/química , Sulfonamidas/química , Vitis/química , China , Qualidade de Produtos para o Consumidor , Resíduos de Drogas/metabolismo , Contaminação de Alimentos/análise , Frutas/química , Fungicidas Industriais/metabolismo , Meia-Vida , Humanos , Imidazóis/metabolismo , Cinética , Medição de Risco , Estrobilurinas/metabolismo , Sulfonamidas/metabolismo , Espectrometria de Massas em Tandem , Vitis/metabolismo
16.
J Sci Food Agric ; 99(12): 5368-5376, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31062362

RESUMO

BACKGROUND: Famoxadone is a pesticide that is used to control fungal diseases and its dissipation in vegetables should be monitored. For that purpose, liquid chromatography coupled to mass spectrometry has been used. RESULTS: The dissipation of famoxadone has been monitored in cucumber, cherry tomato and courgette under greenhouse conditions at different doses (single and double), using ultra high-performance liquid chromatography coupled to Orbitrap mass spectrometry (Thermo Fisher Scientific, Bremen, Germany). The concentration of famoxadone increased slightly just after the application of the commercial product and then decreased. The half-lives (DT50 ) of famoxadone are different for each matrix, ranging from 2 days (courgette single dose) to 10 days (cucumber double dose). The main metabolites, 4-phenoxybenzoic acid and 1-acetyl-2-phenylhydrazine, were not detected in vegetable samples. Other metabolites described by the European Food and Safety Authority, such as IN-JS940 [(2RS)-2-hydroxy-2-(4-phenoxyphenyl)propanoic acid], IN-KF015 [(5RS)-5-methyl-5-(4-phenoxyphenyl)-1,3-oxazolidine-2,4-dione] and IN-MN467 [(5RS)-5-methyl-3-[(2-nitrophenyl)amino]-5-(4-phenoxyphenyl)-1,3-oxazolidine-2,4-dione], were detected in the three matrices. Untargeted analysis allowed for the putative elucidation of a new metabolite of famoxadone in cucumber (up to 290 µg kg-1 ) and cherry tomato (up to 900 µg kg-1 ) samples. CONCLUSION: The dissipation of famoxadone has been investigated in three vegetables: tomato, cucumber and courgette. The persistence of famoxadone was low in the three matrices (DT50 less than 10 days). Metabolites of famoxadone were monitored, detecting IN-JS940, IN-MN467 and IN-KF015, and the putative elucidation of a new metabolite of famoxadone was performed by applying software tools. © 2019 Society of Chemical Industry.


Assuntos
Cucumis sativus/química , Solanum lycopersicum/química , Estrobilurinas/química , Verduras/química , Cromatografia Líquida de Alta Pressão , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/metabolismo , Alemanha , Humanos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Espectrometria de Massas , Estrobilurinas/metabolismo , Verduras/crescimento & desenvolvimento , Verduras/metabolismo
17.
J Agric Food Chem ; 67(24): 6691-6699, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31135152

RESUMO

The uptake mechanism, translocation, and subcellular distribution of azoxystrobin (5 mg kg-1) in wheat plants was investigated under laboratory conditions. The wheat-water system reached equilibrium after 96 h. Azoxystrobin concentrations in roots were much higher than those in stems and leaves under different exposure times. Azoxystrobin uptake by roots was highly linear at different exposure concentrations, while the bioconcentration factors and translocation factors were independent of the exposed concentration at the equilibrium state. Dead roots adsorbed a larger amount of azoxystrobin than fresh roots, which was measured at different concentrations. Azoxystrobin preferentially accumulated in organelles, and the highest distribution proportion was detected in the soluble cell fractions. This study elucidated that the passive transport and apoplastic pathway dominated the uptake of azoxystrobin by wheat roots. Azoxystrobin primarily accumulated in roots and could be acropetally translocated, but its translocation capacity from roots to stems was limited. Additionally, the uptake and distribution of azoxystrobin by wheat plants could be predicted well by a partition-limited model.


Assuntos
Pirimidinas/química , Pirimidinas/metabolismo , Estrobilurinas/química , Estrobilurinas/metabolismo , Triticum/metabolismo , Transporte Biológico , Cinética , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Caules de Planta/química , Caules de Planta/metabolismo , Triticum/química
18.
Environ Pollut ; 252(Pt A): 163-170, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31146231

RESUMO

The dissipation of famoxadone as well as the behaviour of its metabolites in environmental samples such as water and soil is a major concern. In this study, the dissipation of the target compound in both matrices was carried out applying an analytical method based on ultra-high performance liquid chromatography coupled to Orbitrap mass spectrometry (UHPLC-Orbitrap-MS). The dissipation of famoxadone was monitored over a period of 100 days after the plant protection product, Equation Pro®, was administered to the target matrices. This study was performed at two doses, normal and double in the case of soils and fivefold instead of double dose in water. The concentration of famoxadone steadily decreased during the monitoring period in both matrices. Half-life (DT50) values were lower than 30 days in most cases except for loam soils, for which it was 35 days. Therefore, persistence of this pesticide in both matrices was low. Famoxadone metabolites such as IN-KF015 ((5RS)-5-methyl-5-(4-phenoxyphenyl)-1,3- oxazolidine-2,4-dione) and IN-JS940 ((2RS)-2-hydroxy-2-(4- phenoxyphenyl)propanoic acid) were detected in both matrices and their concentration increased while the concentration of the parent compound decreased. Metabolite IN-JS940 was the compound detected at highest concentration for both matrices. In water the maximum concentration was 20% of the initial famoxadone content and in soils it was 50% of initial famoxadone content. In addition, another metabolite, IN-MN467 ((5RS)-5-methyl-3-[(2-nitrophenyl)amino]- 5-(4-phenoxyphenyl)-1,3-oxazolidine-2,4-dione), was detected in soils, following the same behaviour as the other metabolites. These results provided ample information about the behaviour of metabolites and the necessity of knowing their toxicity in both matrices in order to detect possible risks for living beings.


Assuntos
Fungicidas Industriais/metabolismo , Oxazóis/análise , Resíduos de Praguicidas/análise , Propionatos/análise , Poluentes do Solo/análise , Estrobilurinas/metabolismo , Cromatografia Líquida de Alta Pressão , Meia-Vida , Cinética , Espectrometria de Massas/métodos , Solo/química , Água/análise
19.
J Environ Sci Health B ; 54(4): 317-325, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30729870

RESUMO

This study evaluated the hydrolysis and photolysis kinetics of pyraclostrobin in an aqueous solution using ultra-high-performance liquid chromatography-photodiode array detection and identified the resulting metabolites of pyraclostrobin by hydrolysis and photolysis in paddy water using high-resolution mass spectrometry coupled with liquid chromatography. The effect of solution pH, metal ions and surfactants on the hydrolysis of pyraclostrobin was explored. The hydrolysis half-lives of pyraclostrobin were 23.1-115.5 days and were stable in buffer solution at pH 5.0. The degradation rate of pyraclostrobin in an aqueous solution under sunlight was slower than that under UV photolysis reaction. The half-lives of pyraclostrobin in a buffer solution at pH 5.0, 7.0, 9.0 and in paddy water were less than 12 h under the two light irradiation types. The metabolites of the two processes were identified and compared to further understand the mechanisms underlying hydrolysis and photolysis of pyraclostrobin in natural water. The extracted ions obtained from paddy water were automatically annotated by Compound Discoverer software with manual confirmation of their fragments. Two metabolites were detected and identified in the pyraclostrobin hydrolysis, whereas three metabolites were detected and identified in the photolysis in paddy water.


Assuntos
Estrobilurinas/química , Poluentes Químicos da Água/química , Biodegradação Ambiental , China , Cromatografia Líquida de Alta Pressão , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Meia-Vida , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Espectrometria de Massas , Fotólise , Estrobilurinas/metabolismo , Luz Solar , Tensoativos/química , Raios Ultravioleta , Água/química , Poluentes Químicos da Água/metabolismo
20.
J Agric Food Chem ; 66(41): 10864-10870, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30272962

RESUMO

Postharvest disease is a major factor in the limited shelf life of many fruits and vegetables, and it is often managed using fungicidal spraying or soaking. In this study, we first tested the efficiency of six common fungicides on postharvest head cabbage ( Brassica oleracea var. capitata) against Botrytis cinerea. Afterward, the elimination abilities of these six fungicides on different layers of cabbage heads were examined, and the effects of the household processes on residue removal were evaluated. Results showed that very low contents of residues reached the inner layers and that peeling the three outmost leaves of cabbage could eliminate most of the investigated fungicides. All six fungicides disappeared during washing, stir-frying, or boiling, among which cyprodinil was the easiest to be eliminated. Furthermore, the combined processes reduced the residues below the limits of quantification for all six investigated fungicides, even after 2 days of spraying.


Assuntos
Brassica/efeitos dos fármacos , Fungicidas Industriais/química , Resíduos de Praguicidas/química , Aminopiridinas/química , Aminopiridinas/metabolismo , Benzimidazóis/química , Benzimidazóis/metabolismo , Biodegradação Ambiental , Botrytis/efeitos dos fármacos , Brassica/metabolismo , Carbamatos/química , Carbamatos/metabolismo , Qualidade de Produtos para o Consumidor , Conservação de Alimentos/métodos , Fungicidas Industriais/metabolismo , Meia-Vida , Humanos , Cinética , Nitrilas/química , Nitrilas/metabolismo , Resíduos de Praguicidas/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Estrobilurinas/química , Estrobilurinas/metabolismo , Triazóis/química , Triazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA