Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Genes (Basel) ; 12(12)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34946795

RESUMO

In this work, Caenibius tardaugens NBRC 16725 (strain ARI-1) (formerly Novosphingobium tardaugens) was isolated due to its capacity to mineralize estrogenic endocrine disruptors. Its genome encodes the edc genes cluster responsible for the degradation of 17ß-estradiol, consisting of two putative operons (OpA and OpB) encoding the enzymes of the upper degradation pathway. Inside the edc cluster, we identified the edcR gene encoding a TetR-like protein. Genetic studies carried out with C. tardaugens mutants demonstrated that EdcR represses the promoters that control the expression of the two operons. These genetic analyses have also shown that 17ß-estradiol and estrone, the second intermediate of the degradation pathway, are the true effectors of EdcR. This regulatory system has been heterologously expressed in Escherichia coli, foreseeing its use to detect estrogens in environmental samples. Genome comparisons have identified a similar regulatory system in the edc cluster of Altererythrobacter estronivorus MHB5, suggesting that this regulatory arrangement has been horizontally transferred to other bacteria.


Assuntos
Proteínas de Bactérias/genética , Estradiol/genética , Estrogênios/genética , Estrona/genética , Sphingomonadaceae/genética , Técnicas Biossensoriais/métodos , Regiões Promotoras Genéticas/genética
2.
Br J Cancer ; 124(4): 842-854, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495599

RESUMO

BACKGROUND: Epidemiological studies provide strong evidence for a role of endogenous sex hormones in the aetiology of breast cancer. The aim of this analysis was to identify genetic variants that are associated with urinary sex-hormone levels and breast cancer risk. METHODS: We carried out a genome-wide association study of urinary oestrone-3-glucuronide and pregnanediol-3-glucuronide levels in 560 premenopausal women, with additional analysis of progesterone levels in 298 premenopausal women. To test for the association with breast cancer risk, we carried out follow-up genotyping in 90,916 cases and 89,893 controls from the Breast Cancer Association Consortium. All women were of European ancestry. RESULTS: For pregnanediol-3-glucuronide, there were no genome-wide significant associations; for oestrone-3-glucuronide, we identified a single peak mapping to the CYP3A locus, annotated by rs45446698. The minor rs45446698-C allele was associated with lower oestrone-3-glucuronide (-49.2%, 95% CI -56.1% to -41.1%, P = 3.1 × 10-18); in follow-up analyses, rs45446698-C was also associated with lower progesterone (-26.7%, 95% CI -39.4% to -11.6%, P = 0.001) and reduced risk of oestrogen and progesterone receptor-positive breast cancer (OR = 0.86, 95% CI 0.82-0.91, P = 6.9 × 10-8). CONCLUSIONS: The CYP3A7*1C allele is associated with reduced risk of hormone receptor-positive breast cancer possibly mediated via an effect on the metabolism of endogenous sex hormones in premenopausal women.


Assuntos
Neoplasias da Mama/genética , Citocromo P-450 CYP3A/genética , Estrona/análogos & derivados , Pregnanodiol/análogos & derivados , Progesterona/urina , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Alelos , Neoplasias da Mama/enzimologia , Neoplasias da Mama/urina , Estudos de Casos e Controles , Citocromo P-450 CYP3A/metabolismo , Estrona/genética , Estrona/urina , Feminino , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Pregnanodiol/genética , Pregnanodiol/urina , Pré-Menopausa
3.
Nat Commun ; 10(1): 632, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733432

RESUMO

To reveal how cells exit human pluripotency, we designed a CRISPR-Cas9 screen exploiting the metabolic and epigenetic differences between naïve and primed pluripotent cells. We identify the tumor suppressor, Folliculin(FLCN) as a critical gene required for the exit from human pluripotency. Here we show that FLCN Knock-out (KO) hESCs maintain the naïve pluripotent state but cannot exit the state since the critical transcription factor TFE3 remains active in the nucleus. TFE3 targets up-regulated in FLCN KO exit assay are members of Wnt pathway and ESRRB. Treatment of FLCN KO hESC with a Wnt inhibitor, but not ESRRB/FLCN double mutant, rescues the cells, allowing the exit from the naïve state. Using co-immunoprecipitation and mass spectrometry analysis we identify unique FLCN binding partners. The interactions of FLCN with components of the mTOR pathway (mTORC1 and mTORC2) reveal a mechanism of FLCN function during exit from naïve pluripotency.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Via de Sinalização Wnt/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Linhagem Celular , Estrona/genética , Estrona/metabolismo , Humanos , Imunoprecipitação , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Proteômica , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Via de Sinalização Wnt/genética
4.
J Clin Endocrinol Metab ; 103(3): 991-1004, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29325096

RESUMO

Context: Serum estradiol (E2) and estrone (E1) levels exhibit substantial heritability. Objective: To investigate the genetic regulation of serum E2 and E1 in men. Design, Setting, and Participants: Genome-wide association study in 11,097 men of European origin from nine epidemiological cohorts. Main Outcome Measures: Genetic determinants of serum E2 and E1 levels. Results: Variants in/near CYP19A1 demonstrated the strongest evidence for association with E2, resolving to three independent signals. Two additional independent signals were found on the X chromosome; FAMily with sequence similarity 9, member B (FAM9B), rs5934505 (P = 3.4 × 10-8) and Xq27.3, rs5951794 (P = 3.1 × 10-10). E1 signals were found in CYP19A1 (rs2899472, P = 5.5 × 10-23), in Tripartite motif containing 4 (TRIM4; rs17277546, P = 5.8 × 10-14), and CYP11B1/B2 (rs10093796, P = 1.2 × 10-8). E2 signals in CYP19A1 and FAM9B were associated with bone mineral density (BMD). Mendelian randomization analysis suggested a causal effect of serum E2 on BMD in men. A 1 pg/mL genetically increased E2 was associated with a 0.048 standard deviation increase in lumbar spine BMD (P = 2.8 × 10-12). In men and women combined, CYP19A1 alleles associated with higher E2 levels were associated with lower degrees of insulin resistance. Conclusions: Our findings confirm that CYP19A1 is an important genetic regulator of E2 and E1 levels and strengthen the causal importance of E2 for bone health in men. We also report two independent loci on the X-chromosome for E2, and one locus each in TRIM4 and CYP11B1/B2, for E1.


Assuntos
Aromatase/genética , Densidade Óssea/genética , Estradiol/sangue , Densidade Óssea/fisiologia , Cromossomos Humanos X , Estudos de Coortes , Estradiol/genética , Estradiol/fisiologia , Estrona/sangue , Estrona/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Estudo de Associação Genômica Ampla , Genótipo , Hormônios Esteroides Gonadais/sangue , Humanos , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Vértebras Lombares/fisiologia , Masculino , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Testosterona/sangue
5.
Mol Cancer Res ; 15(12): 1637-1643, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28851811

RESUMO

The microphthalmia family (MITF, TFEB, TFE3, and TFEC) of transcription factors is emerging as global regulators of cancer cell survival and energy metabolism, both through the promotion of lysosomal genes as well as newly characterized targets, such as oxidative metabolism and the oxidative stress response. In addition, MiT/TFE factors can regulate lysosomal signaling, which includes the mTORC1 and Wnt/ß-catenin pathways, which are both substantial contributors to oncogenic signaling. This review describes recent discoveries in MiT/TFE research and how they impact multiple cancer subtypes. Furthermore, the literature relating to TFE-fusion proteins in cancers and the potential mechanisms through which these genomic rearrangements promote tumorigenesis is reviewed. Likewise, the emerging function of the Folliculin (FLCN) tumor suppressor in negatively regulating the MiT/TFE family and how loss of this pathway promotes cancer is examined. Recent reports are also presented that relate to the role of MiT/TFE-driven lysosomal biogenesis in sustaining cancer cell metabolism and signaling in nutrient-limiting conditions. Finally, a discussion is provided on the future directions and unanswered questions in the field. In summary, the research surrounding the MiT/TFE family indicates that these transcription factors are promising therapeutic targets and biomarkers for cancers that thrive in stressful niches. Mol Cancer Res; 15(12); 1637-43. ©2017 AACR.


Assuntos
Carcinogênese/genética , Lisossomos/genética , Neoplasias/genética , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Metabolismo Energético , Estrona/genética , Humanos , Fator de Transcrição Associado à Microftalmia/genética , Neoplasias/patologia , Via de Sinalização Wnt
6.
Water Res ; 123: 361-368, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28686938

RESUMO

Microbial degradation of estrogenic compounds can be affected by the nitrogen source and background carbon in the environment. However, the underlying mechanisms are not well understood. The objective of this study was to elucidate the molecular mechanisms of estrone (E1) biodegradation at the protein level under various background nitrogen (nitrate or ammonium) and carbon conditions (no background carbon, acetic acid, or humic acid as background carbon) by a newly isolated bacterial strain. The E1 degrading bacterial strain, Hydrogenophaga atypica ZD1, was isolated from river sediments and its proteome was characterized under various experimental conditions using quantitative proteomics. Results show that the E1 degradation rate was faster when ammonium was used as the nitrogen source than with nitrate. The degradation rate was also faster when either acetic acid or humic acid was present in the background. Proteomics analyses suggested that the E1 biodegradation products enter the tyrosine metabolism pathway. Compared to nitrate, ammonium likely promoted E1 degradation by increasing the activities of the branched-chain-amino-acid aminotransferase (IlvE) and enzymes involved in the glutamine synthetase-glutamine oxoglutarate aminotransferase (GS-GOGAT) pathway. The increased E1 degradation rate with acetic acid or humic acid in the background can also be attributed to the up-regulation of IlvE. Results from this study can help predict and explain E1 biodegradation kinetics under various environmental conditions.


Assuntos
Estrona/genética , Proteômica , Biodegradação Ambiental , Carbono , Monitoramento Ambiental , Estrona/análise , Nitrogênio/química
7.
Breast Cancer Res Treat ; 164(1): 189-199, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28429243

RESUMO

BACKGROUND: Estrone (E1), the major circulating estrogen in postmenopausal women, promotes estrogen-receptor positive (ER+) breast tumor growth and proliferation. Two major reactions contribute to E1 plasma concentrations, aromatase (CYP19A1) catalyzed E1 synthesis from androstenedione and steroid sulfatase (STS) catalyzed hydrolysis of estrone conjugates (E1Cs). E1Cs have been associated with breast cancer risk and may contribute to tumor progression since STS is expressed in breast cancer where its activity exceeds that of aromatase. METHODS: We performed genome-wide association studies (GWAS) to identify SNPs associated with variation in plasma concentrations of E1Cs, E1, and androstenedione in 774 postmenopausal women with resected early-stage ER+ breast cancer. Hormone concentrations were measured prior to aromatase inhibitor therapy. RESULTS: Multiple SNPs in SLCO1B1, a gene encoding a hepatic influx transporter, displayed genome-wide significant associations with E1C plasma concentrations and with the E1C/E1 ratio. The top SNP for E1C concentrations, rs4149056 (p = 3.74E-11), was a missense variant that results in reduced transporter activity. Patients homozygous for the variant allele had significantly higher average E1C plasma concentrations than did other patients. Furthermore, three other SLCO1B1 SNPs, not in LD with rs4149056, were associated with both E1C concentrations and the E1C/E1 ratio and were cis-eQTLs for SLCO1B3. GWAS signals of suggestive significance were also observed for E1, androstenedione, and the E1/androstenedione ratio. CONCLUSION: These results suggest a mechanism for genetic variation in E1C plasma concentrations as well as possible SNP biomarkers to identify ER+ breast cancer patients for whom STS inhibitors might be of clinical value.


Assuntos
Neoplasias da Mama/genética , Estrona/genética , Predisposição Genética para Doença , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Adulto , Idoso , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Estrona/sangue , Feminino , Estudo de Associação Genômica Ampla , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Pós-Menopausa
8.
Ecotoxicol Environ Saf ; 141: 271-279, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28359993

RESUMO

Knowledge of the occurrence and impacts of human pharmaceuticals in the aquatic environment is increasing since many years. Ecotoxicological studies mainly focus on acute effects though; chronic exposure studies are still rare. ß-adrenergic receptor antagonists (ß-blockers) are widely detected in the aquatic environment and likely alter the physiology of aquatic vertebrates due to a well-conserved adrenergic system. In this study, Nile tilapia (Oreochromis niloticus) were exposed to four different concentrations (4×10-10M, 4×10-9M, 4×10-8M and 4×10-7M) of metoprolol (ß1-blocker) from fertilized egg until 80 days post-hatch. Hatching and survival were not affected but growth was reduced almost dose-dependently after 30 and 80 days post-hatch. Histopathological evaluation of the gills revealed the tendency of mild alterations with proliferation of mucous/chloride cells and infiltration by leucocytes as the main findings. The transcriptional responses of both pituitary gonadotropins (luteinizing hormone and follicle stimulating hormone) as well as the estrogenic biomarker vitellogenin indicated moderately altered endocrine processes due to metoprolol exposure at the concentrations chosen. In contrast, hepatic detoxification mechanisms displayed only little to no effects. Based on this study, the overall toxicity of metoprolol in fish at environmentally relevant concentrations seems to be rather low.


Assuntos
Antagonistas Adrenérgicos beta/toxicidade , Ciclídeos/crescimento & desenvolvimento , Expressão Gênica/efeitos dos fármacos , Gonadotropinas/genética , Metoprolol/toxicidade , Vitelogeninas/genética , Poluentes Químicos da Água/toxicidade , Animais , Ciclídeos/genética , Relação Dose-Resposta a Droga , Estrona/genética , Estrona/metabolismo , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/crescimento & desenvolvimento , Gonadotropinas/metabolismo , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Vitelogeninas/metabolismo
9.
Stem Cells ; 34(4): 1068-82, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27095138

RESUMO

Folliculin (FLCN) is an autosomal dominant tumor suppressor gene that modulates diverse signaling pathways required for growth, proliferation, metabolism, survival, motility, and adhesion. FLCN is an essential protein required for murine embryonic development, embryonic stem cell (ESC) commitment, and Drosophila germline stem cell maintenance, suggesting that Flcn may be required for adult stem cell homeostasis. Conditional inactivation of Flcn in adult hematopoietic stem/progenitor cells (HSPCs) drives hematopoietic stem cells (HSC) into proliferative exhaustion resulting in the rapid depletion of HSPC, loss of all hematopoietic cell lineages, acute bone marrow (BM) failure, and mortality after 40 days. HSC that lack Flcn fail to reconstitute the hematopoietic compartment in recipient mice, demonstrating a cell-autonomous requirement for Flcn in HSC maintenance. BM cells showed increased phosphorylation of Akt and mTorc1, and extramedullary hematopoiesis was significantly reduced by treating mice with rapamycin in vivo, suggesting that the mTorc1 pathway was activated by loss of Flcn expression in hematopoietic cells in vivo. Tfe3 was activated and preferentially localized to the nucleus of Flcn knockout (KO) HSPCs. Tfe3 overexpression in HSPCs impaired long-term hematopoietic reconstitution in vivo, recapitulating the Flcn KO phenotype, and supporting the notion that abnormal activation of Tfe3 contributes to the Flcn KO phenotype. Flcn KO mice develop an acute histiocytic hyperplasia in multiple organs, suggesting a novel function for Flcn in macrophage development. Thus, Flcn is intrinsically required to maintain adult HSC quiescence and homeostasis, and Flcn loss leads to BM failure and mortality in mice.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Diferenciação Celular/genética , Estrona/genética , Células-Tronco Hematopoéticas/patologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células da Medula Óssea/patologia , Linhagem da Célula/genética , Proliferação de Células/genética , Desenvolvimento Embrionário/genética , Células-Tronco Hematopoéticas/metabolismo , Homeostase/genética , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout
10.
Chem Biol Interact ; 234: 126-34, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25617485

RESUMO

Hydroxysteroid (17beta) dehydrogenase 1 (HSD17B1) belongs to a family of short-chain-dehydrogenases. The enzyme utilizes NAD(P) and NAD(P)H as cofactors, and catalyzes the reversible reaction between estrone (E1) and estradiol (E2) in vitro. Of these steroids, E1 presents with lower estrogenic activity, but is converted to highly active E2 by HSD17B1. HSD17B1 is expressed especially in tissues with a high E2-producing capacity such as human ovaries and placenta, but also in several peripheral estrogen target tissues in humans, and inhibiting the enzyme activity is, thus, considered a promising approach to treat estrogen-dependent diseases. By analyzing transgenic mice universally expressing human HSD17B1 and carrying estrogen-response element (ERE)-driven luciferase reporter gene (Bi-transgenic ERELuc-HSD17B1TG mice) we showed a markedly higher reporter gene activity in various peripheral tissues of these mice as compared with ERELuc mice, indicating enhanced estrogen response generated by human HSD17B1 expression. An increased response after E1 administration was also evident in the Bi-TG mice, indicated by the increased uterus growth response and by the higher ERELuc reporter gene activity in the uterus. Moreover, a HSD17B1 inhibitor significantly reduced E1-induced increase in the uterus weight and uterine epithelial proliferation in the Bi-TG mice. Also the E1-induced ERELuc activity in the inhibitor-treated uterus was reduced by the HSD17B1 inhibitor in immature mice ex vivo, as well as in the liver of adult mice. The data, thus, demonstrate the potential use of the Bi-TG mice as a preclinical in vivo model for screening the efficacy of HSD17B1 inhibitors. As compared with the existing models, the Bi-TG mice present with luciferase activity as an additional, easily quantitative endpoint for the estrogen action.


Assuntos
Estradiol Desidrogenases/genética , Estrogênios/genética , Estrona/genética , Genes Reporter/genética , Transdução de Sinais/genética , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Feminino , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/efeitos dos fármacos , Útero/efeitos dos fármacos , Útero/enzimologia
11.
Chem Biol Interact ; 234: 309-19, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25437045

RESUMO

Estrogens have important roles in the pathogenesis of endometrial cancer. They can have carcinogenic effects through stimulation of cell proliferation or formation of DNA-damaging species. To characterize model cell lines of endometrial cancer, we determined the expression profiles of the estrogen receptors (ERs) ESR1, ESR2 and GPER, and 23 estrogen biosynthetic and metabolic genes, and investigated estrogen biosynthesis in the control HIEEC cell line and the Ishikawa and HEC-1A EC cell lines. HIEEC and Ishikawa expressed all ERs to different extents, while HEC-1A cells lacked expression of ESR1. Considering the estrogen biosynthetic and metabolic enzymes, these cells showed statistically significant different gene expression profiles for SULT2B1, HSD3B2, CYP19A1, AKR1C3, HSD17B1, HSD17B7, HSD17B12, CYP1B1, CYP3A5, COMT, SULT1A1, GSTP1 and NQO2. In these cells, E2 was formed from E1S and E1, while androstenedione was not converted to estrogens. HIEEC and Ishikawa had similar profiles of androstenedione and E1 metabolism, but hydrolysis of E1S to E1 was weaker in Ishikawa cells. HEC-1A cells were less efficient for activation of E1 into the potent E2, but metabolized androstenedione to other androgenic metabolites better than HIEEC and Ishikawa cells. This study reveals that HIEEC, Ishikawa, and HEC-1A cells can all form estrogens only via the sulfatase pathway. HIEEC, Ishikawa, and HEC-1A cells expressed all the major genes in the production of hydroxyestrogens and estrogen quinones, and in their conjugation. Significantly higher CYP1B1 mRNA levels in Ishikawa cells compared to HEC-1A cells, together with lack of UGT2B7 expression, indicate that Ishikawa cells can accumulate more toxic estrogen-3,4-quinones than HEC-1A cells, as also for HIEEC cells. This study provides further characterization of HIEEC, Ishikawa, and HEC-1A cells, and shows that they differ greatly in expression of the genes investigated and in their capacity for E2 formation, and thus they represent different in vitro models.


Assuntos
Androstenodiona/metabolismo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Estrogênios/biossíntese , Estrogênios/genética , Estrona/análogos & derivados , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , Membro C3 da Família 1 de alfa-Ceto Redutase , Androstenodiona/genética , Aromatase/genética , Aromatase/metabolismo , Arilsulfotransferase/genética , Arilsulfotransferase/metabolismo , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Linhagem Celular Tumoral , Estrogênios/metabolismo , Estrona/genética , Estrona/metabolismo , Feminino , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Humanos , Hidroxiprostaglandina Desidrogenases/genética , Hidroxiprostaglandina Desidrogenases/metabolismo , Progesterona Redutase/genética , Progesterona Redutase/metabolismo , Quinona Redutases/genética , Quinona Redutases/metabolismo , Quinonas/farmacologia , RNA Mensageiro/genética , Sulfatases/genética , Sulfatases/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , Transcriptoma/genética
12.
Hum Mol Genet ; 23(21): 5706-19, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24908670

RESUMO

Cardiac hypertrophy, an adaptive process that responds to increased wall stress, is characterized by the enlargement of cardiomyocytes and structural remodeling. It is stimulated by various growth signals, of which the mTORC1 pathway is a well-recognized source. Here, we show that loss of Flcn, a novel AMPK-mTOR interacting molecule, causes severe cardiac hypertrophy with deregulated energy homeostasis leading to dilated cardiomyopathy in mice. We found that mTORC1 activity was upregulated in Flcn-deficient hearts, and that rapamycin treatment significantly reduced heart mass and ameliorated cardiac dysfunction. Phospho-AMP-activated protein kinase (AMPK)-alpha (T172) was reduced in Flcn-deficient hearts and nonresponsive to various stimulations including metformin and AICAR (5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide). ATP levels were elevated and mitochondrial function was increased in Flcn-deficient hearts, suggesting that excess energy resulting from up-regulated mitochondrial metabolism under Flcn deficiency might attenuate AMPK activation. Expression of Ppargc1a, a central molecule for mitochondrial metabolism, was increased in Flcn-deficient hearts and indeed, inactivation of Ppargc1a in Flcn-deficient hearts significantly reduced heart mass and prolonged survival. Ppargc1a inactivation restored phospho-AMPK-alpha levels and suppressed mTORC1 activity in Flcn-deficient hearts, suggesting that up-regulated Ppargc1a confers increased mitochondrial metabolism and excess energy, leading to inactivation of AMPK and activation of mTORC1. Rapamycin treatment did not affect the heart size of Flcn/Ppargc1a doubly inactivated hearts, further supporting the idea that Ppargc1a is the critical element leading to deregulation of the AMPK-mTOR-axis and resulting in cardiac hypertrophy under Flcn deficiency. These data support an important role for Flcn in cardiac homeostasis in the murine model.


Assuntos
Cardiomegalia/genética , Cardiomegalia/metabolismo , Estrona/genética , Inativação Gênica , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Cardiomegalia/complicações , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Linhagem Celular , Modelos Animais de Doenças , Ativação Enzimática , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Transgênicos , Renovação Mitocondrial , Tamanho do Órgão/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação , Transdução de Sinais , Sirolimo/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Função Ventricular/efeitos dos fármacos
13.
PLoS Genet ; 10(4): e1004273, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24763318

RESUMO

Dysregulation of AMPK signaling has been implicated in many human diseases, which emphasizes the importance of characterizing AMPK regulators. The tumor suppressor FLCN, responsible for the Birt-Hogg Dubé renal neoplasia syndrome (BHD), is an AMPK-binding partner but the genetic and functional links between FLCN and AMPK have not been established. Strikingly, the majority of naturally occurring FLCN mutations predisposing to BHD are predicted to produce truncated proteins unable to bind AMPK, pointing to the critical role of this interaction in the tumor suppression mechanism. Here, we demonstrate that FLCN is an evolutionarily conserved negative regulator of AMPK. Using Caenorhabditis elegans and mammalian cells, we show that loss of FLCN results in constitutive activation of AMPK which induces autophagy, inhibits apoptosis, improves cellular bioenergetics, and confers resistance to energy-depleting stresses including oxidative stress, heat, anoxia, and serum deprivation. We further show that AMPK activation conferred by FLCN loss is independent of the cellular energy state suggesting that FLCN controls the AMPK energy sensing ability. Together, our data suggest that FLCN is an evolutionarily conserved regulator of AMPK signaling that may act as a tumor suppressor by negatively regulating AMPK function.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Autofagia/genética , Caenorhabditis elegans/genética , Estrona/genética , Estresse Oxidativo/genética , Animais , Apoptose/genética , Linhagem Celular , Genes Supressores de Tumor , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética
14.
PLoS One ; 8(7): e70030, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922894

RESUMO

Von Hippel-Lindau tumor suppressor (VHL) is lost in the majority of clear cell renal cell carcinomas (ccRCC). Folliculin (FLCN) is a tumor suppressor whose function is lost in Birt-Hogg-Dubé syndrome (BHD), a disorder characterized by renal cancer of multiple histological types including clear cell carcinoma, cutaneous fibrofolliculoma, and pneumothorax. Here we explored whether there is connection between VHL and FLCN in clear cell renal carcinoma cell lines and tumors. We demonstrate that VHL regulates expression of FLCN at the mRNA and protein levels in RCC cell lines, and that FLCN protein expression is decreased in human ccRCC tumors with VHL loss, as compared with matched normal kidney tissue. Knockdown of FLCN results in increased formation of tumors by RCC cells with wild-type VHL in orthotopic xenografts in nude mice, an indication that FLCN plays a role in the tumor-suppressing activity of VHL. Interestingly, FLCN, similarly to VHL, is necessary for the activity of LC3C-mediated autophagic program that we have previously characterized as contributing to the tumor suppressing activity of VHL. The results show the existence of functional crosstalk between two major tumor suppressors in renal cancer, VHL and FLCN, converging on regulation of autophagy.


Assuntos
Estrona/metabolismo , Neoplasias Renais/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Autofagia/genética , Autofagia/fisiologia , Western Blotting , Estrona/genética , Humanos , Técnicas In Vitro , Neoplasias Renais/genética , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor Von Hippel-Lindau/genética
15.
PLoS One ; 8(7): e66775, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874397

RESUMO

The Birt-Hogg-Dube disease occurs as a result of germline mutations in the human Folliculin gene (FLCN), and is characterized by clinical features including fibrofolliculomas, lung cysts and multifocal renal neoplasia. Clinical and genetic evidence suggest that FLCN acts as a tumor suppressor gene. The human cell line UOK257, derived from the renal cell carcinoma of a patient with a germline mutation in the FLCN gene, harbors a truncated version of the FLCN protein. Reconstitution of the wild type FLCN protein into UOK257 cells delays cell cycle progression, due to a slower progression through the late S and G2/M-phases. Similarly, Flcn (-/-) mouse embryonic fibroblasts progress more rapidly through the cell cycle than wild type controls (Flcn (flox/flox)). The reintroduction of tumor-associated FLCN mutants (FLCN ΔF157, FLCN 1-469 or FLCN K508R) fails to delay cell cycle progression in UOK257 cells. Additionally, FLCN phosphorylation (on Serines 62 and 73) fluctuates throughout the cell cycle and peaks during the G2/M phase in cells treated with nocodazole. In keeping with this observation, the reintroduction of a FLCN phosphomimetic mutant into the UOK257 cell line results in faster progression through the cell cycle compared to those expressing the wild type FLCN protein. These findings suggest that the tumor suppression function of FLCN may be linked to its impact on the cell cycle and that FLCN phosphorylation is important for this activity. Additionally, these observations describe a novel in vitro assay for testing the functional significance of FLCN mutations and/or genetic polymorphisms.


Assuntos
Divisão Celular/genética , Estrona/genética , Estrona/metabolismo , Fase G2/genética , Mutação em Linhagem Germinativa , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Camundongos , Fosforilação , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
16.
Cell ; 153(2): 335-47, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23582324

RESUMO

Factors that sustain self-renewal of mouse embryonic stem cells (ESCs) are well described. In contrast, the machinery regulating exit from pluripotency is ill defined. In a large-scale small interfering RNA (siRNA) screen, we found that knockdown of the tumor suppressors Folliculin (Flcn) and Tsc2 prevent ESC commitment. Tsc2 lies upstream of mammalian target of rapamycin (mTOR), whereas Flcn acts downstream and in parallel. Flcn with its interaction partners Fnip1 and Fnip2 drives differentiation by restricting nuclear localization and activity of the bHLH transcription factor Tfe3. Conversely, enforced nuclear Tfe3 enables ESCs to withstand differentiation conditions. Genome-wide location and functional analyses showed that Tfe3 directly integrates into the pluripotency circuitry through transcriptional regulation of Esrrb. These findings identify a cell-intrinsic rheostat for destabilizing ground-state pluripotency to allow lineage commitment. Congruently, stage-specific subcellular relocalization of Tfe3 suggests that Flcn-Fnip1/2 contributes to developmental progression of the pluripotent epiblast in vivo.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Redes Reguladoras de Genes , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Transporte/metabolismo , Células-Tronco Embrionárias/metabolismo , Estrona/genética , Estrona/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo
17.
J Comp Pathol ; 148(2-3): 248-51, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22871425

RESUMO

Canine nodular dermatofibrosis is a rare skin disease associated with renal cystadenoma or cystadenocarcinoma and uncommonly with uterine leiomyoma. It is generally seen in German shepherd dogs, but has been also reported in other breeds, and a relationship has been suggested with mutation of the gene encoding folliculin (FLCN), which is located on chromosome 5. A 10-year-old female golden retriever was presented because of numerous firm cutaneous nodules up to 4 cm in diameter over the entire body surface. Cytological and histopathological examinations confirmed generalized cutaneous nodular dermatofibrosis, but ultrasonography of both kidneys ruled out renal neoplasia. Ovariohysterectomy was performed because of prolonged oestrus periods. Microscopical examination of the excised tissues confirmed the absence of uterine neoplasia, but identified rete adenoma of the right ovary. Abdominal ultrasound performed repeatedly over a 5-year follow-up period did not identify any alteration in the renal parenchyma. Molecular studies excluded the presence of any mutation in the FLCN gene.


Assuntos
Doenças do Cão/diagnóstico , Doenças do Cão/patologia , Dermatopatias/veterinária , Animais , Doenças do Cão/genética , Cães , Estrona/genética , Feminino , Neoplasias Renais/patologia , Mutação/genética , Dermatopatias/diagnóstico , Dermatopatias/patologia
18.
Biochem Biophys Res Commun ; 430(2): 810-5, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23201403

RESUMO

When DNA is damaged by alkylating agents, apoptosis is induced to exclude cells carrying DNA lesions in order to prevent mutations and cancer. MAPO1, identified as a component involved in the induction of apoptosis, interacts with AMP-activated protein kinase (AMPK) and folliculin (FLCN). We herein report that MAPO1 is stabilized during the course of apoptosis, triggered by alkylation-induced O(6)-methylguanine in DNA. An immunoblotting analysis revealed that the amount of MAPO1 increased gradually after treatment with N-methyl-N-nitrosourea (MNU), although the level of mRNA for MAPO1 was unchanged. When cells were exposed to a proteasome inhibitor, MG132, the MAPO1 level significantly increased. On the other hand, application of a protein synthesis inhibitor, cycloheximide, caused a decrease in the MAPO1 content, implying that proteasome-mediated degradation is involved. In FLCN-knockdown cells, the MAPO1 level decreased, and no increases occurred even after MNU treatment. In contrast, stabilization of MAPO1 occurred in AMPKα-knockdown cells even without MNU treatment. While MAPO1 retains its ability to stably bind to FLCN, it dissociates gradually from AMPK after exposure to MNU. It seems that the proapoptotic function of MAPO1 may be regulated by AMPK and FLCN through stabilization of MAPO1 itself.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/fisiologia , Proteínas de Transporte/metabolismo , Estrona/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Alquilantes/farmacologia , Apoptose/efeitos dos fármacos , DNA/efeitos dos fármacos , Estrona/genética , Técnicas de Silenciamento de Genes , Guanina/análogos & derivados , Guanina/farmacologia , Células HeLa , Humanos , Leupeptinas/farmacologia , Estabilidade Proteica
19.
Hum Mol Genet ; 21(24): 5268-79, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22965878

RESUMO

Inherited mutations in the folliculin (FLCN) gene cause the Birt-Hogg-Dubé syndrome of familial hair follicle tumours (fibrofolliculomas), lung cysts and kidney tumours. Though folliculin has features of a tumour suppressor, the precise function of the FLCN gene product is not well characterized. We identified plakophilin-4 (p0071) as a potential novel folliculin interacting protein by yeast two-hybrid analysis. We confirmed the interaction of folliculin with p0071 by co-immunoprecipitation studies and, in view of previous studies linking p0071 to the regulation of rho-signalling, cytokinesis and intercellular junction formation, we investigated the effect of cell folliculin status on p0071-related functions. Folliculin and p0071 partially co-localized at cell junctions and in mitotic cells, at the midbody during cytokinesis. Previously, p0071 has been reported to regulate RhoA signalling during cytokinesis and we found that folliculin deficiency was associated with increased expression and activity of RhoA and evidence of disordered cytokinesis. Treatment of folliculin-deficient cells with a downstream inhibitor of RhoA signalling (the ROCK inhibitor Y-27632) reversed the increased cell migration phenotype observed in folliculin-deficient cells. Deficiency of folliculin and of p0071 resulted in tight junction defects and mislocalization of E-cadherin in mouse inner medullary collecting duct-3 renal tubular cells. These findings suggest that aspects of folliculin tumour suppressor function are linked to interaction with p0071 and the regulation of RhoA signalling.


Assuntos
Estrona/metabolismo , Placofilinas/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Movimento Celular/genética , Movimento Celular/fisiologia , Citocinese/genética , Citocinese/fisiologia , Estrona/genética , Humanos , Imunoprecipitação , Microscopia de Fluorescência , Placofilinas/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Técnicas do Sistema de Duplo-Híbrido , Proteína rhoA de Ligação ao GTP/genética
20.
J Pharmacol Exp Ther ; 342(2): 510-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22588260

RESUMO

The purpose of this study was to investigate the differential expression and function of organic anion-transporting polypeptides (OATPs) in breast epithelial and breast cancer cells. Estrone-3-sulfate (E3S), a substrate for 7 of 11 OATPs, is a predominant source of tumor estrogen in postmenopausal, hormone-dependent patients with breast cancer. Overexpression of certain OATPs (e.g., OATP1A2) reported in breast tumor tissues compared with surrounding normal tissues could contribute toward two to three times higher tumoral E3S concentration. Little is known about expression and function of other OATP family members among breast epithelial and breast cancer cells. We therefore compared gene and protein expression of seven OATPs (OATP1A2, OATP1B1, OATP1B3, OATP1C1, OATP2B1, OATP3A1, and OATP4A1) in immortalized breast epithelial cells (MCF10A), hormone-dependent breast cancer cells (MCF7), and hormone-independent breast cancer cells (MDA/LCC6-435, MDA-MB-231, and MDA-MB-468) by quantitative polymerase chain reaction and immunoblotting, respectively. Expression of solute carrier superfamily encoding for OATPs (SLCO) 1A2, 1B1, 1B3, 2B1, and 3A1 is exclusive, similar, or significantly higher in cancer cells compared with MCF10A cells. Protein expression of OATPs is found to be either exclusive or higher in cancer cells compared with MCF10A cells. Specificity of OATP-mediated E3S uptake is observed only in cancer cells, with the highest total uptake in MCF7 cells. Transport kinetics of E3S uptake demonstrates transport efficiency that is 10 times greater in the MCF7 cells than in the hormone-independent cells. These data suggest that OATPs could be a novel therapeutic target for hormone-dependent breast cancers, particularly in postmenopausal patients, where the major source of tumor estrogen is E3S.


Assuntos
Neoplasias da Mama/metabolismo , Células Epiteliais/metabolismo , Estrona/análogos & derivados , Transportadores de Ânions Orgânicos/metabolismo , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Cães , Estrogênios/metabolismo , Estrona/genética , Estrona/metabolismo , Feminino , Células HEK293 , Humanos , Transportadores de Ânions Orgânicos/genética , Pós-Menopausa/genética , Pós-Menopausa/metabolismo , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA