Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4126, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750051

RESUMO

Type I CRISPR-Cas systems employ multi-subunit effector Cascade and helicase-nuclease Cas3 to target and degrade foreign nucleic acids, representing the most abundant RNA-guided adaptive immune systems in prokaryotes. Their ability to cause long fragment deletions have led to increasing interests in eukaryotic genome editing. While the Cascade structures of all other six type I systems have been determined, the structure of the most evolutionarily conserved type I-B Cascade is still missing. Here, we present two cryo-EM structures of the Synechocystis sp. PCC 6714 (Syn) type I-B Cascade, revealing the molecular mechanisms that underlie RNA-directed Cascade assembly, target DNA recognition, and local conformational changes of the effector complex upon R-loop formation. Remarkably, a loop of Cas5 directly intercalated into the major groove of the PAM and facilitated PAM recognition. We further characterized the genome editing profiles of this I-B Cascade-Cas3 in human CD3+ T cells using mRNA-mediated delivery, which led to unidirectional 4.5 kb deletion in TRAC locus and achieved an editing efficiency up to 41.2%. Our study provides the structural basis for understanding target DNA recognition by type I-B Cascade and lays foundation for harnessing this system for long range genome editing in human T cells.


Assuntos
Sistemas CRISPR-Cas , Microscopia Crioeletrônica , Edição de Genes , Synechocystis , Edição de Genes/métodos , Humanos , Synechocystis/genética , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Linfócitos T/metabolismo , Estruturas R-Loop/genética
2.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717338

RESUMO

Senataxin is an evolutionarily conserved RNA-DNA helicase involved in DNA repair and transcription termination that is associated with human neurodegenerative disorders. Here, we investigated whether Senataxin loss affects protein homeostasis based on previous work showing R-loop-driven accumulation of DNA damage and protein aggregates in human cells. We find that Senataxin loss results in the accumulation of insoluble proteins, including many factors known to be prone to aggregation in neurodegenerative disorders. These aggregates are located primarily in the nucleolus and are promoted by upregulation of non-coding RNAs expressed from the intergenic spacer region of ribosomal DNA. We also map sites of R-loop accumulation in human cells lacking Senataxin and find higher RNA-DNA hybrids within the ribosomal DNA, peri-centromeric regions, and other intergenic sites but not at annotated protein-coding genes. These findings indicate that Senataxin loss affects the solubility of the proteome through the regulation of transcription-dependent lesions in the nucleus and the nucleolus.


Assuntos
DNA Helicases , Enzimas Multifuncionais , RNA Helicases , RNA não Traduzido , Humanos , Nucléolo Celular/metabolismo , Nucléolo Celular/genética , Dano ao DNA , DNA Helicases/metabolismo , DNA Helicases/genética , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Enzimas Multifuncionais/metabolismo , Enzimas Multifuncionais/genética , Agregados Proteicos , Proteostase , Estruturas R-Loop/genética , RNA Helicases/metabolismo , RNA Helicases/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
3.
Nucleic Acids Res ; 52(7): 3623-3635, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38281203

RESUMO

Certain DNA sequences can adopt a non-B form in the genome that interfere with DNA-templated processes, including transcription. Among the sequences that are intrinsically difficult to transcribe are those that tend to form R-loops, three-stranded nucleic acid structures formed by a DNA-RNA hybrid and the displaced ssDNA. Here we compared the transcription of an endogenous gene with and without an R-loop-forming sequence inserted. We show that, in agreement with previous in vivo and in vitro analyses, transcription elongation is delayed by R-loops in yeast. Importantly, we demonstrate that the Rat1 transcription terminator factor facilitates transcription throughout such structures by inducing premature termination of arrested RNAPIIs. We propose that RNase H degrades the RNA moiety of the hybrid, providing an entry site for Rat1. Thus, we have uncovered an unanticipated function of Rat1 as a transcription restoring factor opening up the possibility that it may also promote transcription through other genomic DNA structures intrinsically difficult to transcribe. If R-loop-mediated transcriptional stress is not relieved by Rat1, it will cause genomic instability, probably through the increase of transcription-replication conflicts, a deleterious situation that could lead to cancer.


Assuntos
Exorribonucleases , Estruturas R-Loop , Ribonuclease H , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Terminação da Transcrição Genética , Estruturas R-Loop/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ribonuclease H/metabolismo , Ribonuclease H/genética , Saccharomyces cerevisiae/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
4.
Nat Commun ; 15(1): 361, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191578

RESUMO

R-loops that accumulate at transcription sites pose a persistent threat to genome integrity. PSIP1 is a chromatin protein associated with transcriptional elongation complex, possesses histone chaperone activity, and is implicated in recruiting RNA processing and DNA repair factors to transcription sites. Here, we show that PSIP1 interacts with R-loops and other proteins involved in R-loop homeostasis, including PARP1. Genome-wide mapping of PSIP1, R-loops and γ-H2AX in PSIP1-depleted human and mouse cell lines revealed an accumulation of R-loops and DNA damage at gene promoters in the absence of PSIP1. R-loop accumulation causes local transcriptional arrest and transcription-replication conflict, leading to DNA damage. PSIP1 depletion increases 53BP1 foci and reduces RAD51 foci, suggesting altered DNA repair choice. Furthermore, PSIP1 depletion increases the sensitivity of cancer cells to PARP1 inhibitors and DNA-damaging agents that induce R-loop-induced DNA damage. These findings provide insights into the mechanism through which PSIP1 maintains genome integrity at the site of transcription.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Estruturas R-Loop , Humanos , Animais , Camundongos , Estruturas R-Loop/genética , Linhagem Celular , Dano ao DNA , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal
5.
Nat Commun ; 14(1): 7763, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012183

RESUMO

Genome topology is tied to R-loop formation and genome stability. However, the regulatory mechanism remains to be elucidated. By establishing a system to sense the connections between R-loops and genome topology states, we show that inhibiting DNA topoisomerase 1 (TOP1i) triggers the global increase of R-loops (called topoR-loops) and DNA damages, which are exacerbated in the DNA damage repair-compromised mutant atm. A suppressor screen identifies a mutation in POL2A, the catalytic subunit of DNA polymerase ε, rescuing the TOP1i-induced topoR-loop accumulation and genome instability in atm. Importantly we find that a highly conserved junction domain between the exonuclease and polymerase domains in POL2A is required for modulating topoR-loops near DNA replication origins and facilitating faithful DNA replication. Our results suggest that DNA replication acts in concert with genome topological states to fine-tune R-loops and thereby maintain genome integrity, revealing a likely conserved regulatory mechanism of TOP1i resistance in chemotherapy for ATM-deficient cancers.


Assuntos
Arabidopsis , Humanos , Arabidopsis/genética , Estruturas R-Loop/genética , DNA Polimerase II/genética , Replicação do DNA/genética , Mutação , Dano ao DNA , Instabilidade Genômica/genética
6.
Mol Cell ; 83(20): 3707-3719.e5, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37827159

RESUMO

R-loops, which consist of a DNA-RNA hybrid and a displaced DNA strand, are known to threaten genome integrity. To counteract this, different mechanisms suppress R-loop accumulation by either preventing the hybridization of RNA with the DNA template (RNA biogenesis factors), unwinding the hybrid (DNA-RNA helicases), or degrading the RNA moiety of the R-loop (type H ribonucleases [RNases H]). Thus far, RNases H are the only nucleases known to cleave DNA-RNA hybrids. Now, we show that the RNase DICER also resolves R-loops. Biochemical analysis reveals that DICER acts by specifically cleaving the RNA within R-loops. Importantly, a DICER RNase mutant impaired in R-loop processing causes a strong accumulation of R-loops in cells. Our results thus not only reveal a function of DICER as an R-loop resolvase independent of DROSHA but also provide evidence for the role of multi-functional RNA processing factors in the maintenance of genome integrity in higher eukaryotes.


Assuntos
Estruturas R-Loop , Ribonucleases , Humanos , Estruturas R-Loop/genética , Ribonucleases/genética , RNA/genética , DNA , Replicação do DNA , DNA Helicases/genética , Ribonuclease H/genética , Ribonuclease H/metabolismo , Instabilidade Genômica
7.
Nat Commun ; 14(1): 6114, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777505

RESUMO

The roles of R-loops and RNA modifications in homologous recombination (HR) and other DNA double-stranded break (DSB) repair pathways remain poorly understood. Here, we find that DNA damage-induced RNA methyl-5-cytosine (m5C) modification in R-loops plays a crucial role to regulate PARP1-mediated poly ADP-ribosylation (PARylation) and the choice of DSB repair pathways at sites of R-loops. Through bisulfite sequencing, we discover that the methyltransferase TRDMT1 preferentially generates m5C after DNA damage in R-loops across the genome. In the absence of m5C, R-loops activate PARP1-mediated PARylation both in vitro and in cells. Concurrently, m5C promotes transcription-coupled HR (TC-HR) while suppressing PARP1-dependent alternative non-homologous end joining (Alt-NHEJ), favoring TC-HR over Alt-NHEJ in transcribed regions as the preferred repair pathway. Importantly, simultaneous disruption of both TC-HR and Alt-NHEJ with TRDMT1 and PARP or Polymerase θ inhibitors prevents alternative DSB repair and exhibits synergistic cytotoxic effects on cancer cells, suggesting an effective strategy to exploit genomic instability in cancer therapy.


Assuntos
Citosina , Estruturas R-Loop , Estruturas R-Loop/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , RNA/genética , Reparo do DNA
8.
J Biol Chem ; 299(10): 105237, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690693

RESUMO

The protein FUS (FUSed in sarcoma) is a metazoan RNA-binding protein that influences RNA production by all three nuclear polymerases. FUS also binds nascent transcripts, RNA processing factors, RNA polymerases, and transcription machinery. Here, we explored the role of FUS binding interactions for activity during transcription. In vitro run-off transcription assays revealed FUS-enhanced RNA produced by a non-eukaryote polymerase. The activity also reduced the formation of R-loops between RNA products and their DNA template. Analysis by domain mutation and deletion indicated RNA-binding was required for activity. We interpret that FUS binds and sequesters nascent transcripts to prevent R-loops from forming with nearby DNA. DRIP-seq analysis showed that a knockdown of FUS increased R-loop enrichment near expressed genes. Prevention of R-loops by FUS binding to nascent transcripts has the potential to affect transcription by any RNA polymerase, highlighting the broad impact FUS can have on RNA metabolism in cells and disease.


Assuntos
DNA , Estruturas R-Loop , Proteína FUS de Ligação a RNA , RNA , DNA/metabolismo , Estruturas R-Loop/genética , RNA/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Ligação Proteica , Humanos , RNA Polimerases Dirigidas por DNA/metabolismo , Células HEK293
9.
Nat Commun ; 14(1): 5003, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591890

RESUMO

While the toxicity of PARP inhibitors to cells with defects in homologous recombination (HR) is well established, other synthetic lethal interactions with PARP1/PARP2 disruption are poorly defined. To inform on these mechanisms we conducted a genome-wide screen for genes that are synthetic lethal with PARP1/2 gene disruption and identified C16orf72/HAPSTR1/TAPR1 as a novel modulator of replication-associated R-loops. C16orf72 is critical to facilitate replication fork restart, suppress DNA damage and maintain genome stability in response to replication stress. Importantly, C16orf72 and PARP1/2 function in parallel pathways to suppress DNA:RNA hybrids that accumulate at stalled replication forks. Mechanistically, this is achieved through an interaction of C16orf72 with BRCA1 and the RNA/DNA helicase Senataxin to facilitate their recruitment to RNA:DNA hybrids and confer resistance to PARP inhibitors. Together, this identifies a C16orf72/Senataxin/BRCA1-dependent pathway to suppress replication-associated R-loop accumulation, maintain genome stability and confer resistance to PARP inhibitors.


Assuntos
Proteína BRCA1 , Inibidores de Poli(ADP-Ribose) Polimerases , Estruturas R-Loop , Dano ao DNA , DNA Helicases/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Estruturas R-Loop/genética , RNA , Proteína BRCA1/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
10.
Nature ; 621(7979): 610-619, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37557913

RESUMO

The proper regulation of transcription is essential for maintaining genome integrity and executing other downstream cellular functions1,2. Here we identify a stable association between the genome-stability regulator sensor of single-stranded DNA (SOSS)3 and the transcription regulator Integrator-PP2A (INTAC)4-6. Through SSB1-mediated recognition of single-stranded DNA, SOSS-INTAC stimulates promoter-proximal termination of transcription and attenuates R-loops associated with paused RNA polymerase II to prevent R-loop-induced genome instability. SOSS-INTAC-dependent attenuation of R-loops is enhanced by the ability of SSB1 to form liquid-like condensates. Deletion of NABP2 (encoding SSB1) or introduction of cancer-associated mutations into its intrinsically disordered region leads to a pervasive accumulation of R-loops, highlighting a genome surveillance function of SOSS-INTAC that enables timely termination of transcription at promoters to constrain R-loop accumulation and ensure genome stability.


Assuntos
Instabilidade Genômica , Regiões Promotoras Genéticas , Estruturas R-Loop , Terminação da Transcrição Genética , Humanos , DNA de Cadeia Simples/metabolismo , Instabilidade Genômica/genética , Mutação , Estruturas R-Loop/genética , RNA Polimerase II/metabolismo , Regiões Promotoras Genéticas/genética , Genoma Humano , Proteínas de Ligação a DNA/metabolismo
11.
PLoS Genet ; 19(5): e1010754, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141391

RESUMO

The prototype enzymes of the ubiquitous type IA topoisomerases (topos) family are Escherichia coli topo I (topA) and topo III (topB). Topo I shows preference for relaxation of negative supercoiling and topo III for decatenation. However, as they could act as backups for each other or even share functions, strains lacking both enzymes must be used to reveal the roles of type IA enzymes in genome maintenance. Recently, marker frequency analysis (MFA) of genomic DNA from topA topB null mutants revealed a major RNase HI-sensitive DNA peak bordered by Ter/Tus barriers, sites of replication fork fusion and termination in the chromosome terminus region (Ter). Here, flow cytometry for R-loop-dependent replication (RLDR), MFA, R-loop detection with S9.6 antibodies, and microscopy were used to further characterize the mechanism and consequences of over-replication in Ter. It is shown that the Ter peak is not due to the presence of a strong origin for RLDR in Ter region; instead RLDR, which is partly inhibited by the backtracking-resistant rpoB*35 mutation, appears to contribute indirectly to Ter over-replication. The data suggest that RLDR from multiple sites on the chromosome increases the number of replication forks trapped at Ter/Tus barriers which leads to RecA-dependent DNA amplification in Ter and to a chromosome segregation defect. Overproducing topo IV, the main cellular decatenase, does not inhibit RLDR or Ter over-replication but corrects the chromosome segregation defect. Furthermore, our data suggest that the inhibition of RLDR by topo I does not require its C-terminal-mediated interaction with RNA polymerase. Overall, our data reveal a pathway of genomic instability triggered by R-loops and its regulation by various topos activities at different steps.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Escherichia coli/metabolismo , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Replicação do DNA/genética , Estruturas R-Loop/genética , Instabilidade Genômica/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo
12.
Genes (Basel) ; 13(12)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36553448

RESUMO

R-loops are DNA-RNA hybrids that play multifunctional roles in gene regulation, including replication, transcription, transcription-replication collision, epigenetics, and preserving the integrity of the genome. The aberrant formation and accumulation of unscheduled R-loops can disrupt gene expression and damage DNA, thereby causing genome instability. Recent links between unscheduled R-loop accumulation and the abundance of proteins that modulate R-loop biogenesis have been associated with numerous human diseases, including various cancers. Although R-loops are not necessarily causative for all disease entities described to date, they can perpetuate and even exacerbate the initially disease-eliciting pathophysiology, making them structures of interest for molecular diagnostics. In this review, we discuss the (patho) physiological role of R-loops in health and disease, their surprising diagnostic potential, and state-of-the-art techniques for their detection.


Assuntos
Neoplasias , Estruturas R-Loop , Humanos , Estruturas R-Loop/genética , Neoplasias/diagnóstico , Neoplasias/genética , DNA/genética , Regulação da Expressão Gênica , RNA/genética
13.
Sci Adv ; 8(48): eabq2166, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36449625

RESUMO

R-loops affect transcription and genome stability. Dysregulation of R-loops is related to human diseases. Genome-wide R-loop mapping typically uses the S9.6 antibody or inactive ribonuclease H, both requiring a large number of cells with varying results observed depending on the approach applied. Here, we present strand-specific kethoxal-assisted single-stranded DNA (ssDNA) sequencing (spKAS-seq) to map R-loops by taking advantage of the presence of a ssDNA in the triplex structure. We show that spKAS-seq detects R-loops and their dynamics at coding sequences, enhancers, and other intergenic regions with as few as 50,000 cells. A joint analysis of R-loops and chromatin-bound RNA binding proteins (RBPs) suggested that R-loops can be RBP binding hotspots on the chromatin.


Assuntos
DNA de Cadeia Simples , Estruturas R-Loop , Humanos , Estruturas R-Loop/genética , DNA de Cadeia Simples/genética , Cromatina/genética , Anticorpos , Éxons
14.
Mol Cell ; 82(21): 3985-4000.e4, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36265486

RESUMO

Alternative lengthening of telomeres (ALT), a telomerase-independent process maintaining telomeres, is mediated by break-induced replication (BIR). RAD52 promotes ALT by facilitating D-loop formation, but ALT also occurs through a RAD52-independent BIR pathway. Here, we show that the telomere non-coding RNA TERRA forms dynamic telomeric R-loops and contributes to ALT activity in RAD52 knockout cells. TERRA forms R-loops in vitro and at telomeres in a RAD51AP1-dependent manner. The formation of R-loops by TERRA increases G-quadruplexes (G4s) at telomeres. G4 stabilization enhances ALT even when TERRA is depleted, suggesting that G4s act downstream of R-loops to promote BIR. In vitro, the telomeric R-loops assembled by TERRA and RAD51AP1 generate G4s, which persist after R-loop resolution and allow formation of telomeric D-loops without RAD52. Thus, the dynamic telomeric R-loops formed by TERRA and RAD51AP1 enable the RAD52-independent ALT pathway, and G4s orchestrate an R- to D-loop switch at telomeres to stimulate BIR.


Assuntos
RNA Longo não Codificante , Telomerase , Homeostase do Telômero , Telômero/genética , Telômero/metabolismo , Telomerase/genética , Telomerase/metabolismo , Estruturas R-Loop/genética , Reparo do DNA
15.
Methods Mol Biol ; 2528: 345-357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35704203

RESUMO

R-loops are three-stranded nucleic acid structures that consist of a DNA-RNA hybrid and a displaced single-stranded DNA. R-loops occur during transcription and participate in multiple physiological processes such as DNA repair, modulating DNA topology, and regulation of gene transcription. Dysfunctional R-loops associate with several human diseases such as neurological disorders and cancer. Therefore, accurately and comprehensively profiling native R-loops is crucial to understand their functions under both physiological and pathological conditions. Here, we describe a convenient native R-loop profiling method, R-loop CUT&Tag, which combines a DNA-RNA hybrid sensor (GST-His6-2 × HBD or S9.6 antibody) with a pA-Tn5-based cleavage under targets and tagmentation approach. R-loop CUT&Tag starts with 0.5 million cells and can sensitively detect native and specific R-loops at the promoter, gene body, and enhancer regions.


Assuntos
Estruturas R-Loop , RNA , DNA/genética , Reparo do DNA , DNA de Cadeia Simples/genética , Humanos , Estruturas R-Loop/genética , RNA/genética
16.
Nat Commun ; 13(1): 2961, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618715

RESUMO

RNase H2 is a specialized enzyme that degrades RNA in RNA/DNA hybrids and deficiency of this enzyme causes a severe neuroinflammatory disease, Aicardi Goutières syndrome (AGS). However, the molecular mechanism underlying AGS is still unclear. Here, we show that RNase H2 is associated with a subset of genes, in a transcription-dependent manner where it interacts with RNA Polymerase II. RNase H2 depletion impairs transcription leading to accumulation of R-loops, structures that comprise RNA/DNA hybrids and a displaced DNA strand, mainly associated with short and intronless genes. Importantly, accumulated R-loops are processed by XPG and XPF endonucleases which leads to DNA damage and activation of the immune response, features associated with AGS. Consequently, we uncover a key role for RNase H2 in the transcription of human genes by maintaining R-loop homeostasis. Our results provide insight into the mechanistic contribution of R-loops to AGS pathogenesis.


Assuntos
Estruturas R-Loop , Ribonucleases , Doenças Autoimunes do Sistema Nervoso , DNA/química , Quebras de DNA , Endorribonucleases/metabolismo , Humanos , Inflamação/genética , Malformações do Sistema Nervoso , Estruturas R-Loop/genética , RNA/química , Ribonuclease H/metabolismo , Ribonuclease Pancreático/metabolismo , Ribonucleases/metabolismo
17.
Mol Cell ; 82(12): 2267-2297, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35508167

RESUMO

Although transcription is an essential cellular process, it is paradoxically also a well-recognized cause of genomic instability. R-loops, non-B DNA structures formed when nascent RNA hybridizes to DNA to displace the non-template strand as single-stranded DNA (ssDNA), are partially responsible for this instability. Yet, recent work has begun to elucidate regulatory roles for R-loops in maintaining the genome. In this review, we discuss the cellular contexts in which R-loops contribute to genomic instability, particularly during DNA replication and double-strand break (DSB) repair. We also summarize the evidence that R-loops participate as an intermediate during repair and may influence pathway choice to preserve genomic integrity. Finally, we discuss the immunogenic potential of R-loops and highlight their links to disease should they become pathogenic.


Assuntos
Estruturas R-Loop , Transcrição Gênica , DNA/metabolismo , Reparo do DNA , Replicação do DNA , DNA de Cadeia Simples/genética , Instabilidade Genômica , Humanos , Estruturas R-Loop/genética
18.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163490

RESUMO

R-loop, a three-stranded RNA/DNA structure, plays important roles in modulating genome stability and gene expression, but the molecular mechanism of R-loops in cell reprogramming remains elusive. Here, we comprehensively profiled the genome-wide landscape of R-loops during cell reprogramming. The results showed that the R-loop formation on most different types of repetitive elements is stage-specific in cell reprogramming. We unveiled that the cumulative deposition of an R-loop subset is positively correlated with gene expression during reprogramming. More importantly, the dynamic turnover of this R-loop subset is accompanied by the activation of the pluripotent transcriptional regulatory network (TRN). Moreover, the large accumulation of the active histone marker H3K4me3 and the reduction in H3K27me3 were also observed in these R-loop regions. Finally, we characterized the dynamic network of R-loops that facilitates cell fate transitions in reprogramming. Together, our study provides a new clue for deciphering the interplay mechanism between R-loops and HMs to control cell reprogramming.


Assuntos
Reprogramação Celular , Código das Histonas , Estruturas R-Loop , Animais , Reprogramação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Genoma , Código das Histonas/genética , Camundongos , Células-Tronco Pluripotentes/metabolismo , Estruturas R-Loop/genética
19.
Nat Commun ; 13(1): 53, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013239

RESUMO

R-loops are three-stranded nucleic acid structures that accumulate on chromatin in neurological diseases and cancers and contribute to genome instability. Using a proximity-dependent labeling system, we identified distinct classes of proteins that regulate R-loops in vivo through different mechanisms. We show that ATRX suppresses R-loops by interacting with RNAs and preventing R-loop formation. Our proteomics screen also discovered an unexpected enrichment for proteins containing zinc fingers and homeodomains. One of the most consistently enriched proteins was activity-dependent neuroprotective protein (ADNP), which is frequently mutated in ASD and causal in ADNP syndrome. We find that ADNP resolves R-loops in vitro and that it is necessary to suppress R-loops in vivo at its genomic targets. Furthermore, deletion of the ADNP homeodomain severely diminishes R-loop resolution activity in vitro, results in R-loop accumulation at ADNP targets, and compromises neuronal differentiation. Notably, patient-derived human induced pluripotent stem cells that contain an ADNP syndrome-causing mutation exhibit R-loop and CTCF accumulation at ADNP targets. Our findings point to a specific role for ADNP-mediated R-loop resolution in physiological and pathological neuronal function and, more broadly, to a role for zinc finger and homeodomain proteins in R-loop regulation, with important implications for developmental disorders and cancers.


Assuntos
Proteômica , Estruturas R-Loop/fisiologia , RNA/metabolismo , Animais , Diferenciação Celular , Cromatina , Células-Tronco Embrionárias , Instabilidade Genômica , Células HEK293 , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Estruturas R-Loop/genética , Dedos de Zinco
20.
Nat Commun ; 12(1): 7314, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916496

RESUMO

Transcription poses a threat to genomic stability through the formation of R-loops that can obstruct progression of replication forks. R-loops are three-stranded nucleic acid structures formed by an RNA-DNA hybrid with a displaced non-template DNA strand. We developed RNA-DNA Proximity Proteomics to map the R-loop proximal proteome of human cells using quantitative mass spectrometry. We implicate different cellular proteins in R-loop regulation and identify a role of the tumor suppressor DDX41 in opposing R-loop and double strand DNA break accumulation in promoters. DDX41 is enriched in promoter regions in vivo, and can unwind RNA-DNA hybrids in vitro. R-loop accumulation upon loss of DDX41 is accompanied with replication stress, an increase in the formation of double strand DNA breaks and transcriptome changes associated with the inflammatory response. Germline loss-of-function mutations in DDX41 lead to predisposition to acute myeloid leukemia in adulthood. We propose that R-loop accumulation and genomic instability-associated inflammatory response may contribute to the development of familial AML with mutated DDX41.


Assuntos
RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Instabilidade Genômica , Proteômica , Estruturas R-Loop , Transcrição Gênica , Adulto , Linhagem Celular Tumoral , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Técnicas de Silenciamento de Genes , Genes Supressores de Tumor , Células HEK293 , Humanos , Leucemia Mieloide Aguda , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Regiões Promotoras Genéticas , Estruturas R-Loop/genética , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA