Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
Cell Chem Biol ; 31(4): 699-711.e6, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38181799

RESUMO

Drug-resistant Mycobacterium tuberculosis (Mtb) remains a major public health concern requiring complementary approaches to standard anti-tuberculous regimens. Anti-virulence molecules or compounds that enhance the activity of antimicrobial prodrugs are promising alternatives to conventional antibiotics. Exploiting host cell-based drug discovery, we identified an oxadiazole compound (S3) that blocks the ESX-1 secretion system, a major virulence factor of Mtb. S3-treated mycobacteria showed impaired intracellular growth and a reduced ability to lyse macrophages. RNA sequencing experiments of drug-exposed bacteria revealed strong upregulation of a distinct set of genes including ethA, encoding a monooxygenase activating the anti-tuberculous prodrug ethionamide. Accordingly, we found a strong ethionamide boosting effect in S3-treated Mtb. Extensive structure-activity relationship experiments revealed that anti-virulence and ethionamide-boosting activity can be uncoupled by chemical modification of the primary hit molecule. To conclude, this series of dual-active oxadiazole compounds targets Mtb via two distinct mechanisms of action.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Sistemas de Secreção Tipo VII , Humanos , Etionamida/farmacologia , Oxidiazóis/farmacologia , Proteínas de Bactérias/genética
2.
Antimicrob Agents Chemother ; 68(1): e0109623, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38038476

RESUMO

Results from clinical strains and knockouts of the H37Rv and CDC1551 laboratory strains demonstrated that ndh (Rv1854c) is not a resistance-conferring gene for isoniazid, ethionamide, delamanid, or pretomanid in Mycobacterium tuberculosis. This difference in the susceptibility to NAD-adduct-forming drugs compared with other mycobacteria may be driven by differences in the absolute intrabacterial NADH concentration.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Isoniazida/farmacologia , Etionamida/farmacologia , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Mutação , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
3.
Antimicrob Agents Chemother ; 67(4): e0135022, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36988462

RESUMO

Mycobacterium abscessus (Mabs) is an emerging nontuberculosis mycobacterial (NTM) pathogen responsible for a wide variety of respiratory and cutaneous infections that are difficult to treat with standard antibacterial therapy. Mabs has a high degree of both innate and acquired antibiotic resistance to most clinically relevant drugs, including standard anti-mycobacterial agents. Ethionamide (ETH), an inhibitor of mycolic acid biosynthesis, is currently utilized as a second-line agent for treating multidrug-resistant tuberculosis infections. Here, we show that ETH displays activity against clinical strains of Mabs in vitro at concentrations that are >100× lower than other mycolic acid targeting drugs. Using transposon mutagenesis followed by transposon sequencing (Tn-Seq) and whole-genome sequencing of spontaneous ETH-resistant mutants, we identified MAB_2648c as a genetic determinant of ETH sensitivity in Mabs. MAB_2648c encodes a MarR family transcriptional regulator of the TetR class of regulators. We show that MAB_2648c represses expression of MAB_2649 (mmpS5) and MAB_2650 (mmpL5). Further, we show that derepression of these genes in MAB_2648c mutants confers resistance to ETH, but not other antibiotics. To identify determinants of resistance that may be shared across antibiotics with distinct mechanisms of action, we also performed Tn-Seq during treatment with amikacin and clarithromycin, drugs currently used clinically to treat Mabs. We found very little overlap in genes that modulate the sensitivity of Mabs to all three antibiotics, suggesting a high degree of specificity for resistance mechanisms in this emerging pathogen.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Etionamida/farmacologia , Mycobacterium abscessus/genética , Ácidos Micólicos , Antibacterianos/farmacologia , Amicacina/farmacologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Testes de Sensibilidade Microbiana
4.
Commun Biol ; 6(1): 156, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750726

RESUMO

Global control of the tuberculosis epidemic is threatened by increasing prevalence of drug resistant M. tuberculosis isolates. Many genome-wide studies focus on SNP-associated drug resistance mechanisms, but drug resistance in 5-30% of M. tuberculosis isolates (varying with antibiotic) appears unrelated to reported SNPs, and alternative drug resistance mechanisms involving variation in gene/protein expression are not well-studied. Here, using an omics approach, we identify 388 genes with lineage-related differential expression and 68 candidate drug resistance-associated gene pairs/clusters in 11 M. tuberculosis isolates (variable lineage/drug resistance profiles). Structural, mutagenesis, biochemical and bioinformatic studies on Rv3094c from the Rv3093c-Rv3095 gene cluster, a gene cluster selected for further investigation as it contains a putative monooxygenase/repressor pair and is associated with ethionamide resistance, provide insights on its involvement in ethionamide sulfoxidation, the initial step in its activation. Analysis of the structure of Rv3094c and its complex with ethionamide and flavin mononucleotide, to the best of our knowledge the first structures of an enzyme involved in ethionamide activation, identify key residues in the flavin mononucleotide and ethionamide binding pockets of Rv3094c, and F221, a gate between flavin mononucleotide and ethionamide allowing their interaction to complete the sulfoxidation reaction. Our work broadens understanding of both lineage- and drug resistance-associated gene/protein expression perturbations and identifies another player in mycobacterial ethionamide metabolism.


Assuntos
Antituberculosos , Farmacorresistência Bacteriana Múltipla , Etionamida , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Etionamida/farmacologia , Mononucleotídeo de Flavina , Mycobacterium tuberculosis/genética , Farmacorresistência Bacteriana Múltipla/genética
5.
J Antimicrob Chemother ; 77(9): 2489-2499, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35678468

RESUMO

BACKGROUND: The WHO-endorsed shorter-course regimen for MDR-TB includes high-dose isoniazid. The pharmacokinetics of high-dose isoniazid within MDR-TB regimens has not been well described. OBJECTIVES: To characterize isoniazid pharmacokinetics at 5-15 mg/kg as monotherapy or as part of the MDR-TB treatment regimen. METHODS: We used non-linear mixed-effects modelling to evaluate the combined data from INHindsight, a 7 day early bactericidal activity study with isoniazid monotherapy, and PODRtb, an observational study of patients on MDR-TB treatment including terizidone, pyrazinamide, moxifloxacin, kanamycin, ethionamide and/or isoniazid. RESULTS: A total of 58 and 103 participants from the INHindsight and PODRtb studies, respectively, were included in the analysis. A two-compartment model with hepatic elimination best described the data. N-acetyltransferase 2 (NAT2) genotype caused multi-modal clearance, and saturable first-pass was observed beyond 10 mg/kg dosing. Saturable isoniazid kinetics predicted an increased exposure of approximately 50% beyond linearity at 20 mg/kg dosing. Participants treated with the MDR-TB regimen had a 65.6% lower AUC compared with participants on monotherapy. Ethionamide co-administration was associated with a 29% increase in isoniazid AUC. CONCLUSIONS: Markedly lower isoniazid exposures were observed in participants on combination MDR-TB treatment compared with monotherapy. Isoniazid displays saturable kinetics at doses >10 mg/kg. The safety implications of these phenomena remain unclear.


Assuntos
Arilamina N-Acetiltransferase , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Antituberculosos/efeitos adversos , Arilamina N-Acetiltransferase/farmacologia , Etionamida/farmacologia , Etionamida/uso terapêutico , Humanos , Isoniazida/farmacocinética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico
6.
Sci Transl Med ; 14(643): eaaz6280, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35507672

RESUMO

The sensitivity of Mycobacterium tuberculosis, the pathogen that causes tuberculosis (TB), to antibiotic prodrugs is dependent on the efficacy of the activation process that transforms the prodrugs into their active antibacterial moieties. Various oxidases of M. tuberculosis have the potential to activate the prodrug ethionamide. Here, we used medicinal chemistry coupled with a phenotypic assay to select the N-acylated 4-phenylpiperidine compound series. The lead compound, SMARt751, interacted with the transcriptional regulator VirS of M. tuberculosis, which regulates the mymA operon encoding a monooxygenase that activates ethionamide. SMARt751 boosted the efficacy of ethionamide in vitro and in mouse models of acute and chronic TB. SMARt751 also restored full efficacy of ethionamide in mice infected with M. tuberculosis strains carrying mutations in the ethA gene, which cause ethionamide resistance in the clinic. SMARt751 was shown to be safe in tests conducted in vitro and in vivo. A model extrapolating animal pharmacokinetic and pharmacodynamic parameters to humans predicted that as little as 25 mg of SMARt751 daily would allow a fourfold reduction in the dose of ethionamide administered while retaining the same efficacy and reducing side effects.


Assuntos
Mycobacterium tuberculosis , Pró-Fármacos , Tuberculose , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Etionamida/química , Etionamida/farmacologia , Etionamida/uso terapêutico , Camundongos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Tuberculose/tratamento farmacológico
7.
Cochrane Database Syst Rev ; 5: CD014841, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35583175

RESUMO

BACKGROUND: The World Health Organization (WHO) End TB Strategy stresses universal access to drug susceptibility testing (DST). DST determines whether Mycobacterium tuberculosis bacteria are susceptible or resistant to drugs. Xpert MTB/XDR is a rapid nucleic acid amplification test for detection of tuberculosis and drug resistance in one test suitable for use in peripheral and intermediate level laboratories. In specimens where tuberculosis is detected by Xpert MTB/XDR, Xpert MTB/XDR can also detect resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin. OBJECTIVES: To assess the diagnostic accuracy of Xpert MTB/XDR for pulmonary tuberculosis in people with presumptive pulmonary tuberculosis (having signs and symptoms suggestive of tuberculosis, including cough, fever, weight loss, night sweats). To assess the diagnostic accuracy of Xpert MTB/XDR for resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin in people with tuberculosis detected by Xpert MTB/XDR, irrespective of rifampicin resistance (whether or not rifampicin resistance status was known) and with known rifampicin resistance. SEARCH METHODS: We searched multiple databases to 23 September 2021. We limited searches to 2015 onwards as Xpert MTB/XDR was launched in 2020. SELECTION CRITERIA: Diagnostic accuracy studies using sputum in adults with presumptive or confirmed pulmonary tuberculosis. Reference standards were culture (pulmonary tuberculosis detection); phenotypic DST (pDST), genotypic DST (gDST),composite (pDST and gDST) (drug resistance detection). DATA COLLECTION AND ANALYSIS: Two review authors independently reviewed reports for eligibility and extracted data using a standardized form. For multicentre studies, we anticipated variability in the type and frequency of mutations associated with resistance to a given drug at the different centres and considered each centre as an independent study cohort for quality assessment and analysis. We assessed methodological quality with QUADAS-2, judging risk of bias separately for each target condition and reference standard. For pulmonary tuberculosis detection, owing to heterogeneity in participant characteristics and observed specificity estimates, we reported a range of sensitivity and specificity estimates and did not perform a meta-analysis. For drug resistance detection, we performed meta-analyses by reference standard using bivariate random-effects models. Using GRADE, we assessed certainty of evidence of Xpert MTB/XDR accuracy for detection of resistance to isoniazid and fluoroquinolones in people irrespective of rifampicin resistance and to ethionamide and amikacin in people with known rifampicin resistance, reflecting real-world situations. We used pDST, except for ethionamide resistance where we considered gDST a better reference standard. MAIN RESULTS: We included two multicentre studies from high multidrug-resistant/rifampicin-resistant tuberculosis burden countries, reporting on six independent study cohorts, involving 1228 participants for pulmonary tuberculosis detection and 1141 participants for drug resistance detection. The proportion of participants with rifampicin resistance in the two studies was 47.9% and 80.9%. For tuberculosis detection, we judged high risk of bias for patient selection owing to selective recruitment. For ethionamide resistance detection, we judged high risk of bias for the reference standard, both pDST and gDST, though we considered gDST a better reference standard. Pulmonary tuberculosis detection - Xpert MTB/XDR sensitivity range, 98.3% (96.1 to 99.5) to 98.9% (96.2 to 99.9) and specificity range, 22.5% (14.3 to 32.6) to 100.0% (86.3 to 100.0); median prevalence of pulmonary tuberculosis 91.3%, (interquartile range, 89.3% to 91.8%), (2 studies; 1 study reported on 2 cohorts, 1228 participants; very low-certainty evidence, sensitivity and specificity). Drug resistance detection People irrespective of rifampicin resistance - Isoniazid resistance: Xpert MTB/XDR summary sensitivity and specificity (95% confidence interval (CI)) were 94.2% (87.5 to 97.4) and 98.5% (92.6 to 99.7) against pDST, (6 cohorts, 1083 participants, moderate-certainty evidence, sensitivity and specificity). - Fluoroquinolone resistance: Xpert MTB/XDR summary sensitivity and specificity were 93.2% (88.1 to 96.2) and 98.0% (90.8 to 99.6) against pDST, (6 cohorts, 1021 participants; high-certainty evidence, sensitivity; moderate-certainty evidence, specificity). People with known rifampicin resistance - Ethionamide resistance: Xpert MTB/XDR summary sensitivity and specificity were 98.0% (74.2 to 99.9) and 99.7% (83.5 to 100.0) against gDST, (4 cohorts, 434 participants; very low-certainty evidence, sensitivity and specificity). - Amikacin resistance: Xpert MTB/XDR summary sensitivity and specificity were 86.1% (75.0 to 92.7) and 98.9% (93.0 to 99.8) against pDST, (4 cohorts, 490 participants; low-certainty evidence, sensitivity; high-certainty evidence, specificity). Of 1000 people with pulmonary tuberculosis, detected as tuberculosis by Xpert MTB/XDR: - where 50 have isoniazid resistance, 61 would have an Xpert MTB/XDR result indicating isoniazid resistance: of these, 14/61 (23%) would not have isoniazid resistance (FP); 939 (of 1000 people) would have a result indicating the absence of isoniazid resistance: of these, 3/939 (0%) would have isoniazid resistance (FN). - where 50 have fluoroquinolone resistance, 66 would have an Xpert MTB/XDR result indicating fluoroquinolone resistance: of these, 19/66 (29%) would not have fluoroquinolone resistance (FP); 934 would have a result indicating the absence of fluoroquinolone resistance: of these, 3/934 (0%) would have fluoroquinolone resistance (FN). - where 300 have ethionamide resistance, 296 would have an Xpert MTB/XDR result indicating ethionamide resistance: of these, 2/296 (1%) would not have ethionamide resistance (FP); 704 would have a result indicating the absence of ethionamide resistance: of these, 6/704 (1%) would have ethionamide resistance (FN). - where 135 have amikacin resistance, 126 would have an Xpert MTB/XDR result indicating amikacin resistance: of these, 10/126 (8%) would not have amikacin resistance (FP); 874 would have a result indicating the absence of amikacin resistance: of these, 19/874 (2%) would have amikacin resistance (FN). AUTHORS' CONCLUSIONS: Review findings suggest that, in people determined by Xpert MTB/XDR to be tuberculosis-positive, Xpert MTB/XDR provides accurate results for detection of isoniazid and fluoroquinolone resistance and can assist with selection of an optimised treatment regimen. Given that Xpert MTB/XDR targets a limited number of resistance variants in specific genes, the test may perform differently in different settings. Findings in this review should be interpreted with caution. Sensitivity for detection of ethionamide resistance was based only on Xpert MTB/XDR detection of mutations in the inhA promoter region, a known limitation. High risk of bias limits our confidence in Xpert MTB/XDR accuracy for pulmonary tuberculosis. Xpert MTB/XDR's impact will depend on its ability to detect tuberculosis (required for DST), prevalence of resistance to a given drug, health care infrastructure, and access to other tests.


Assuntos
Antibióticos Antituberculose , Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Adulto , Amicacina/farmacologia , Amicacina/uso terapêutico , Antibióticos Antituberculose/farmacologia , Antibióticos Antituberculose/uso terapêutico , Farmacorresistência Bacteriana/genética , Etionamida/farmacologia , Etionamida/uso terapêutico , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Humanos , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Rifampina/uso terapêutico , Sensibilidade e Especificidade , Tuberculose dos Linfonodos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico
8.
Comput Biol Chem ; 98: 107677, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35397466

RESUMO

EthA is an NADPH-specific flavin adenine dinucleotide (FAD) containing monooxygenase that activates the -second-line drug ethionamide (ETH). ETH gets converted to an active form after interaction with the EthA (monooxygenase) protein. Upon activation, ETH interacts with NAD+ to form an ETH-NAD adduct, which hampers the activity of InhA (Enoyl-[(acyl-carrier-protein) reductase (NADH)]. This, in turn, inhibits the cell wall synthesis, thus killing the Mycobacterium tuberculosis (Mtb). Mutations in the EthA gene can modulate ETH activation. The mutation at 202 position (Val202-Leu) of EthA protein has been reported frequently in ETH resistance. In this study, the effect of this mutation on the function of the EthA protein was examined through structural and functional analysis. Molecular docking of wild type and mutated EthA protein with ETH were compared to inspect the effect of mutation on molecular mechanism of drug resistant. Docking results corroborated that the lower docking score of the mutant protein, larger binding cavity, and lower affinity towards ETH resulted in a less compact and energetically less stable structure than the wild type protein. The computational outcome was authenticated by in-vitro experiments. The wild type and mutated genes were cloned and expressed in M. smegmatis, a surrogate host. Antibiotic susceptibility testing demonstrated that the mutant showed high growth and survival in the presence of the ETH drug. Overall, the results indicated that a mutation in the intergenic region of EthA protein could result in the altered conversion of ETH to the active form, resulting in differential ETH sensitivity for M. smegmatis carrying the wild type and mutant gene.


Assuntos
Etionamida , Mycobacterium tuberculosis , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Tolerância a Medicamentos , Etionamida/metabolismo , Etionamida/farmacologia , Oxigenases de Função Mista/genética , Simulação de Acoplamento Molecular , Mutação , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo
9.
Bioorg Med Chem Lett ; 60: 128604, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123004

RESUMO

To explore effective antituberculosis agents, a new class of imidazoles and benzimidazoles linked ethionamide analogs were designed and synthesized. The elemental analysis, 1H NMR, 13C NMR and mass spectral data were used to characterize all of the novel analogs. In vitro activity against Mycobacterium tuberculosis (Mtb) H37Rv was assessed for all of the target compounds. The hydroxy and nitrile moieties on the imidazole ring, as well as the hydroxy and methoxy groups on the benzimidazole ring connected to the ethionamide side chain, were shown to be advantageous. In our cell viability experiment against the Vero cell line, all of the compounds were non-cytotoxic even at 100 µM. To confirm the powerful analogs target identification, we investigated their in vitro inhibitory action on an M. tuberculosis InhA over-expressing (Mtb InhA-OE) strain, which yielded MICs nearly twice those of the Mtb H37Rv strain. Furthermore, the results of molecular docking confirmed the experimental findings. Additionally, the molecules were evaluated in silico for ADMET and drug similarity features. The experimental observation enables the newly generated ethionamide derivatives to be attractive candidates for the creation of newer and better anti-TB agents.


Assuntos
Antituberculosos/farmacologia , Benzimidazóis/farmacologia , Etionamida/farmacologia , Imidazóis/farmacologia , Inibinas/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/síntese química , Antituberculosos/química , Benzimidazóis/síntese química , Benzimidazóis/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Etionamida/síntese química , Etionamida/química , Humanos , Imidazóis/síntese química , Imidazóis/química , Inibinas/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
10.
Proteins ; 90(5): 1142-1151, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34981576

RESUMO

Tuberculosis is an ancient disease of mankind, and its causative bacterium is Mycobacterium tuberculosis. Isoniazid is one of the most effective first-line antituberculosis drugs. As prodrugs, it and its derivative ethionamide act on enoyl-acyl carrier protein reductase (InhA) after being oxidized in bacteria, and kill the bacteria by inhibiting the formation of M. tuberculosis cell walls. However, the S94A mutation of InhA causes M. tuberculosis to develop cross-resistance to isoniazid and ethionamide. This work is dedicated to studying the cross-resistance mechanism of isoniazid and ethionamide through theoretical calculations. First, thermodynamic integral simulations are used to accurately calculate the relative binding energy of two drugs in the mutant and wild-type system. Furthermore, through classic molecular dynamic simulations and molecular mechanics generalized-Born surface area calculation, some key residues are identified and the binding affinity of isoniazid and ethionamide reduced by 9-13 kcal/mol due to S94A mutation. The hydrogen bond between Ala94 and isoniazid (ethionamide) disappeared and the energy contribution of Ala94 decreased after the mutation. In addition, the dynamic network analysis indicated that the mutation of Ser94 also indirectly affected the conformation of key residues such as Met147, Thr196, and Leu97, resulting in a reduction in the energy contribution of these residues. Finally, the binding conformation of isoniazid and ethionamide has also undergone major changes. The obtained results could provide valuable information for the future molecular design to overcome the drug resistance.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Proteínas de Bactérias/química , Etionamida/metabolismo , Etionamida/farmacologia , Humanos , Isoniazida/metabolismo , Isoniazida/farmacologia , Simulação de Dinâmica Molecular , Mutação , Mycobacterium tuberculosis/metabolismo , Oxirredutases/metabolismo , Termodinâmica
11.
Lancet Infect Dis ; 22(2): 242-249, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34627496

RESUMO

BACKGROUND: The WHO End TB Strategy requires drug susceptibility testing and treatment of all people with tuberculosis, but second-line diagnostic testing with line-probe assays needs to be done in experienced laboratories with advanced infrastructure. Fewer than half of people with drug-resistant tuberculosis receive appropriate treatment. We assessed the diagnostic accuracy of the rapid Xpert MTB/XDR automated molecular assay (Cepheid, Sunnyvale, CA, USA) to overcome these limitations. METHODS: We did a prospective study involving individuals presenting with pulmonary tuberculosis symptoms and at least one risk factor for drug resistance in four sites in India (New Delhi and Mumbai), Moldova, and South Africa between July 31, 2019, and March 21, 2020. The Xpert MTB/XDR assay was used as a reflex test to detect resistance to isoniazid, fluoroquinolones, ethionamide, amikacin, kanamycin, and capreomycin in adults with positive results for Mycobacterium tuberculosis complex on Xpert MTB/RIF or Ultra (Cepheid). Diagnostic performance was assessed against a composite reference standard of phenotypic drug-susceptibility testing and whole-genome sequencing. This study is registered with ClinicalTrials.gov, number NCT03728725. FINDINGS: Of 710 participants, 611 (86%) had results from both Xpert MTB/XDR and the reference standard for any drug and were included in analysis. Sensitivity for Xpert MTB/XDR detection of resistance was 94% (460 of 488, 95% CI 92-96) for isoniazid, 94% (222 of 235, 90-96%) for fluoroquinolones, 54% (178 of 328, 50-61) for ethionamide, 73% (60 of 82, 62-81) for amikacin, 86% (181 of 210, 81-91) for kanamycin, and 61% (53 of 87, 49-70) for capreomycin. Specificity was 98-100% for all drugs. Performance was equivalent to that of line-probe assays. The non-determinate rate of Xpert MTB/XDR (ie, invalid M tuberculosis complex detection) was 2·96%. INTERPRETATION: The Xpert MTB/XDR assay showed high diagnostic accuracy and met WHO's minimum target product profile criteria for a next-generation drug susceptibility test. The assay has the potential to diagnose drug-resistant tuberculosis rapidly and accurately and enable optimum treatment. FUNDING: German Federal Ministry of Education and Research through KfW, Dutch Ministry of Foreign Affairs, and Australian Department of Foreign Affairs and Trade.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Adulto , Amicacina/farmacologia , Amicacina/uso terapêutico , Austrália , Capreomicina/farmacologia , Capreomicina/uso terapêutico , Estudos Transversais , Farmacorresistência Bacteriana , Etionamida/farmacologia , Etionamida/uso terapêutico , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Humanos , Isoniazida/uso terapêutico , Canamicina/farmacologia , Canamicina/uso terapêutico , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Estudos Prospectivos , Rifampina/uso terapêutico , Sensibilidade e Especificidade , Escarro/microbiologia , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
12.
Microbiol Spectr ; 9(1): e0001921, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34287057

RESUMO

Antibiotic resistance is a global challenge for tuberculosis control, and accelerating its diagnosis is critical for therapy decisions and controlling transmission. Genotype-based molecular diagnostics now play an increasing role in accelerating the detection of such antibiotic resistance, but their accuracy depends on the instructed detection of genetic variations. Genetic mobile elements such as IS6110 are established sources of genetic variation in Mycobacterium tuberculosis, but their implication in clinical antibiotic resistance has thus far been unclear. Here, we describe the discovery of an intragenic IS6110 insertion into Rv0678 that caused antibiotic resistance in an in vitro-selected M. tuberculosis isolate. The subsequent development of bioinformatics scripts allowed genome-wide analysis of intragenic IS6110 insertions causing gene disruptions in 6,426 clinical M. tuberculosis strains. This analysis identified 10,070 intragenic IS6110 insertions distributed among 333 different genes. Focusing on genes whose disruption leads to antibiotic resistance, 12 clinical isolates were identified with high confidence to be resistant to bedaquiline, clofazimine, pyrazinamide, ethionamide, and para-aminosalicylic acid because of an IS6110-mediated gene disruption event. A number of these IS6110-mediated resistant strains had identical genomic distributions of IS6110 elements and likely represent transmission events of a single resistant isolate. These data provide strong evidence that IS6110-mediated gene disruption is a clinically relevant mechanism of antibiotic resistance in M. tuberculosis that should be considered for molecular diagnostics. Concomitantly, this analysis provides a list of 333 IS6110-disrupted genes in clinical tuberculosis isolates that can be deemed nonessential for human infection. IMPORTANCE To help control the spread of drug-resistant tuberculosis and to guide treatment choices, it is important that rapid and accurate molecular diagnostic tools are used. Current molecular diagnostic tools detect the most common antibiotic-resistance-conferring mutations in the form of single nucleotide changes, small deletions, or insertions. Mobile genetic elements, named IS6110, are also known to move within the M. tuberculosis genome and cause significant genetic variations, although the role of this variation in clinical drug resistance remains unclear. In this work, we show that both in vitro and in data analyzed from 6,426 clinical M. tuberculosis strains, IS6110 elements are found that disrupt specific genes essential for the function of a number of pivotal antituberculosis drugs. By providing ample evidence of clinically relevant IS6110-mediated drug resistance, we believe that this shows that this form of genetic variation must not be overlooked in molecular diagnostics of drug resistance.


Assuntos
Antituberculosos/farmacologia , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Clofazimina/farmacologia , Biologia Computacional , Etionamida/farmacologia , Humanos , Mutação , Mycobacterium tuberculosis/isolamento & purificação
13.
PLoS One ; 15(12): e0244829, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33382836

RESUMO

Drug resistance (DR) remains a major challenge for tuberculosis (TB) control. Whole-genome sequencing (WGS) provides the highest genetic resolution for genotypic drug-susceptibility tests (DST). We compared DST profiles of 60 Mycobacterium tuberculosis isolates which were drug resistant according to agar proportion tests (one poly DR-TB, 34 multidrug-resistant TB and 25 extensively drug-resistant TB). We additionally performed minimum inhibitory concentration (MIC) tests using Sensititre MYCOTBI plates (MYCOTB) and a WGS-based DST. Agreement between WGS-based DST and MYCOTB was high for all drugs except ethambutol (65%) and ethionamide (62%). Isolates harboring the -15 c/t inhA promoter mutation had a significantly lower MIC for isoniazid than did isolates with the katG Ser315Thr mutation (p < 0.001). Similar patterns were seen for ethambutol (embB Gly406Asp vs. embB Met306Ile), streptomycin (gid Gly73Ala vs. rpsL Lys43Arg), moxifloxacin (gyrA Ala90Val vs. gyrA Asp94Gly) and rifabutin (rpoB Asp435Phe/Tyr/Val vs. rpoB Ser450Leu). For genotypic heteroresistance, isolates with lower proportion of mapped read tended to has lower MIC of anti-TB drugs than those with higher proportion. These results emphasize the high applicability of WGS for determination of DR-TB and the association of particular mutations with MIC levels.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana/genética , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Adulto , Antituberculosos/uso terapêutico , Etambutol/farmacologia , Etambutol/uso terapêutico , Etionamida/farmacologia , Etionamida/uso terapêutico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Feminino , Humanos , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Sequenciamento Completo do Genoma
14.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977637

RESUMO

Mesenchymal stem cells (MSCs) are a useful source for cell-based therapy of a variety of immune-mediated diseases, including neurodegenerative disorders. However, poor migration ability and survival rate of MSCs after brain transplantation hinder the therapeutic effects in the disease microenvironment. Therefore, we attempted to use a preconditioning strategy with pharmacological agents to improve the cell proliferation and migration of MSCs. In this study, we identified ethionamide via the screening of a drug library, which enhanced the proliferation of MSCs. Preconditioning with ethionamide promoted the proliferation of Wharton's jelly-derived MSCs (WJ-MSCs) by activating phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase/extracellular signal-regulated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)1/2 signaling. Preconditioning with ethionamide also enhanced the migration ability of MSCs by upregulating expression of genes associated with migration, such as C-X-C motif chemokine receptor 4 (CXCR4) and C-X-C motif chemokine ligand 12 (CXCL12). Furthermore, preconditioning with ethionamide stimulated the secretion of paracrine factors, including neurotrophic and growth factors in MSCs. Compared to naïve MSCs, ethionamide-preconditioned MSCs (ETH-MSCs) were found to survive longer in the brain after transplantation. These results suggested that enhancing the biological process of MSCs induced by ethionamide preconditioning presents itself as a promising strategy for enhancing the effectiveness of MSCs-based therapies.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Etionamida/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Xenoenxertos , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Camundongos
15.
Rev. argent. microbiol ; 52(1): 37-42, mar. 2020. graf
Artigo em Espanhol | LILACS | ID: biblio-1155683

RESUMO

Resumen Diversos estudios han evidenciado una resistencia cruzada entre isoniacida y etionamida, 2 de los fármacos utilizados en el tratamiento de la tuberculosis multirresistente.El objetivo del presente estudio fue determinar la resistencia cruzada entre ambos fármacos en aislados de Mycobacterium tuberculosis obtenidos en un hospital de Lima (Perú), conalta proporción de pacientes con tuberculosis. Se calculó la frecuencia de mutaciones asociadas con la resistencia a la isoniacida (INH) evaluando el gen katG y la región promotorainhA mediante la prueba molecular Genotype MTBDRplus v2.0. El método gold standard conocido como agar proporciones en placa (APP) permitió la identificación de resistencia a INH yetionamida. De 107 aislamientos resistentes a INH, 54 fueron multirresistentes (identificadosmediante la prueba Genotype MTBDRplus) y 49 (es decir, el 45,8% del total) también fueronresistentes a etionamida por el método APP. En los aislamientos resistentes a INH, se encontraron mutaciones en el gen katG en el 50,5% (54/107); en la región promotora inhA en el23,3% (25/107), y un 14,0% (15/107) presentaron mutaciones en ambos. Un 12,1% (13/107)fueron resistentes a INH por ausencia de banda wild type y banda de mutación. La mutaciónC-15T en la región promotora inhA presentó una fuerte asociación con la resistencia a etionamida y alcanzó el 73,4% (36/49) de los aislamientos resistentes a dicho fármaco. Los resultadosdel presente estudio sugieren que la identificación de mutaciones relacionadas con resistenciaa INH, sobre todo en la región promotora inhA, podría ser de gran utilidad para identificarla resistencia cruzada a etionamida y mejorar el tratamiento de las personas afectadas portuberculosis.© 2019 Asociacion Argentina de Microbiolog´ía. Publicado por Elsevier Espana, S.L.U. Este es unart´ículo Open Access bajo la licencia CC BY-NC-ND (https://creativecommons.org/licenses/by-nc-nd/4.0/).


Abstract Several studies have shown cross-resistance between isoniazid and ethionamide, 2of the drugs used in the treatment of multidrug-resistant tuberculosis. The objective of this study was to determine the cross-resistance between both drugs in Mycobacterium tuberculosis isolates from a hospital with high incidence of tuberculosis in Lima, Peru. The frequency of mutations to isoniazid in the katG gene and the inhA promoter region was identified by the Genotype MTBDRplus v2.0 molecular test. The gold standard Agar Proportion method (APM) allowed todetect resistance to isoniazid and ethionamide. Of 107 isoniazid-resistant isolates (54 multidrug-resistant isolates identified by the Genotype MTBDRplus test, 45.8% (49/107) were also resistant to ethionamide by the APM. Mutations were found in the katG gene in 50.5% (54/107), in the promoter region inhA in 23.3% (25/107) and 14.0% (15/107) that share both mutations in the resistant isolates to INH. The absence of the wild type and mutation bands indicated that 12.1% (13/107) of the isolates were resistant to INH. The mutation C-15T in the inhA promoter region showed a strong association with resistance to ethionamide in 73.4% (36/49) of the isolates analyzed. The results of the present study suggest that the identification of mutations related to resistance to isoniazid, especially in the inhA promoter region, could be very useful to identify cross-resistance to ethionamide and improve the treatment of individuals suffering from this disease.


Assuntos
Humanos , Tuberculose Resistente a Múltiplos Medicamentos/genética , Etionamida/farmacologia , Isoniazida/farmacologia , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Peru , Interações Medicamentosas , Genótipo , Mycobacterium tuberculosis/isolamento & purificação
16.
ACS Infect Dis ; 6(3): 366-378, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32011115

RESUMO

Killing more than one million people each year, tuberculosis remains the leading cause of death from a single infectious agent. The growing threat of multidrug-resistant strains of Mycobacterium tuberculosis stresses the need for alternative therapies. EthR, a mycobacterial transcriptional regulator, is involved in the control of the bioactivation of the second-line drug ethionamide. We have previously reported the discovery of in vitro nanomolar boosters of ethionamide through fragment-based approaches. In this study, we have further explored the structure-activity and structure-property relationships in this chemical family. By combining structure-based drug design and in vitro evaluation of the compounds, we identified a new oxadiazole compound as the first fragment-based ethionamide booster which proved to be active in vivo, in an acute model of tuberculosis infection.


Assuntos
Antituberculosos/farmacologia , Desenho de Fármacos , Etionamida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Oxidiazóis/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Animais , Antituberculosos/química , Cristalografia por Raios X , Descoberta de Drogas , Etionamida/química , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Oxidiazóis/química , Oxidiazóis/isolamento & purificação , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico
17.
Rev Argent Microbiol ; 52(1): 36-42, 2020.
Artigo em Espanhol | MEDLINE | ID: mdl-31255368

RESUMO

Several studies have shown cross-resistance between isoniazid and ethionamide, 2of the drugs used in the treatment of multidrug-resistant tuberculosis. The objective of this study was to determine the cross-resistance between both drugs in Mycobacterium tuberculosis isolates from a hospital with high incidence of tuberculosis in Lima, Peru. The frequency of mutations to isoniazid in the katG gene and the inhA promoter region was identified by the Genotype MTBDRplus v2.0 molecular test. The gold standard Agar Proportion method (APM) allowed todetect resistance to isoniazid and ethionamide. Of 107 isoniazid-resistant isolates (54 multidrug-resistant isolates identified by the Genotype MTBDRplus test, 45.8% (49/107) were also resistant to ethionamide by the APM. Mutations were found in the katG gene in 50.5% (54/107), in the promoter region inhA in 23.3% (25/107) and 14.0% (15/107) that share both mutations in the resistant isolates to INH. The absence of the wild type and mutation bands indicated that 12.1% (13/107) of the isolates were resistant to INH. The mutation C-15T in the inhA promoter region showed a strong association with resistance to ethionamide in 73.4% (36/49) of the isolates analyzed. The results of the present study suggest that the identification of mutations related to resistance to isoniazid, especially in the inhA promoter region, could be very useful to identify cross-resistance to ethionamide and improve the treatment of individuals suffering from this disease.


Assuntos
Antituberculosos/farmacologia , Etionamida/farmacologia , Isoniazida/farmacologia , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/genética , Interações Medicamentosas , Genótipo , Humanos , Mycobacterium tuberculosis/isolamento & purificação , Peru
18.
Artigo em Inglês | MEDLINE | ID: mdl-31139575

RESUMO

Little is known about the metabolic state of Mycobacterium tuberculosis (Mtb) inside the phagosome, a compartment inside phagocytes for killing pathogens and other foreign substances. We have developed a combined model of Mtb and human metabolism, sMtb-RECON and used this model to predict the metabolic state of Mtb during infection of the host. Amino acids are predicted to be used for energy production as well as biomass formation. Subsequently we assessed the effect of increasing dosages of drugs targeting metabolism on the metabolic state of the pathogen and predict resulting metabolic adaptations and flux rerouting through various pathways. In particular, the TCA cycle becomes more important upon drug application, as well as alanine, aspartate, glutamate, proline, arginine and porphyrin metabolism, while glycine, serine, and threonine metabolism become less important. We modeled the effect of 11 metabolically active drugs. Notably, the effect of eight could be recreated and two major profiles of the metabolic state were predicted. The profiles of the metabolic states of Mtb affected by the drugs BTZ043, cycloserine and its derivative terizidone, ethambutol, ethionamide, propionamide, and isoniazid were very similar, while TMC207 is predicted to have quite a different effect on metabolism as it inhibits ATP synthase and therefore indirectly interferes with a multitude of metabolic pathways.


Assuntos
Antituberculosos/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Modelos Biológicos , Mycobacterium tuberculosis/metabolismo , Adenosina Trifosfatases/efeitos dos fármacos , Amidas/farmacologia , Aminoácidos/metabolismo , Ciclosserina/farmacologia , Diarilquinolinas/farmacologia , Tolerância a Medicamentos/fisiologia , Etambutol/farmacologia , Etionamida/farmacologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Isoniazida/farmacologia , Isoxazóis/farmacologia , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium bovis/genética , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Oxazolidinonas/farmacologia , Compostos de Espiro/farmacologia , Tiazinas/farmacologia , Tuberculose/microbiologia
19.
mBio ; 10(2)2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015328

RESUMO

In Mycobacterium tuberculosis, recent genome-wide association studies have identified a novel constellation of mutations that are correlated with high-level drug resistances. Interpreting the functional importance of the new resistance-associated mutations has been complicated, however, by a lack of experimental validation and a poor understanding of the epistatic factors influencing these correlations, including strain background and programmatic variation in treatment regimens. Here we perform a genome-wide association analysis in a panel of Mycobacterium tuberculosis strains from China to identify variants correlated with resistance to the second-line prodrug ethionamide (ETH). Mutations in a bacterial monooxygenase, Rv0565c, are significantly associated with ETH resistance. We demonstrate that Rv0565c is a novel activator of ETH, independent of the two known activators, EthA and MymA. Clinically prevalent mutations abrogate Rv0565c function, and deletion of Rv0565c confers a consistent fitness benefit on M. tuberculosis in the presence of partially inhibitory doses of ETH. Interestingly, Rv0565c activity affects susceptibility to prothionamide (PTH), the ETH analog used in China, to a greater degree. Further, clinical isolates vary in their susceptibility to both ETH and PTH, to an extent that correlates with the total expression of ETH/PTH activators (EthA, MymA, and Rv0565c). These results suggest that clinical strains considered susceptible to ETH/PTH are not equally fit during treatment due to both Rv0565c mutations and more global variation in the expression of the prodrug activators.IMPORTANCE Phenotypic antibiotic susceptibility testing in Mycobacterium tuberculosis is slow and cumbersome. Rapid molecular diagnostics promise to help guide therapy, but such assays rely on complete knowledge of the molecular determinants of altered antibiotic susceptibility. Recent genomic studies of antibiotic-resistant M. tuberculosis have identified several candidate loci beyond those already known to contribute to antibiotic resistance; however, efforts to provide experimental validation have lagged. Our study identifies a gene (Rv0565c) that is associated with resistance to the second-line antibiotic ethionamide at a population level. We then use bacterial genetics to show that the variants found in clinical strains of M. tuberculosis improve bacterial survival after ethionamide exposure.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana , Etionamida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Protionamida/farmacologia , China , Estudo de Associação Genômica Ampla , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Oxirredutases/genética , Oxirredutases/metabolismo
20.
Eur J Med Chem ; 159: 35-46, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30268015

RESUMO

Ethionamide is a key antibiotic prodrug of the second-line chemotherapy regimen to treat tuberculosis. It targets the biosynthesis of mycolic acids thanks to a mycobacterial bioactivation carried out by the Baeyer-Villiger monooxygenase EthA, under the control of a transcriptional repressor called EthR. Recently, the drug-like molecule SMARt-420, which triggers a new transcriptional regulator called EthR2, allowed the derepression a cryptic alternative bioactivation pathway of ethionamide. In order to study the bioactivation of a collection of thioisonicotinamides through the two bioactivation pathways, we developed a new two-step chemical pathway that led to the efficient synthesis of eighteen ethionamide analogues. Measurements of the antimycobacterial activity of these derivatives, used alone and in combination with boosters BDM41906 or SMARt-420, suggest that the two different bioactivation pathways proceed via the same mechanism, which implies the formation of similar metabolites. In addition, an electrochemical study of the aliphatic thioisonicotinamide analogues was undertaken to see whether their oxidation potential correlates with their antitubercular activity measured in the presence or in the absence of the two boosters.


Assuntos
Antituberculosos/farmacologia , Etionamida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tioamidas/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Relação Dose-Resposta a Droga , Etionamida/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Tioamidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA