Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.238
Filtrar
1.
Nature ; 618(7967): 992-999, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316666

RESUMO

In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.


Assuntos
Archaea , Eucariotos , Filogenia , Archaea/classificação , Archaea/citologia , Archaea/genética , Eucariotos/classificação , Eucariotos/citologia , Eucariotos/genética , Células Eucarióticas/classificação , Células Eucarióticas/citologia , Células Procarióticas/classificação , Células Procarióticas/citologia , Conjuntos de Dados como Assunto , Duplicação Gênica , Evolução Molecular
2.
Nucleic Acids Res ; 51(12): 6443-6460, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37207340

RESUMO

The mitochondrial ribosome (mitoribosome) has diverged drastically from its evolutionary progenitor, the bacterial ribosome. Structural and compositional diversity is particularly striking in the phylum Euglenozoa, with an extraordinary protein gain in the mitoribosome of kinetoplastid protists. Here we report an even more complex mitoribosome in diplonemids, the sister-group of kinetoplastids. Affinity pulldown of mitoribosomal complexes from Diplonema papillatum, the diplonemid type species, demonstrates that they have a mass of > 5 MDa, contain as many as 130 integral proteins, and exhibit a protein-to-RNA ratio of 11:1. This unusual composition reflects unprecedented structural reduction of ribosomal RNAs, increased size of canonical mitoribosomal proteins, and accretion of three dozen lineage-specific components. In addition, we identified >50 candidate assembly factors, around half of which contribute to early mitoribosome maturation steps. Because little is known about early assembly stages even in model organisms, our investigation of the diplonemid mitoribosome illuminates this process. Together, our results provide a foundation for understanding how runaway evolutionary divergence shapes both biogenesis and function of a complex molecular machine.


Assuntos
Euglenozoários , Ribossomos Mitocondriais , Euglenozoários/classificação , Euglenozoários/citologia , Euglenozoários/genética , Eucariotos/citologia , Eucariotos/genética , Ribossomos Mitocondriais/metabolismo , Proteínas Ribossômicas/metabolismo , RNA Ribossômico/metabolismo
3.
Nature ; 613(7943): 332-339, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36544020

RESUMO

Asgard archaea are considered to be the closest known relatives of eukaryotes. Their genomes contain hundreds of eukaryotic signature proteins (ESPs), which inspired hypotheses on the evolution of the eukaryotic cell1-3. A role of ESPs in the formation of an elaborate cytoskeleton and complex cellular structures has been postulated4-6, but never visualized. Here we describe a highly enriched culture of 'Candidatus Lokiarchaeum ossiferum', a member of the Asgard phylum, which thrives anaerobically at 20 °C on organic carbon sources. It divides every 7-14 days, reaches cell densities of up to 5 × 107 cells per ml and has a significantly larger genome compared with the single previously cultivated Asgard strain7. ESPs represent 5% of its protein-coding genes, including four actin homologues. We imaged the enrichment culture using cryo-electron tomography, identifying 'Ca. L. ossiferum' cells on the basis of characteristic expansion segments of their ribosomes. Cells exhibited coccoid cell bodies and a network of branched protrusions with frequent constrictions. The cell envelope consists of a single membrane and complex surface structures. A long-range cytoskeleton extends throughout the cell bodies, protrusions and constrictions. The twisted double-stranded architecture of the filaments is consistent with F-actin. Immunostaining indicates that the filaments comprise Lokiactin-one of the most highly conserved ESPs in Asgard archaea. We propose that a complex actin-based cytoskeleton predated the emergence of the first eukaryotes and was a crucial feature in the evolution of the Asgard phylum by scaffolding elaborate cellular structures.


Assuntos
Citoesqueleto de Actina , Archaea , Eucariotos , Filogenia , Citoesqueleto de Actina/metabolismo , Actinas/classificação , Actinas/genética , Actinas/metabolismo , Archaea/classificação , Archaea/citologia , Archaea/genética , Archaea/crescimento & desenvolvimento , Eucariotos/classificação , Eucariotos/citologia , Eucariotos/metabolismo , Anaerobiose , Ribossomos/metabolismo , Estruturas da Membrana Celular/metabolismo , Proteínas Arqueais/classificação , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Evolução Molecular
4.
Nucleic Acids Res ; 51(2): 919-934, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36583339

RESUMO

Protein synthesis by the ribosome requires large-scale rearrangements of the 'small' subunit (SSU; ∼1 MDa), including inter- and intra-subunit rotational motions. However, with nearly 2000 structures of ribosomes and ribosomal subunits now publicly available, it is exceedingly difficult to design experiments based on analysis of all known rotation states. To overcome this, we developed an approach where the orientation of each SSU head and body is described in terms of three angular coordinates (rotation, tilt and tilt direction) and a single translation. By considering the entire RCSB PDB database, we describe 1208 fully-assembled ribosome complexes and 334 isolated small subunits, which span >50 species. This reveals aspects of subunit rearrangements that are universal, and others that are organism/domain-specific. For example, we show that tilt-like rearrangements of the SSU body (i.e. 'rolling') are pervasive in both prokaryotic and eukaryotic (cytosolic and mitochondrial) ribosomes. As another example, domain orientations associated with frameshifting in bacteria are similar to those found in eukaryotic ribosomes. Together, this study establishes a common foundation with which structural, simulation, single-molecule and biochemical efforts can more precisely interrogate the dynamics of this prototypical molecular machine.


Assuntos
Subunidades Ribossômicas , Ribossomos , Eucariotos/citologia , Biossíntese de Proteínas , Subunidades Ribossômicas/genética , Ribossomos/metabolismo , Rotação , Células Procarióticas , Fenômenos Biomecânicos
5.
Cell ; 185(25): 4756-4769.e13, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36493754

RESUMO

Although adult pluripotent stem cells (aPSCs) are found in many animal lineages, mechanisms for their formation during embryogenesis are unknown. Here, we leveraged Hofstenia miamia, a regenerative worm that possesses collectively pluripotent aPSCs called neoblasts and produces manipulable embryos. Lineage tracing and functional experiments revealed that one pair of blastomeres gives rise to cells that resemble neoblasts in distribution, behavior, and gene expression. In Hofstenia, aPSCs include transcriptionally distinct subpopulations that express markers associated with differentiated tissues; our data suggest that despite their heterogeneity, aPSCs are derived from one lineage, not from multiple tissue-specific lineages during development. Next, we combined single-cell transcriptome profiling across development with neoblast cell-lineage tracing and identified a molecular trajectory for neoblast formation that includes transcription factors Hes, FoxO, and Tbx. This identification of a cellular mechanism and molecular trajectory for aPSC formation opens the door for in vivo studies of aPSC regulation and evolution.


Assuntos
Células-Tronco Adultas , Eucariotos , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Linhagem da Célula , Células-Tronco Pluripotentes/fisiologia , Eucariotos/classificação , Eucariotos/citologia
6.
Proc Natl Acad Sci U S A ; 119(32): e2206216119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914133

RESUMO

The eukaryotic genome is partitioned into distinct topological domains separated by boundary elements. Emerging data support the concept that several well-established nuclear compartments are ribonucleoprotein condensates assembled through the physical process of phase separation. Here, based on our demonstration that chemical disruption of nuclear condensate assembly weakens the insulation properties of a specific subset (∼20%) of topologically associated domain (TAD) boundaries, we report that the disrupted boundaries are characterized by a high level of transcription and striking spatial clustering. These topological boundary regions tend to be spatially associated, even interchromosomally, segregate with nuclear speckles, and harbor a specific subset of "housekeeping" genes widely expressed in diverse cell types. These observations reveal a previously unappreciated mode of genome organization mediated by conserved boundary elements harboring highly and widely expressed transcription units and associated transcriptional condensates.


Assuntos
Compartimento Celular , Núcleo Celular , Eucariotos , Ribonucleoproteínas , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromossomos/genética , Eucariotos/citologia , Eucariotos/genética , Genes Essenciais , Genoma/genética , Salpicos Nucleares/genética , Ribonucleoproteínas/metabolismo , Transcrição Gênica
7.
Cells ; 10(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34831198

RESUMO

Trogocytosis is a mode of internalization of a part of a live cell by nibbling and is mechanistically distinct from phagocytosis, which implies internalization of a whole cell or a particle. Trogocytosis has been demonstrated in a broad range of cell types in multicellular organisms and is also known to be involved in a plethora of functions. In immune cells, trogocytosis is involved in the "cross-dressing" between antigen presenting cells and T cells, and is thus considered to mediate intercellular communication. On the other hand, trogocytosis has also been reported in a variety of unicellular organisms including the protistan (protozoan) parasite Entamoeba histolytica. E. histolytica ingests human T cell line by trogocytosis and acquires complement resistance and cross-dresses major histocompatibility complex (MHC) class I on the cell surface. Furthermore, trogocytosis and trogocytosis-like phenomena (nibbling of a live cell, not previously described as trogocytosis) have also been reported in other parasitic protists such as Trichomonas, Plasmodium, Toxoplasma, and free-living amoebae. Thus, trogocytosis is conserved in diverse eukaryotic supergroups as a means of intercellular communication. It is depicting the universality of trogocytosis among eukaryotes. In this review, we summarize our current understanding of trogocytosis in unicellular organisms, including the history of its discovery, taxonomical distribution, roles, and molecular mechanisms.


Assuntos
Eucariotos/citologia , Trogocitose/fisiologia , Animais , Entamoeba histolytica/citologia , Modelos Biológicos , Parasitos/citologia , Fagossomos/metabolismo
8.
Genes (Basel) ; 12(10)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34680926

RESUMO

The emergence of multicellular organisms was, perhaps, the most spectacular of the major transitions during the evolutionary history of life on this planet [...].


Assuntos
Evolução Molecular , Eucariotos/classificação , Eucariotos/citologia , Eucariotos/genética , Filogenia
9.
Eur J Protistol ; 80: 125808, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34280731

RESUMO

Percolomonads are common freshwater, marine and hypersaline tetraflagellated organisms. Current phylogenetic analyses of eukaryotes comprise only two species of this underinvestigated family. Here, we studied the morphology, salinity tolerance and 18S rDNA gene-based phylogeny of seven percolomonad cultures. We describe three new genera and five novel species of Percolomonadida based on phylogenetic distances and morphological characteristics: Barbelia atlantica, B. abyssalis, Lula jakobsenorum, Nakurumonas serrata and Percolomonas doradorae. The new species show features typical for percolomonads, one long flagellum for skidding, three shorter flagella of equal length and a ventral feeding groove. The new species comprise organisms living in marine and athalassic hypersaline waters with salinity ranging from 10 to 150 PSU. Based on these novel taxa, the taxonomy and phylogeny of Percolatea was extended and further resolved.


Assuntos
Biodiversidade , Eucariotos/classificação , Filogenia , Água do Mar/parasitologia , Organismos Aquáticos/classificação , Organismos Aquáticos/citologia , Organismos Aquáticos/genética , Eucariotos/citologia , Eucariotos/genética , RNA Ribossômico 18S/genética , Especificidade da Espécie
10.
Artigo em Inglês | MEDLINE | ID: mdl-34196605

RESUMO

A new family, genus and species of centrohelid heliozoans, Clypifer cribrifer gen. nov., sp. nov. (Clypiferidae fam. nov.), from the Gulf of Aqaba (Israel) was studied with light and electron microscopy and SSU rRNA gene sequencing. Clypifer cribrifer has only one type of scales, partially running up the sides of the axopodia. Plate scales [0.8-2.3 (av. 1.5)×0.6-1.8 (av. 1.2) µm] are flat, elliptical or circular, fenestrated with holes of irregular shape and have a marginal rim and a very short axial rib. The cell diameter is 3.9-9.6 (av. 6.0) µm. Molecular phylogenetic analysis robustly places C. cribrifer in the C4 clade for which the new family Clypiferidae is proposed here. This position is confirmed with the short sequences in the panacanthocystid increased regions. The morphology of the new genus has similarities to the genus Raphidocystis. The probability that another Clypifer species was described under a different name in the centrohelid literature is discussed. Clypiferidae represent the second lineage of Pterocystida, which are characterized by the presence of only tangentially oriented plate scales of one type. Possible ways of evolution of the centrohelid siliceous coverings are also discussed.


Assuntos
Eucariotos/classificação , Eucariotos/citologia , Israel , RNA Ribossômico/genética , Análise de Sequência de DNA
11.
Exp Cell Res ; 405(2): 112684, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34129847

RESUMO

Cytidine triphosphate synthase (CTPS) catalyzes the rate-limiting step of de novo CTP biosynthesis. An intracellular structure of CTPS, the cytoophidium, has been found in many organisms including prokaryotes and eukaryotes. Formation of the cytoophidium has been suggested to regulate the activity and stability of CTPS and may participate in certain physiological events. Herein, we demonstrate that both CTPS1a and CTPS1b in zebrafish are able to form the cytoophidium in cultured cells. A point mutation, H355A, abrogates cytoophidium assembly of zebrafish CTPS1a and CTPS1b. In addition, we show the presence of CTPS cytoophidia in multiple tissues of larval and adult fish under normal conditions, while treatment with a CTPS inhibitor 6-diazo-5-oxo-l-norleucine (DON) can induce more cytoophidia in some tissues. Our findings reveal that forming the CTPS cytoophidium is a natural phenomenon of zebrafish and provide valuable information for future research on the physiological importance of this intracellular structure in vertebrates.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Citidina Trifosfato/metabolismo , Eucariotos/citologia , Células Procarióticas/citologia , Animais , Linhagem Celular , Óxido Nítrico Sintase/metabolismo , Peixe-Zebra
12.
Curr Genet ; 67(6): 871-876, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34114051

RESUMO

Multicellularity has evolved numerous times across the tree of life. One of the most fundamental distinctions among multicellular organisms is their developmental mode: whether they stay together during growth and develop clonally, or form a group through the aggregation of free-living cells. The five eukaryotic lineages to independently evolve complex multicellularity (animals, plants, red algae, brown algae, and fungi) all develop clonally. This fact has largely been explained through social evolutionary theory's lens of cooperation and conflict, where cheating within non-clonal groups has the potential to undermine multicellular adaptation. Multicellular organisms that form groups via aggregation could mitigate the costs of cheating by evolving kin recognition systems that prevent the formation of chimeric groups. However, recent work suggests that selection for the ability to aggregate quickly may constrain the evolution of highly specific kin recognition, sowing the seeds for persistent evolutionary conflict. Importantly, other features of aggregative multicellular life cycles may independently act to constrain the evolution of complex multicellularity. All known aggregative multicellular organisms are facultatively multicellular (as opposed to obligately multicellular), allowing unicellular-level adaptation to environmental selection. Because they primarily exist in a unicellular state, it may be difficult for aggregative multicellular organisms to evolve multicellular traits that carry pleiotropic cell-level fitness costs. Thus, even in the absence of social conflict, aggregative multicellular organisms may have limited potential for the evolution of complex multicellularity.


Assuntos
Evolução Biológica , Eucariotos/fisiologia , Evolução Clonal , Eucariotos/citologia
13.
FEBS J ; 288(24): 7002-7024, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33780127

RESUMO

The large abundance of small open reading frames (smORFs) in prokaryotic and eukaryotic genomes and the plethora of smORF-encoded small proteins became only apparent with the constant advancements in bioinformatic, genomic, proteomic, and biochemical tools. Small proteins are typically defined as proteins of < 50 amino acids in prokaryotes and of less than 100 amino acids in eukaryotes, and their importance for cell physiology and cellular adaptation is only beginning to emerge. In contrast to antimicrobial peptides, which are secreted by prokaryotic and eukaryotic cells for combatting pathogens and competitors, small proteins act within the producing cell mainly by stabilizing protein assemblies and by modifying the activity of larger proteins. Production of small proteins is frequently linked to stress conditions or environmental changes, and therefore, cells seem to use small proteins as intracellular modifiers for adjusting cell metabolism to different intra- and extracellular cues. However, the size of small proteins imposes a major challenge for the cellular machinery required for protein folding and intracellular trafficking and recent data indicate that small proteins can engage distinct trafficking pathways. In the current review, we describe the diversity of small proteins in prokaryotes and eukaryotes, highlight distinct and common features, and illustrate how they are handled by the protein trafficking machineries in prokaryotic and eukaryotic cells. Finally, we also discuss future topics of research on this fascinating but largely unexplored group of proteins.


Assuntos
Peptídeos Antimicrobianos/metabolismo , Eucariotos/metabolismo , Eucariotos/citologia
14.
Curr Top Dev Biol ; 141: 399-427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33602495

RESUMO

Animals have evolved within the framework of the microbes and are constantly exposed to diverse microbiota. This dominance of the microbial world is forcing all fields of biology to question some of their most basic premises, with developmental biology being no exception. While animals under laboratory conditions can develop and live without microbes, they are far from normal, and would not survive under natural conditions, where their fitness would be strongly compromised. Since much of the undescribed biodiversity on Earth is microbial, any consideration of animal development in the absence of the recognition of microbes will be incomplete. Here, we show that animal development may never have been autonomous, rather it requires transient or persistent interactions with the microbial world. We propose that to formulate a comprehensive understanding of embryogenesis and post-embryonic development, we must recognize that symbiotic microbes provide important developmental signals and contribute in significant ways to phenotype production. This offers limitless opportunities for the field of developmental biology to expand.


Assuntos
Evolução Biológica , Eucariotos/citologia , Gastrulação/fisiologia , Simbiose , Animais , Bactérias/citologia , Biofilmes , Feminino , Microbioma Gastrointestinal , Sistema Imunitário/microbiologia , Masculino , Ruminantes/microbiologia
15.
Trends Parasitol ; 37(5): 414-429, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33640269

RESUMO

Protozoan parasites acquire essential ions, nutrients, and other solutes from their insect and vertebrate hosts by transmembrane uptake. For intracellular stages, these solutes must cross additional membranous barriers. At each step, ion channels and transporters mediate not only this uptake but also the removal of waste products. These transport proteins are best isolated and studied with patch-clamp, but these methods remain accessible to only a few parasitologists due to specialized instrumentation and the required training in both theory and practice. Here, we provide an overview of patch-clamp, describing the advantages and limitations of the technology and highlighting issues that may lead to incorrect conclusions. We aim to help non-experts understand and critically assess patch-clamp data in basic research studies.


Assuntos
Parasitos , Parasitologia , Técnicas de Patch-Clamp , Animais , Transporte Biológico , Membrana Celular/metabolismo , Eucariotos/citologia , Eucariotos/fisiologia , Parasitos/citologia , Parasitos/fisiologia , Parasitologia/instrumentação , Parasitologia/métodos , Técnicas de Patch-Clamp/instrumentação , Técnicas de Patch-Clamp/normas
16.
Biosystems ; 203: 104375, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33549602

RESUMO

Symbiosis is a major evolutionary force, especially at the cellular level. Here we discuss several older and new discoveries suggesting that besides mitochondria and plastids, eukaryotic nuclei also have symbiotic origins. We propose an archaea-archaea scenario for the evolutionary origin of the eukaryotic cells. We suggest that two ancient archaea-like cells, one based on the actin cytoskeleton and another one based on the tubulin-centrin cytoskeleton, merged together to form the first nucleated eukaryotic cell. This archaeal endosymbiotic origin of eukaryotic cells and their nuclei explains several features of eukaryotic cells which are incompatible with the currently preferred autogenous scenarios of eukaryogenesis.


Assuntos
Archaea/citologia , Núcleo Celular , Eucariotos/citologia , Mitocôndrias , Plastídeos , Simbiose , Citoesqueleto de Actina , Evolução Biológica , Biologia Celular , Citoesqueleto , Combinação Trimetoprima e Sulfametoxazol , Tubulina (Proteína)
17.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33388743

RESUMO

MOTIVATION: mRNA location corresponds to the location of protein translation and contributes to precise spatial and temporal management of the protein function. However, current assignment of subcellular localization of eukaryotic mRNA reveals important limitations: (1) turning multiple classifications into multiple dichotomies makes the training process tedious; (2) the majority of the models trained by classical algorithm are based on the extraction of single sequence information; (3) the existing state-of-the-art models have not reached an ideal level in terms of prediction and generalization ability. To achieve better assignment of subcellular localization of eukaryotic mRNA, a better and more comprehensive model must be developed. RESULTS: In this paper, SubLocEP is proposed as a two-layer integrated prediction model for accurate prediction of the location of sequence samples. Unlike the existing models based on limited features, SubLocEP comprehensively considers additional feature attributes and is combined with LightGBM to generated single feature classifiers. The initial integration model (single-layer model) is generated according to the categories of a feature. Subsequently, two single-layer integration models are weighted (sequence-based: physicochemical properties = 3:2) to produce the final two-layer model. The performance of SubLocEP on independent datasets is sufficient to indicate that SubLocEP is an accurate and stable prediction model with strong generalization ability. Additionally, an online tool has been developed that contains experimental data and can maximize the user convenience for estimation of subcellular localization of eukaryotic mRNA.


Assuntos
Modelos Genéticos , Proteínas/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Máquina de Vetores de Suporte , Bases de Dados Genéticas , Eucariotos/citologia , Eucariotos/genética , Eucariotos/metabolismo , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Humanos , Proteínas/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo
18.
Biosystems ; 199: 104302, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33227379

RESUMO

We analyze evolutionary views of Boris Kozo-Polyansky (1890-1957) who was the first who formulated the symbiotic theory of evolution as a concept in his book, Symbiogenesis: A New Principle of Evolution (1924). Later, starting from 1967, Lynn Margulis independently formulated and further developed the concept of symbiogenesis. Although the ideas on the symbiotic origin of chloroplasts and mitochondria appeared earlier, the book of Kozo-Polyansky presented symbiogenesis as the main factor of complexification in the course of evolution, not only in relation to the origin of eukaryotic cell. Kozo-Polyansky incorporated the ideas of symbiogenesis into a broader paradigm that anticipated the important concepts of the modern Extended Evolutionary Synthesis such as the idea of net of life, the evolutionary role of apoptosis, the ideas of punctuated equilibrium, and the concept of metasystem transition.


Assuntos
Evolução Biológica , Eucariotos/metabolismo , Células Eucarióticas/metabolismo , Simbiose , Animais , Cloroplastos/metabolismo , Eucariotos/citologia , Células Eucarióticas/citologia , Humanos , Mitocôndrias/metabolismo , Organelas/metabolismo , Plantas/metabolismo
19.
J Cell Physiol ; 236(5): 3244-3256, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33135190

RESUMO

Lung cancer is the leading cause of cancer death worldwide. Although diagnostic methods and targeted drugs have been rapidly developed in recent years, the underlying molecular mechanisms in the pathogenesis of lung cancer remain enigmatic. The N6-methyladenosine (m6 A) modification is the most common modification of messenger RNA in eukaryotes and plays critical roles in many diseases, especially cancers. Ectopic m6 A modification is associated with human carcinogenesis, including lung cancer. The m6 A modification is mediated by methyltransferases (writers) and demethylases (erasers) and indirectly affects biological processes through the recruitment of specific reader proteins (readers). Many studies have shown that m6 A writers, erasers, and readers serve as specific and sensitive biomarkers for lung cancer diagnosis, prognosis, and therapy. This review summarizes recent studies on the biological functions of the m6 A modification in lung cancer and discusses the potential application of m6 A regulators in lung cancer diagnosis and therapeutics.


Assuntos
Carcinogênese/genética , Neoplasias Pulmonares/metabolismo , Metiltransferases/metabolismo , RNA Mensageiro/genética , Progressão da Doença , Eucariotos/citologia , Humanos , Metiltransferases/genética
20.
Biosystems ; 199: 104316, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33285250

RESUMO

This contribution details the complex history of the early work by Boris Kozo-Polyansky (1924) that became available in English translation 86 years after it was published in Russian. The great American naturalist Lynn Margulis-whose serial endosymbiosis theory was presciently predated by Kozo-Polyansky by four decades-was instrumental in organizing this resurrection and 'horizontal transfer' of knowledge, forgotten by that time even in Russia.


Assuntos
Evolução Biológica , Eucariotos/metabolismo , Células Eucarióticas/metabolismo , Simbiose , Animais , Eucariotos/citologia , Células Eucarióticas/citologia , Humanos , Organelas/metabolismo , Federação Russa , Tradução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA