Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
1.
Genome Biol ; 25(1): 122, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741214

RESUMO

BACKGROUND: Pluripotent states of embryonic stem cells (ESCs) with distinct transcriptional profiles affect ESC differentiative capacity and therapeutic potential. Although single-cell RNA sequencing has revealed additional subpopulations and specific features of naive and primed human pluripotent stem cells (hPSCs), the underlying mechanisms that regulate their specific transcription and that control their pluripotent states remain elusive. RESULTS: By single-cell analysis of high-resolution, three-dimensional (3D) genomic structure, we herein demonstrate that remodeling of genomic structure is highly associated with the pluripotent states of human ESCs (hESCs). The naive pluripotent state is featured with specialized 3D genomic structures and clear chromatin compartmentalization that is distinct from the primed state. The naive pluripotent state is achieved by remodeling the active euchromatin compartment and reducing chromatin interactions at the nuclear center. This unique genomic organization is linked to enhanced chromatin accessibility on enhancers and elevated expression levels of naive pluripotent genes localized to this region. In contradistinction, the primed state exhibits intermingled genomic organization. Moreover, active euchromatin and primed pluripotent genes are distributed at the nuclear periphery, while repressive heterochromatin is densely concentrated at the nuclear center, reducing chromatin accessibility and the transcription of naive genes. CONCLUSIONS: Our data provide insights into the chromatin structure of ESCs in their naive and primed states, and we identify specific patterns of modifications in transcription and chromatin structure that might explain the genes that are differentially expressed between naive and primed hESCs. Thus, the inversion or relocation of heterochromatin to euchromatin via compartmentalization is related to the regulation of chromatin accessibility, thereby defining pluripotent states and cellular identity.


Assuntos
Células-Tronco Pluripotentes , Análise de Célula Única , Humanos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Genoma Humano , Eucromatina/genética , Eucromatina/metabolismo , Cromatina/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Heterocromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Montagem e Desmontagem da Cromatina
2.
Nucleus ; 15(1): 2351957, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38753956

RESUMO

Abnormal cell nuclear shapes are hallmarks of diseases, including progeria, muscular dystrophy, and many cancers. Experiments have shown that disruption of heterochromatin and increases in euchromatin lead to nuclear deformations, such as blebs and ruptures. However, the physical mechanisms through which chromatin governs nuclear shape are poorly understood. To investigate how heterochromatin and euchromatin might govern nuclear morphology, we studied chromatin microphase separation in a composite coarse-grained polymer and elastic shell simulation model. By varying chromatin density, heterochromatin composition, and heterochromatin-lamina interactions, we show how the chromatin phase organization may perturb nuclear shape. Increasing chromatin density stabilizes the lamina against large fluctuations. However, increasing heterochromatin levels or heterochromatin-lamina interactions enhances nuclear shape fluctuations by a "wetting"-like interaction. In contrast, fluctuations are insensitive to heterochromatin's internal structure. Our simulations suggest that peripheral heterochromatin accumulation could perturb nuclear morphology, while nuclear shape stabilization likely occurs through mechanisms other than chromatin microphase organization.


Assuntos
Núcleo Celular , Cromatina , Heterocromatina , Núcleo Celular/metabolismo , Heterocromatina/metabolismo , Heterocromatina/química , Cromatina/metabolismo , Cromatina/química , Polímeros/química , Polímeros/metabolismo , Eucromatina/metabolismo , Eucromatina/química , Humanos , Separação de Fases
3.
Elife ; 122024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814684

RESUMO

Silencing pathways prevent transposable element (TE) proliferation and help to maintain genome integrity through cell division. Silenced genomic regions can be classified as either euchromatic or heterochromatic, and are targeted by genetically separable epigenetic pathways. In plants, the RNA-directed DNA methylation (RdDM) pathway targets mostly euchromatic regions, while CMT DNA methyltransferases are mainly associated with heterochromatin. However, many epigenetic features - including DNA methylation patterning - are largely indistinguishable between these regions, so how the functional separation is maintained is unclear. The linker histone H1 is preferentially localized to heterochromatin and has been proposed to restrict RdDM from encroachment. To test this hypothesis, we followed RdDM genomic localization in an h1 mutant by performing ChIP-seq on the largest subunit, NRPE1, of the central RdDM polymerase, Pol V. Loss of H1 resulted in NRPE1 enrichment predominantly in heterochromatic TEs. Increased NRPE1 binding was associated with increased chromatin accessibility in h1, suggesting that H1 restricts NRPE1 occupancy by compacting chromatin. However, RdDM occupancy did not impact H1 localization, demonstrating that H1 hierarchically restricts RdDM positioning. H1 mutants experience major symmetric (CG and CHG) DNA methylation gains, and by generating an h1/nrpe1 double mutant, we demonstrate these gains are largely independent of RdDM. However, loss of NRPE1 occupancy from a subset of euchromatic regions in h1 corresponded to the loss of methylation in all sequence contexts, while at ectopically bound heterochromatic loci, NRPE1 deposition correlated with increased methylation specifically in the CHH context. Additionally, we found that H1 similarly restricts the occupancy of the methylation reader, SUVH1, and polycomb-mediated H3K27me3. Together, the results support a model whereby H1 helps maintain the exclusivity of heterochromatin by preventing encroachment from other competing pathways.


Assuntos
Arabidopsis , Metilação de DNA , Eucromatina , Heterocromatina , Histonas , Heterocromatina/metabolismo , Heterocromatina/genética , Eucromatina/metabolismo , Eucromatina/genética , Histonas/metabolismo , Histonas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Epigênese Genética
4.
Genome Res ; 34(4): 556-571, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38719473

RESUMO

H3K9me3-dependent heterochromatin is critical for the silencing of repeat-rich pericentromeric regions and also has key roles in repressing lineage-inappropriate protein-coding genes in differentiation and development. Here, we investigate the molecular consequences of heterochromatin loss in cells deficient in both SUV39H1 and SUV39H2 (Suv39DKO), the major mammalian histone methyltransferase enzymes that catalyze heterochromatic H3K9me3 deposition. We reveal a paradoxical repression of protein-coding genes in Suv39DKO cells, with these differentially expressed genes principally in euchromatic (Tn5-accessible, H3K4me3- and H3K27ac-marked) rather than heterochromatic (H3K9me3-marked) or polycomb (H3K27me3-marked) regions. Examination of the three-dimensional (3D) nucleome reveals that transcriptomic dysregulation occurs in euchromatic regions close to the nuclear periphery in 3D space. Moreover, this transcriptomic dysregulation is highly correlated with altered 3D genome organization in Suv39DKO cells. Together, our results suggest that the nuclear lamina-tethering of Suv39-dependent H3K9me3 domains provides an essential scaffold to support euchromatic genome organization and the maintenance of gene transcription for healthy cellular function.


Assuntos
Eucromatina , Heterocromatina , Histona-Lisina N-Metiltransferase , Histonas , Metiltransferases , Proteínas Repressoras , Transcrição Gênica , Eucromatina/metabolismo , Eucromatina/genética , Histonas/metabolismo , Histonas/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Animais , Camundongos , Humanos , Regulação da Expressão Gênica , Linhagem Celular
5.
J Virol ; 97(12): e0117923, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37991367

RESUMO

IMPORTANCE: The traditional view of retrovirus assembly posits that packaging of gRNA by HIV-1 Gag occurs in the cytoplasm or at the plasma membrane. However, our previous studies showing that HIV-1 Gag enters the nucleus and binds to USvRNA at transcription sites suggest that gRNA selection may occur in the nucleus. In the present study, we observed that HIV-1 Gag trafficked to the nucleus and co-localized with USvRNA within 8 hours of expression. In infected T cells (J-Lat 10.6) reactivated from latency and in a HeLa cell line stably expressing an inducible Rev-dependent HIV-1 construct, we found that Gag preferentially localized with euchromatin histone marks associated with enhancer and promoter regions near the nuclear periphery, which is the favored site HIV-1 integration. These observations support the innovative hypothesis that HIV-1 Gag associates with euchromatin-associated histones to localize to active transcription sites, promoting capture of newly synthesized gRNA for packaging.


Assuntos
Núcleo Celular , Eucromatina , HIV-1 , Código das Histonas , Histonas , Empacotamento do Genoma Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Humanos , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Elementos Facilitadores Genéticos/genética , Eucromatina/genética , Eucromatina/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Células HeLa , Histonas/metabolismo , HIV-1/genética , HIV-1/crescimento & desenvolvimento , HIV-1/metabolismo , Regiões Promotoras Genéticas/genética , Linfócitos T/virologia , Transcrição Gênica , Ativação Viral
6.
PLoS Pathog ; 19(8): e1011525, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535497

RESUMO

Through the association of protein complexes to DNA, the eukaryotic nuclear genome is broadly organized into open euchromatin that is accessible for enzymes acting on DNA and condensed heterochromatin that is inaccessible. Chemical and physical alterations to chromatin may impact its organization and functionality and are therefore important regulators of nuclear processes. Studies in various fungal plant pathogens have uncovered an association between chromatin organization and expression of in planta-induced genes that are important for pathogenicity. This review discusses chromatin-based regulation mechanisms as determined in the fungal plant pathogen Verticillium dahliae and relates the importance of epigenetic transcriptional regulation and other nuclear processes more broadly in fungal plant pathogens.


Assuntos
Ascomicetos , Verticillium , Epigênese Genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Ascomicetos/genética , Verticillium/genética , Eucromatina/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo
7.
PLoS Comput Biol ; 19(5): e1011142, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37228178

RESUMO

Chromosomes are arranged in distinct territories within the nucleus of animal cells. Recent experiments have shown that these territories overlap at their edges, suggesting partial mixing during interphase. Experiments that knock-down of condensin II proteins during interphase indicate increased chromosome mixing, which demonstrates control of the mixing. In this study, we use a generic polymer simulation to quantify the dynamics of chromosome mixing over time. We introduce the chromosome mixing index, which quantifies the mixing of distinct chromosomes in the nucleus. We find that the chromosome mixing index in a small confinement volume (as a model of the nucleus), increases as a power-law of the time, with the scaling exponent varying non-monotonically with self-interaction and volume fraction. By comparing the chromosome mixing index with both monomer subdiffusion due to (non-topological) intermingling of chromosomes as well as even slower reptation, we show that for relatively large volume fractions, the scaling exponent of the chromosome mixing index is related to Rouse dynamics for relatively weak chromosome attractions and to reptation for strong attractions. In addition, we extend our model to more realistically account for the situation of the Drosophila chromosome by including the heterogeneity of the polymers and their lengths to account for microphase separation of euchromatin and heterochromatin and their interactions with the nuclear lamina. We find that the interaction with the lamina further impedes chromosome mixing.


Assuntos
Cromossomos , Polímeros , Animais , Polímeros/metabolismo , Cromossomos/genética , Núcleo Celular/metabolismo , Heterocromatina , Eucromatina/metabolismo , Drosophila/genética , Interfase/genética , Cromatina/metabolismo
8.
Biomolecules ; 13(2)2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36830746

RESUMO

DNA is stored in the nucleus of a cell in a folded state; however, only the necessary genetic information is extracted from the required group of genes. The key to extracting genetic information is chromatin ambivalence. Depending on the chromosomal region, chromatin is characterized into low-density "euchromatin" and high-density "heterochromatin", with various factors being involved in its regulation. Here, we focus on chromatin regulation and gene expression by the yeast FACT complex, which functions in both euchromatin and heterochromatin. FACT is known as a histone H2A/H2B chaperone and was initially reported as an elongation factor associated with RNA polymerase II. In budding yeast, FACT activates promoter chromatin by interacting with the transcriptional activators SBF/MBF via the regulation of G1/S cell cycle genes. In fission yeast, FACT plays an important role in the formation of higher-order chromatin structures and transcriptional repression by binding to Swi6, an HP1 family protein, at heterochromatin. This FACT property, which refers to the alternate chromatin-regulation depending on the binding partner, is an interesting phenomenon. Further analysis of nucleosome regulation within heterochromatin is expected in future studies.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Heterocromatina/metabolismo , Saccharomyces cerevisiae/metabolismo , Eucromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Cromatina/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
9.
Microbiol Spectr ; 11(1): e0304922, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36515553

RESUMO

The survival of malaria parasites in the changing human blood environment largely depends on their ability to alter gene expression by epigenetic mechanisms. The active state of Plasmodium falciparum clonally variant genes (CVGs) is associated with euchromatin characterized by the histone mark H3K9ac, whereas the silenced state is characterized by H3K9me3-based heterochromatin. Expression switches are linked to euchromatin-heterochromatin transitions, but these transitions have not been characterized for the majority of CVGs. To define the heterochromatin distribution patterns associated with the alternative transcriptional states of CVGs, we compared H3K9me3 occupancy at a genome-wide level among several parasite subclones of the same genetic background that differed in the transcriptional state of many CVGs. We found that de novo heterochromatin formation or the complete disruption of a heterochromatin domain is a relatively rare event, and for the majority of CVGs, expression switches can be explained by the expansion or retraction of heterochromatin domains. We identified different modalities of heterochromatin changes linked to transcriptional differences, but despite this complexity, heterochromatin distribution patterns generally enable the prediction of the transcriptional state of specific CVGs. We also found that in some subclones, several var genes were simultaneously in an active state. Furthermore, the heterochromatin levels in the putative regulatory region of the gdv1 antisense noncoding RNA, a regulator of sexual commitment, varied between parasite lines with different sexual conversion rates. IMPORTANCE The malaria parasite P. falciparum is responsible for more than half a million deaths every year. P. falciparum clonally variant genes (CVGs) mediate fundamental host-parasite interactions and play a key role in parasite adaptation to fluctuations in the conditions of the human host. The expression of CVGs is regulated at the epigenetic level by changes in the distribution of a type of chromatin called heterochromatin. Here, we describe at a genome-wide level the changes in the heterochromatin distribution associated with the different transcriptional states of CVGs. Our results also reveal a likely role for heterochromatin at a particular locus in determining the parasite investment in transmission to mosquitoes. Additionally, this data set will enable the prediction of the transcriptional state of CVGs from epigenomic data, which is important for the study of parasite adaptation to the conditions of the host in natural malaria infections.


Assuntos
Malária Falciparum , Plasmodium falciparum , Animais , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Eucromatina/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Malária Falciparum/parasitologia , Regulação da Expressão Gênica
10.
Dokl Biochem Biophys ; 513(Suppl 1): S75-S81, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38379078

RESUMO

The heterochromatin position effect is manifested in the inactivation of euchromatin genes transferred to heterochromatin. In chromosomal rearrangements, genes located near the new eu-heterochromatin boundary in the rearrangement (cis-inactivation) and, in rare cases, genes of a region of the normal chromosome homologous to the region of the eu-heterochromatin boundary of the chromosome with the rearrangement (trans-inactivation) are subject to inactivation. The In(2)A4 inversion is able to trans-inactivate the UAS-eGFP reporter gene located on the normal chromosome. We knockdown a number of chromatin proteins using temperature-controlled RNA interference and investigated the effect of knockdown on trans-inactivation of the reporter. We found suppression of trans-inactivation by knockdowns of Su(var)2-HP2, a protein that binds to the key heterochromatin protein HP1a, SAYP, a subunit of the chromatin remodelling complex, and Eggless histone methyltransferase (SETDB1), which introduces a H3K9me3 histone mark, recognized by the HP1a protein. The method of studying the effects of gene knockdown on heterochromatin position effects presented in this work is of independent methodological interest.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Heterocromatina/genética , Eucromatina/metabolismo , Genes Reporter , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
11.
Elife ; 112022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36458689

RESUMO

Asynchronous replication of chromosome domains during S phase is essential for eukaryotic genome function, but the mechanisms establishing which domains replicate early versus late in different cell types remain incompletely understood. Intercalary heterochromatin domains replicate very late in both diploid chromosomes of dividing cells and in endoreplicating polytene chromosomes where they are also underreplicated. Drosophila SNF2-related factor SUUR imparts locus-specific underreplication of polytene chromosomes. SUUR negatively regulates DNA replication fork progression; however, its mechanism of action remains obscure. Here, we developed a novel method termed MS-Enabled Rapid protein Complex Identification (MERCI) to isolate a stable stoichiometric native complex SUMM4 that comprises SUUR and a chromatin boundary protein Mod(Mdg4)-67.2. Mod(Mdg4) stimulates SUUR ATPase activity and is required for a normal spatiotemporal distribution of SUUR in vivo. SUUR and Mod(Mdg4)-67.2 together mediate the activities of gypsy insulator that prevent certain enhancer-promoter interactions and establish euchromatin-heterochromatin barriers in the genome. Furthermore, SuUR or mod(mdg4) mutations reverse underreplication of intercalary heterochromatin. Thus, SUMM4 can impart late replication of intercalary heterochromatin by attenuating the progression of replication forks through euchromatin/heterochromatin boundaries. Our findings implicate a SNF2 family ATP-dependent motor protein SUUR in the insulator function, reveal that DNA replication can be delayed by a chromatin barrier, and uncover a critical role for architectural proteins in replication control. They suggest a mechanism for the establishment of late replication that does not depend on an asynchronous firing of late replication origins.


Inside cells, molecules of DNA provide the instructions needed to make proteins. Cells carefully maintain and repair their DNA, and typically make a complete copy of the genome before they divide to ensure that after division, each daughter cell has a full set. Within human, fly and other eukaryotic nuclei, DNA is packaged into structures known as chromosomes. Cells follow precisely controlled programs to replicate distinct regions of chromosomes at different times. To start copying a particular region, the cell machinery that replicates DNA binds to a sequence known as the origin of replication. It is thought that as-yet unknown cues from the cell may lead the replication machinery to bind to different origins of replication at different times. In some circumstances, cells make extra copies of their DNA without dividing. For example, many cells in the larvae of fruit flies contain hundreds of extra DNA copies to sustain their increased sizes. However, the entire genome is not copied during this process, so cells end up with more copies of some regions of the genome than others. A protein called SUUR is required for hindering the replication of the 'underrepresented' regions, but it is not clear how it works. To address this question, Andreyeva, Emelyanov et al. developed a new approach based on liquid chromatography and quantitative proteomics to identify the native form of SUUR in fruit flies. This revealed that SUUR exists as a stable complex with a protein called Mod(Mdg4), which is needed to recruit SUUR to the chromosomes. Further experiments suggested that SUUR and Mod(Mdg4) work together to bind to regions of DNA known as gypsy insulator elements, creating a physical barrier that hinders the replication machinery from accessing some parts of the genome. The findings of Andreyeva, Emelyanov et al. provide an alternative explanation for how individual cells may stagger the process of copying their DNA without relying on the replication machinery binding to various replication origins at different times. Rather, late replication timing may be instructed by an insulator-born delay of the progression of replication over particular genomic regions. This mechanism adds to the list of nuclear processes (chromosome partitioning, transcriptional regulation, etc.) that are known to be directed by insulators and associated architectural proteins.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Ligação a DNA/metabolismo , Heterocromatina/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Eucromatina/metabolismo , Cromatina/genética , Cromatina/metabolismo , Replicação do DNA
12.
Biomolecules ; 12(8)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36009033

RESUMO

In eukaryotic cells, loosening of chromatin causes changes in transcription and DNA replication. The artificial conversion of tightly packed chromatin (heterochromatin) to loosely packed chromatin (euchromatin) enables gene expression and regulates cell differentiation. Although some chemicals convert chromatin structures through histone modifications, they lack sequence specificity. This study attempted to establish a novel technology for inducing chromatin loosening in target regions of Saccharomyces cerevisiae. We focused on histone acetylation, which is one of the mechanisms of euchromatin induction. The sequence-recognizing ability of the dead Cas9 (dCas9) and guide RNA (gRNA) complex was used to promote histone acetylation at a targeted genomic locus. We constructed a plasmid to produce a fusion protein consisting of dCas9 and histone acetyltransferase Gcn5 and a plasmid to express gRNA recognizing the upstream region of heterochromatic URA3. Confocal microscopy revealed that the fusion proteins were localized in the nucleus. The yeast strain producing the fusion protein and gRNA grew well in the uracil-deficient medium, while the strain harboring empty plasmids or the strain containing the mutations that cause loss of nucleosomal histone acetylation activity of Gcn5 did not. This suggests that the heterochromatin was loosened as much as euchromatin through nucleosomal histone acetylation. The amount of euchromatic DNA at the target locus increased, indicating that chromatin loosening was induced by our system. Nucleosomal histone acetylation in heterochromatic loci by our developed system is a promising method for inducing euchromatic state in a target locus.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Acetilação , Cromatina/genética , Cromatina/metabolismo , Eucromatina/metabolismo , Heterocromatina , Histonas/genética , Histonas/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Genes Genet Syst ; 97(3): 123-138, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35908934

RESUMO

Mating-type (P or M) of fission yeast Schizosaccharomyces pombe is determined by the transcriptionally active mat1 cassette and is switched by gene conversion using a donor, either mat2 or mat3, located in an adjacent heterochromatin region (mating-type switching; MTS). In the switching process, heterochromatic donors of genetic information are selected based on the P or M cell type and on the action of two recombination enhancers, SRE2 promoting the use of mat2-P and SRE3 promoting the use of mat3-M, leading to replacement of the content of the expressed mat1 cassette. Recently, we found that the histone H3K4 methyltransferase complex Set1C participates in donor selection, raising the question of how a complex best known for its effects in euchromatin controls recombination in heterochromatin. Here, we report that the histone H2BK119 ubiquitin ligase complex HULC functions with Set1C in MTS, as mutants in the shf1, brl1, brl2 and rad6 genes showed defects similar to Set1C mutants and belonged to the same epistasis group as set1Δ. Moreover, using H3K4R and H2BK119R histone mutants and a Set1-Y897A catalytic mutant, we found that ubiquitylation of histone H2BK119 by HULC and methylation of histone H3K4 by Set1C are functionally coupled in MTS. Cell-type biases in MTS in these mutants suggested that HULC and Set1C inhibit the use of the SRE3 recombination enhancer in M cells, thus favoring SRE2 and mat2-P. Consistent with this, imbalanced switching in the mutants was traced to compromised association of the directionality factor Swi6 with the recombination enhancers in M cells. Based on their known effects at other chromosomal locations, we speculate that HULC and Set1C control nucleosome mobility and strand invasion near the SRE elements. In addition, we uncovered distinct effects of HULC and Set1C on histone H3K9 methylation and gene silencing, consistent with additional functions in the heterochromatic domain.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Eucromatina/genética , Eucromatina/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Nucleossomos , Genes Fúngicos Tipo Acasalamento/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Ligases/genética , Ligases/metabolismo
14.
Genome Biol ; 23(1): 91, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410387

RESUMO

BACKGROUND: Interactions of chromatin with the nuclear lamina via lamina-associated domains (LADs) confer structural stability to the genome. The dynamics of positioning of LADs during differentiation, and how LADs impinge on developmental gene expression, remains, however, elusive. RESULTS: We examined changes in the association of lamin B1 with the genome in the first 72 h of differentiation of adipose stem cells into adipocytes. We demonstrate a repositioning of entire stand-alone LADs and of LAD edges as a prominent nuclear structural feature of early adipogenesis. Whereas adipogenic genes are released from LADs, LADs sequester downregulated or repressed genes irrelevant for the adipose lineage. However, LAD repositioning only partly concurs with gene expression changes. Differentially expressed genes in LADs, including LADs conserved throughout differentiation, reside in local euchromatic and lamin-depleted sub-domains. In these sub-domains, pre-differentiation histone modification profiles correlate with the LAD versus inter-LAD outcome of these genes during adipogenic commitment. Lastly, we link differentially expressed genes in LADs to short-range enhancers which overall co-partition with these genes in LADs versus inter-LADs during differentiation. CONCLUSIONS: We conclude that LADs are predictable structural features of adipose nuclear architecture that restrain non-adipogenic genes in a repressive environment.


Assuntos
Adipogenia , Eucromatina , Cromatina/metabolismo , Eucromatina/metabolismo , Lâmina Nuclear/genética
15.
Chromosome Res ; 30(1): 5-24, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34665365

RESUMO

Functional changes of cells upon developmental switches and in response to environmental cues are often reflected in nuclear phenotypes, showing distinctive chromatin states corresponding to transcriptional changes. Such characteristic nuclear shapes have been microscopically monitored and can be quantified after differential staining of euchromatin and heterochromatin domains. Here, we examined several nuclear parameters (size, DNA content, DNA density, chromatin compaction, relative heterochromatin fraction (RHF), and number of chromocenters) in relation to spatial distribution of genes and transposon elements (TEs), using standard 2D fluorescence microscopy. We provide nuclear profiles for different cell types and different accessions of Arabidopsis thaliana. A variable, yet significant, fraction of TEs was found outside chromocenters in all cell types, except for guard cells. The latter cell type features nuclei with the highest level of chromatin compaction, while their chromocenters seem to contain gene-rich regions. The highest number of parameter correlations was found in the accession Cvi, whereas Ler showed only few correlations. This may point at differences in phenotype robustness between accessions. The significantly high association of NOR chromocenters in accessions Ws and Cvi corresponds to their low RHF level.


Assuntos
Arabidopsis , Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Eucromatina/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo
16.
Dev Biol ; 482: 7-16, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34822846

RESUMO

Regeneration is a response mechanism aiming to reconstruct lost or damaged structures. To achieve this, the cells repopulating the lost tissue often have to change their original identity, a process that involves chromatin remodelling.We have analysed the issue of chromatin remodelling during regeneration in the wing disc of Drosophila . In this disc the ablation of the central region (the pouch) induces the regenerative response of the cells from the lateral region (the hinge), which reconstitute the wing pouch. We have examined euchromatin and heterochromatin histone marks during the process and find that heterochromatin marks disappear but are recovered when regeneration is complete. Euchromatin marks are not modified. We also describe the transcription of two retrotransposons, Roo and F-element in the regenerating cells. We have established a temporal correlation between the alterations of heterochromatin marks and the levels of transcription of two retrotransposons, Roo and F-element, both during embryonic development and in the regeneration process.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Drosophila melanogaster/embriologia , Discos Imaginais/crescimento & desenvolvimento , Regeneração/fisiologia , Retroelementos/genética , Asas de Animais/embriologia , Acetilação , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Eucromatina/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Metilação , Asas de Animais/crescimento & desenvolvimento
17.
Cell Rep ; 37(10): 110089, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879283

RESUMO

Deleterious genetic variants in POGZ, which encodes the chromatin regulator Pogo Transposable Element with ZNF Domain protein, are strongly associated with autism spectrum disorder (ASD). Although it is a high-confidence ASD risk gene, the neurodevelopmental functions of POGZ remain unclear. Here we reveal the genomic binding of POGZ in the developing forebrain at euchromatic loci and gene regulatory elements (REs). We profile chromatin accessibility and gene expression in Pogz-/- mice and show that POGZ promotes the active chromatin state and transcription of clustered synaptic genes. We further demonstrate that POGZ forms a nuclear complex and co-occupies loci with ADNP, another high-confidence ASD risk gene, and provide evidence that POGZ regulates other neurodevelopmental disorder risk genes as well. Our results reveal a neurodevelopmental function of an ASD risk gene and identify molecular targets that may elucidate its function in ASD.


Assuntos
Transtorno Autístico/enzimologia , Encéfalo/enzimologia , Proteínas de Ciclo Celular/fisiologia , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/fisiologia , Eucromatina/metabolismo , Sinapses/enzimologia , Transposases/metabolismo , Animais , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Sítios de Ligação , Encéfalo/crescimento & desenvolvimento , Proteínas de Ciclo Celular/genética , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Eucromatina/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Regiões Promotoras Genéticas , Sinapses/genética , Transposases/genética
18.
Molecules ; 26(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771102

RESUMO

Chromatin is a dynamic structure comprising of DNA and proteins. Its unique nature not only help to pack the DNA tightly within the cell but also is pivotal in regulating gene expression DNA replication. Furthermore it also protects the DNA from being damaged. Various proteins are involved in making a specific complex within a chromatin and the knowledge about these interacting partners is helpful to enhance our understanding about the pathophysiology of various chromatin associated diseases. Moreover, it could also help us to identify new drug targets and design more effective remedies. Due to the existence of chromatin in different forms under various physiological conditions it is hard to develop a single strategy to study chromatin associated proteins under all conditions. In our current review, we tried to provide an overview and comparative analysis of the strategies currently adopted to capture the DNA bounded protein complexes and their mass spectrometric identification and quantification. Precise information about the protein partners and their function in the DNA-protein complexes is crucial to design new and more effective therapeutic molecules against chromatin associated diseases.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteoma , Proteômica/métodos , Sítios de Ligação , Imunoprecipitação da Cromatina/métodos , Sequenciamento de Cromatina por Imunoprecipitação , Eucromatina/metabolismo , Heterocromatina/metabolismo , Humanos , Proteínas de Ligação a Telômeros
19.
Nat Commun ; 12(1): 6958, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845222

RESUMO

Epialleles are meiotically heritable variations in expression states that are independent from changes in DNA sequence. Although they are common in plant genomes, their molecular origins are unknown. Here we show, using mutant and experimental populations, that epialleles in Arabidopsis thaliana that result from ectopic hypermethylation are due to feedback regulation of pathways that primarily function to maintain DNA methylation at heterochromatin. Perturbations to maintenance of heterochromatin methylation leads to feedback regulation of DNA methylation in genes. Using single base resolution methylomes from epigenetic recombinant inbred lines (epiRIL), we show that epiallelic variation is abundant in euchromatin, yet, associates with QTL primarily in heterochromatin regions. Mapping three-dimensional chromatin contacts shows that genes that are hotspots for ectopic hypermethylation have increases in contact frequencies with regions possessing H3K9me2. Altogether, these data show that feedback regulation of pathways that have evolved to maintain heterochromatin silencing leads to the origins of spontaneous hypermethylated epialleles.


Assuntos
Alelos , Arabidopsis/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Heterocromatina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mapeamento Cromossômico , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Eucromatina/química , Eucromatina/metabolismo , Retroalimentação Fisiológica , Frequência do Gene , Haplótipos , Heterocromatina/química , Histonas/genética , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Plantas Geneticamente Modificadas , Processamento de Proteína Pós-Traducional , Locos de Características Quantitativas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Cell Rep ; 36(7): 109540, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34407404

RESUMO

FACT (facilitate chromatin transcription) is involved in heterochromatic silencing, but its mechanisms and function remain unclear. We reveal that the Spt16 recruitment mechanism operates in two distinct ways in heterochromatin. First, Pob3 mediates Spt16 recruitment onto the heterochromatin through its Spt16 dimerization and tandem PH domains. Without Pob3, Spt16 recruitment is partially reduced, exhibiting a silencing defect and impaired H2A/H2B organization. Second, heterochromatin protein 1 (HP1)/Swi6 mediates Spt16 recruitment onto the heterochromatin by physical interaction of the Swi6 chromo-shadow domain (CSD) and Spt16 peptidase-like domains. Several CSD mutants are tested for Spt16 binding activity, and the charged loop connecting ß1 and ß2 is critical for Spt16 binding and heterochromatic silencing. Loss of these pathways causes a severe defect in H3K9 methylation and HP1/Swi6 localization in the pericentromeric region, exhibiting transcriptional silencing defects and disordered heterochromatin. Our findings suggest that FACT and HP1/Swi6 work intimately to regulate heterochromatin organization.


Assuntos
Heterocromatina/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Sequência de Aminoácidos , Eucromatina/metabolismo , Inativação Gênica , Histonas/metabolismo , Complexos Multiproteicos/química , Mutação/genética , Nucleossomos/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas de Schizosaccharomyces pombe/química , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA