Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 663
Filtrar
1.
PeerJ ; 12: e17372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770096

RESUMO

Quantifying the tropic position (TP) of an animal species is key to understanding its ecosystem function. While both bulk and compound-specific analyses of stable isotopes are widely used for this purpose, few studies have assessed the consistency between and within such approaches. Champsocephalus gunnari is a specialist teleost that predates almost exclusively on Antarctic krill Euphausia superba. This well-known and nearly constant trophic relationship makes C. gunnari particularly suitable for assessing consistency between TP methods under field conditions. In the present work, we produced and compared TP estimates for C. gunnari and its main prey using a standard bulk and two amino acid-specific stable isotope approaches (CSI-AA). One based on the difference between glutamate and phenylalanine (TPGlx-Phe), and the other on the proline-phenylalanine difference (TPPro-Phe). To do that, samples from C. gunnari, E. superba and four other pelagic invertebrate and fish species, all potential prey for C.gunnari, were collected off the South Orkney Islands between January and March 2019, analyzed using standard isotopic ratio mass spectrometry methods and interpreted following a Bayesian approach. Median estimates (CI95%) for C. gunnari were similar between TPbulk (3.6; CI95%: 3.0-4.8) and TPGlx-Phe(3.4; CI95%:3.2-3.6), and lower for TPPro-Phe (3.1; CI95%:3.0-3.3). TP differences between C. gunnari and E. superba were 1.4, 1.1 and 1.2, all compatible with expectations from the monospecific diet of this predator (ΔTP=1). While these results suggest greater accuracy for Glx-Phe and Pro-Phe, differences observed between both CSI-AA approaches suggests these methods may require further validation before becoming a standard tool for trophic ecology.


Assuntos
Cadeia Alimentar , Perciformes , Animais , Perciformes/metabolismo , Fenilalanina/análise , Fenilalanina/metabolismo , Regiões Antárticas , Euphausiacea/química , Ecossistema , Teorema de Bayes , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Prolina/análise
2.
Food Res Int ; 183: 114190, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760127

RESUMO

This study aimed to determine the effect of different frozen temperatures during storage on the quality of Antarctic krill (Euphausia superba) and assess the change at the metabolite level via a combination of physicochemical property analysis, liquid chromatography-tandem mass spectrometry (LC-MS) based non-targeted metabolomics profiling. Regarding samples stored at -20 °C, the expressions of 7055 metabolites were elevated, while 2313 were downregulated. Lipids and lipid molecules had the highest proportion of differential metabolites. A total of 432 discriminatory metabolites with Kyoto Encyclopedia of Genes and Genomes (KEGG) IDs was obtained. We also observed that the concentrations of differential bitter free amino acids (FAAs) and oxidation products of arachidonic and linoleic acid increased. Moreover, as the storage temperature increased, the freshness, umami, and sweetness components were considerably reduced. Furthermore, results indicated that the color, pH and water-holding capacity (WHC) were potential indicators of quality deterioration, while inosinic acid was a probable biomarker for umami degradation of frozen Antarctic krill. In conclusion, this study demonstrates that storage at lower temperatures can be beneficial for maintaining the freshness of Antarctic krill from macro and micro perspectives.


Assuntos
Euphausiacea , Congelamento , Metabolômica , Espectrometria de Massas em Tandem , Animais , Euphausiacea/química , Regiões Antárticas , Armazenamento de Alimentos/métodos , Paladar , Concentração de Íons de Hidrogênio , Alimentos Marinhos/análise , Cromatografia Líquida
3.
Sci Total Environ ; 931: 172939, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38701928

RESUMO

Southern hemisphere humpback whale (Megaptera novaeangliae, SHHW) breeding populations follow a high-fidelity Antarctic krill (Euphausia superba) diet while feeding in distinct sectors of the Southern Ocean. Their capital breeding life history requires predictable ecosystem productivity to fuel migration and migration-related behaviours. It is therefore postulated that populations feeding in areas subject to the strongest climate change impacts are more likely to show the first signs of a departure from a high-fidelity krill diet. We tested this hypothesis by investigating blubber fatty acid profiles and skin stable isotopes obtained from five SHHW populations in 2019, and comparing them to Antarctic krill stable isotopes sampled in three SHHW feeding areas in the Southern Ocean in 2019. Fatty acid profiles and δ13C and δ15N varied significantly among all five populations, however, calculated trophic positions did not (2.7 to 3.1). Similarly, fatty acid ratios, 16:1ω7c/16:0 and 20:5ω3/22:6ω3 were above 1, showing that whales from all five populations are secondary heterotrophs following an omnivorous diet with a diatom-origin. Thus, evidence for a potential departure from a high-fidelity Antarctic krill diet was not seen in any population. δ13C of all populations were similar to δ13C of krill sampled in productive upwelling areas or the marginal sea-ice zone. Consistency in trophic position and diet origin but significant fatty acid and stable isotope differences demonstrate that the observed variability arises at lower trophic levels. Our results indicate that, at present, there is no evidence of a divergence from a high-fidelity krill diet. Nevertheless, the characteristic isotopic signal of whales feeding in productive upwelling areas, or in the marginal sea-ice zone, implies that future cryosphere reductions could impact their feeding ecology.


Assuntos
Dieta , Euphausiacea , Jubarte , Animais , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Regiões Antárticas , Ácidos Graxos/análise , Mudança Climática
4.
J Microencapsul ; 41(3): 190-203, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38602138

RESUMO

AIMS: To develop Antarctic krill oil emulsions with casein and whey protein concentrate (WPC) and study their physicochemical properties and storage stability. METHODS: Emulsions were prepared by homogenisation and ultrasonication. The properties of the emulsions were investigated via ultraviolet ray spectroscopy, dynamic light scattering, confocal laser scanning microscope, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, Fourier transform infra-red spectrometer, and fluorescence spectrum. Shelf life was predicted by the Arrhenius model. RESULTS: Casein- and WPC-krill oil emulsions were well formed; the mean particle diameters were less than 128.19 ± 0.64 nm and 158 ± 1.56 nm, the polymer dispersity indices were less than 0.26 ± 0.01 and 0.27 ± 0.01, and the zeta potential were around -46.88 ± 5.02 mV and -33.51 ± 2.68 mV, respectively. Shelf life was predicted to be 32.67 ± 1.55 days and 29.62 ± 0.65 days (40 °C), 27.69 ± 1.15 days and 23.58 ± 0.14 days (50 °C), 24.02 ± 0.15 days and 20.1 ± 0.08 days (60 °C). CONCLUSION: The prepared krill oil emulsions have great potential to become a new krill oil supplement.


Assuntos
Caseínas , Euphausiacea , Animais , Emulsões/química , Proteínas do Soro do Leite/química , Óleos
5.
J Agric Food Chem ; 72(15): 8491-8505, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587859

RESUMO

Aging and stress have contributed to the development of memory disorders. Phe-Pro-Phe (FPF) was identified with high stability by mass spectrometry from simulated gastrointestinal digestion and everted gut sac products of the Antarctic krill peptide Ser-Ser-Asp-Ala-Phe-Phe-Pro-Phe-Arg (SSDAFFPFR) which was found to have a positive impact on memory enhancement. This study investigated the digestive stability, absorption, and memory-enhancing effects of FPF using nuclear magnetic resonance spectroscopy, simulated gastrointestinal digestion, in vivo fluorescence distribution analysis, mouse behavioral experiments, acetylcholine function, Nissl staining, immunofluorescence, and immunohistochemistry. FPF crossed the blood-brain barrier into the brain after digestion, significantly reduced shock time, working memory errors, and reference memory errors, and increased the recognition index. Additionally, FPF elevated ACh content; Nissl body counts; and CREB, SYN, and PSD-95 expression levels, while reducing AChE activity (P < 0.05). This implies that FPF prevents scopolamine-induced memory impairment and provides a basis for future research on memory disorders.


Assuntos
Euphausiacea , Animais , Camundongos , Sequência de Aminoácidos , Peptídeos/química , Acetilcolina , Transtornos da Memória
6.
Compr Rev Food Sci Food Saf ; 23(3): e13332, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578167

RESUMO

Antarctic krill oil (AKO) is highly sought after by consumers and the food industry due to its richness in a variety of nutrients and physiological activities. However, current extraction methods are not sufficient to better extract AKO and its nutrients, and AKO is susceptible to lipid oxidation during processing and storage, leading to nutrient loss and the formation of off-flavors and toxic compounds. The development of various extraction methods and encapsulation systems for AKO to improve oil yield, nutritional value, antioxidant capacity, and bioavailability has become a research hotspot. This review summarizes the research progress of AKO from extraction to encapsulation system construction. The AKO extraction mechanism, technical parameters, oil yield and composition of solvent extraction, aqueous enzymatic extraction, supercritical/subcritical extraction, and three-liquid-phase salting-out extraction system are described in detail. The principles, choice of emulsifier/wall materials, preparation methods, advantages and disadvantages of four common encapsulation systems for AKO, namely micro/nanoemulsions, microcapsules, liposomes and nanostructured lipid carriers, are summarized. These four encapsulation systems are characterized by high encapsulation efficiency, low production cost, high bioavailability and high antioxidant capacity. Depending on the unique advantages and conditions of different encapsulation methods, as well as consumer demand for health and nutrition, different products can be developed. However, existing AKO encapsulation systems lack relevant studies on digestive absorption and targeted release, and the single product category of commercially available products limits consumer choice. In conjunction with clinical studies of AKO encapsulation systems, the development of encapsulation systems for special populations should be a future research direction.


Assuntos
Antioxidantes , Euphausiacea , Animais , Estado Nutricional , Valor Nutritivo , Lipídeos
7.
J Agric Food Chem ; 72(17): 9955-9966, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38628059

RESUMO

Cold-adapted proteases are capable of efficient protein hydrolysis at reduced temperatures, which offer significant potential applications in the area of low temperature food processing. In this paper, we attempted to characterize cold-adapted proteases from Antarctic krill. Antarctic krill possesses an extremely active autolytic enzyme system in their bodies, and the production of peptides and free amino acids accompanies the rapid breakdown of muscle proteins following the death. The crucial role of trypsin in this process is recognized. A cold-adapted trypsin named OUC-Pp-20 from Antarctic krill genome was cloned and expressed in Pichia pastoris. Recombinant trypsin is a monomeric protein of 26.8 ± 1.0 kDa with optimum reaction temperature at 25 °C. In addition, the catalytic specificity of OUC-Pp-20 was assessed by identifying its hydrolysis sites through LC-MS/MS. OUC-Pp-20 appeared to prefer Gln and Asn at the P1 position, which is an amino acid with an amide group in its side chain. Hydrolysis reactions on milk and shrimp meat revealed that it can effectively degrade allergenic components in milk and arginine kinase in shrimp meat. These findings update the current knowledge of cold-adapted trypsin and demonstrate the potential application of OUC-Pp-20 in low temperature food processing.


Assuntos
Temperatura Baixa , Euphausiacea , Tripsina , Animais , Euphausiacea/química , Euphausiacea/enzimologia , Euphausiacea/genética , Euphausiacea/metabolismo , Hidrólise , Tripsina/metabolismo , Tripsina/química , Tripsina/genética , Especificidade por Substrato , Sequência de Aminoácidos , Espectrometria de Massas em Tandem , Estabilidade Enzimática , Regiões Antárticas
8.
Biomolecules ; 14(4)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38672464

RESUMO

Krill oil is extracted from krill, a small crustacean in the Antarctic Ocean. It has received growing attention because of krill oil's unique properties and diverse health benefits. Recent experimental and clinical studies suggest that it has potential therapeutic benefits in preventing the development of a range of chronic conditions, including inflammatory bowel disease (IBD). Krill oil is enriched with long-chain n-3 polyunsaturated fatty acids, especially eicosapentaenoic and docosahexaenoic acids, and the potent antioxidant astaxanthin, contributing to its therapeutic properties. The possible underlying mechanisms of krill oil's health benefits include anti-inflammatory and antioxidant actions, maintaining intestinal barrier functions, and modulating gut microbiota. This review aims to provide an overview of the beneficial effects of krill oil and its bioactive components on intestinal inflammation and to discuss the findings on the molecular mechanisms associated with the role of krill oil in IBD prevention and treatment.


Assuntos
Euphausiacea , Doenças Inflamatórias Intestinais , Euphausiacea/química , Animais , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Óleos/química , Óleos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/uso terapêutico , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Ômega-3/química
9.
Nutrients ; 16(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38613052

RESUMO

Memory impairment is a serious problem with organismal aging and increased social pressure. The tetrapeptide Ala-Phe-Phe-Pro (AFFP) is a synthetic analogue of Antarctic krill derived from the memory-improving Antarctic krill peptide Ser-Ser-Asp-Ala-Phe-Phe-Pro-Phe-Arg (SSDAFFPFR) after digestion and absorption. The objective of this research was to assess the neuroprotective effects of AFFP by reducing oxidative stress and controlling lipid metabolism in the brains of mice with memory impairment caused by scopolamine. The 1H Nuclear magnetic resonance spectroscopy results showed that AFFP had three active hydrogen sites that could contribute to its antioxidant properties. The findings from in vivo tests demonstrated that AFFP greatly enhanced the mice's behavioral performance in the passive avoidance, novel object recognition, and eight-arm maze experiments. AFFP reduced oxidative stress by enhancing superoxide dismutase activity and malondialdehyde levels in mice serum, thereby decreasing reactive oxygen species level in the mice hippocampus. In addition, AFFP increased the unsaturated lipid content to balance the unsaturated lipid level against the neurotoxicity of the mice hippocampus. Our findings suggest that AFFP emerges as a potential dietary intervention for the prevention of memory impairment disorders.


Assuntos
Dipeptídeos , Euphausiacea , Animais , Camundongos , Metabolismo dos Lipídeos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Derivados da Escopolamina , Hipocampo , Lipídeos
10.
J Math Biol ; 88(4): 42, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446242

RESUMO

In the Antarctic, the whale population had been reduced dramatically due to the unregulated whaling. It was expected that Antarctic krill, the main prey of whales, would grow significantly as a consequence and exploratory krill fishing was practiced in some areas. However, it was found that there has been a substantial decline in abundance of krill since the end of whaling, which is the phenomenon of krill paradox. In this paper, to study the krill-whale interaction we revisit a harvested predator-prey model with Holling I functional response. We find that the model admits at most two positive equilibria. When the two positive equilibria are located in the region { ( N , P ) | 0 ≤ N < 2 N c , P ≥ 0 } , the model exhibits degenerate Bogdanov-Takens bifurcation with codimension up to 3 and Hopf bifurcation with codimension up to 2 by rigorous bifurcation analysis. When the two positive equilibria are located in the region { ( N , P ) | N > 2 N c , P ≥ 0 } , the model has no complex bifurcation phenomenon. When there is one positive equilibrium on each side of N = 2 N c , the model undergoes Hopf bifurcation with codimension up to 2. Moreover, numerical simulation reveals that the model not only can exhibit the krill paradox phenomenon but also has three limit cycles, with the outmost one crosses the line N = 2 N c under some specific parameter conditions.


Assuntos
Euphausiacea , Baleias , Animais , Caça , Comportamento Predatório , Simulação por Computador
11.
Sci Rep ; 14(1): 7493, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553485

RESUMO

Among large cetaceans in the Southern Hemisphere, fin whales were the most heavily exploited in terms of numbers taken during the period of intense industrial whaling. Recent studies suggest that, whilst some humpback whale populations in the Southern Hemisphere appears to have almost completely recovered to their estimated pre-whaling abundance, much less is known about the status of Southern Hemisphere fin whales. Circumpolar estimates in the 1990s suggest an abundance of about 5500 animals south of 60° S, while the IDCR/SOWER-2000 survey for the Scotia Sea and Antarctic Peninsula areas estimated 4670 fin whales within this region in the year 2000. More recent studies in smaller regions indicate higher densities, suggesting that previous estimates are overly conservative and/or that fin whales are undergoing a substantial increase. Here we report findings from a recent multi-vessel single-platform sightings survey carried out as part of the 2019 Area 48 Survey for Antarctic krill. While fin whales were encountered throughout the entire survey area, which covered the majority of CCAMLR Management Area 48, they were particularly abundant around the South Orkney Islands and the eastern Bransfield Strait. Large feeding aggregations were also encountered within the central Scotia Sea between South Orkney Islands and South Georgia. Distance sampling analyses suggest an average fin whale density throughout the Scotia Sea of 0.0256 ( CV = 0.149 ) whales per km2, which agrees well with recent density estimates reported from smaller sub-regions within the Scotia Sea. Design-based distance sampling analyses resulted in an estimated total fin whale abundance of 53,873 (CV = 0.15, 95% CI 40,233-72,138), while a density surface model resulted in a slightly lower estimate of 50,837 (CV: 0.136, 95% CI 38,966-66,324). These estimates are at least an order of magnitude greater than the previous estimate from the same region based on the IDCR/SOWER-2000 data, suggesting that fin whales are undergoing a substantial abundance increase in the South Atlantic. This may have important implications for the assessment of cetacean population trends, but also for CCAMLRs spatial overlap analysis process and efforts to implement a Feedback Management system for Antarctic krill. Our abundance estimate suggests an annual summer krill consumption by fin whales in the Antarctic Peninsula and Scotia Sea area of 7.97 (95% CI 4.94-11.91) million tonnes, which would represent around 20 times the total krill catch taken by the commercial fishery in Area 48 in the same season, or about 12.7% of the 2019 summer krill standing stock estimated from data collected during the same survey. This highlights the crucial importance of including cetacean krill predators in assessment and management efforts for living marine resources in the Southern Ocean, and particularly stresses the urgent need for a re-appraisal of abundance, distribution and ecological role of Southern Hemisphere fin whales.


Assuntos
Euphausiacea , Baleia Comum , Jubarte , Animais , Estações do Ano , Regiões Antárticas
12.
Food Chem ; 448: 139030, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531301

RESUMO

This study presents a novel approach using polyol-based proliposome to produce marine phospholipids nanoliposomes. Proliposomes were formulated by blending glycerol with phospholipids across varying mass ratios (2:1 to 1:10) at room temperature. Analysis employing polarized light microscopy, FTIR, and DSC revealed that glycerol disrupted the stacked acyl groups within phospholipids, lowering the phase transition temperature (Tm). Krill oil phospholipids (KOP) proliposomes exhibited superior performance in nanoliposomes formation, with a mean diameter of 125.60 ± 3.97 nm, attributed to the decreased Tm (-7.64 and 7.00 °C) compared to soybean phospholipids, along with a correspondingly higher absolute zeta potential (-39.77 ± 1.18 mV). The resulting KOP proliposomes demonstrated liposomes formation stability over six months and under various environmental stresses (dilution, thermal, ionic strength, pH), coupled with in vitro absorption exceeding 90 %. This investigation elucidates the mechanism behind glycerol-formulated proliposomes and proposes innovative strategies for scalable, solvent-free nanoliposome production with implications for functional foods and pharmaceutical applications.


Assuntos
Glicerol , Lipossomos , Nanopartículas , Fosfolipídeos , Lipossomos/química , Glicerol/química , Fosfolipídeos/química , Animais , Nanopartículas/química , Tamanho da Partícula , Euphausiacea/química
13.
Microbiol Spectr ; 12(4): e0403523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38466097

RESUMO

With almost a quadrillion individuals, the Antarctic krill processes five million tons of organic carbon every day during austral summer. This high carbon flux requires a broad range of hydrolytic enzymes to decompose the diverse food-derived biopolymers. While krill itself possesses numerous such enzymes, it is unclear, to what extent the endogenous microbiota contribute to the hydrolytic potential of the gut environment. Here we applied amplicon sequencing, shotgun metagenomics, cultivation, and physiological assays to characterize the krill gut microbiota. The broad bacterial diversity (273 families, 919 genera, and 2,309 species) also included a complex potentially anaerobic sub-community. Plate-based assays with 198 isolated pure cultures revealed widespread capacities to utilize lipids (e.g., tributyrin), followed by proteins (casein) and to a lesser extent by polysaccharides (e.g., alginate and chitin). While most isolates affiliated with the genera Pseudoalteromonas and Psychrobacter, also Rubritalea spp. (Verrucomicrobia) were observed. The krill gut microbiota growing on marine broth agar plates possess 13,012 predicted hydrolyses; 15-fold more than previously predicted from a transcriptome-proteome compendium of krill. Cultivation-independent and -dependent approaches indicated members of the families Flavobacteriaceae and Pseudoalteromonadaceae to dominate the capacities for lipid/protein hydrolysis and to provide a plethora of carbohydrate-active enzymes, sulfatases, and laminarin- or porphyrin-depolymerizing hydrolases. Notably, also the potential to hydrolyze plastics such as polyethylene terephthalate and polylactatide was observed, affiliating mostly with Moraxellaceae. Overall, this study shows extensive microbial diversity in the krill gut, and suggests that the microbiota likely play a significant role in the nutrient acquisition of the krill by enriching its hydrolytic enzyme repertoire.IMPORTANCEThe Antarctic krill (Euphausia superba) is a keystone species of the Antarctic marine food web, connecting the productivity of phyto- and zooplankton with the nutrition of the higher trophic levels. Accordingly, krill significantly contributes to biomass turnover, requiring the decomposition of seasonally varying plankton-derived biopolymers. This study highlights the likely role of the krill gut microbiota in this ecosystem function by revealing the great number of diverse hydrolases that microbes contribute to the krill gut environment. The here resolved repertoire of hydrolytic enzymes could contribute to the overall nutritional resilience of krill and to the general organic matter cycling under changing environmental conditions in the Antarctic sea water. Furthermore, the krill gut microbiome could serve as a valuable resource of cold-adapted hydrolytic enzymes for diverse biotechnological applications.


Assuntos
Euphausiacea , Humanos , Animais , Euphausiacea/metabolismo , Ecossistema , Estações do Ano , Hidrolases/genética , Hidrolases/metabolismo , Biopolímeros/metabolismo
14.
J Agric Food Chem ; 72(13): 7517-7532, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38527166

RESUMO

In this study, the molecular mechanisms of iron transport and homeostasis regulated by the Antarctic krill-derived heptapeptide-iron (LVDDHFL-iron) complex were explored. LVDDHFL-iron significantly increased the hemoglobin, serum iron, total iron binding capacity levels, and iron contents in the liver and spleen to normal levels, regulated the gene expressions of iron homeostasis, and enhanced in vivo antioxidant capacity in iron-deficiency anemia mice (P < 0.05). The results revealed that iron ions within LVDDHFL-iron can be transported via the heme transporter and divalent metal transporter-1, and the absorption of LVDDHFL-iron involved receptor-mediated endocytosis. We also found that the transport of LVDDHFL-iron across cells via phagocytosis was facilitated by the up-regulation of the high mobility group protein, heat shock protein ß, and V-type proton ATPase subunit, accompanied by the regulatory mechanism of autophagy. These findings provided deeper understandings of the mechanism of LVDDHFL-iron facilitating iron absorption.


Assuntos
Anemia Ferropriva , Euphausiacea , Camundongos , Animais , Ferro/metabolismo , Anemia Ferropriva/metabolismo , Fígado/metabolismo , Homeostase/fisiologia
15.
Int J Biol Macromol ; 266(Pt 2): 131126, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527682

RESUMO

The objective of this study was to explore the potential of Antarctic krill-derived peptides as α-glucosidase inhibitors for the treatment of type 2 diabetes. The enzymolysis conditions of α-glucosidase inhibitory peptides were optimized by response surface methodology (RSM), a statistical method that efficiently determines optimal conditions with a limited number of experiments. Gel chromatography and LC-MS/MS techniques were utilized to determine the molecular weight (Mw) distribution and sequences of the hydrolysates. The identification and analysis of the mechanism behind α-glucosidase inhibitory peptides were conducted through conventional and computer-assisted techniques. The binding affinities between peptides and α-glucosidase were further validated using BLI (biolayer interferometry) assay. The results revealed that hydrolysates generated by neutrase exhibited the highest α-glucosidase inhibition rate. Optimal conditions for hydrolysis were determined to be an enzyme concentration of 6 × 103 U/g, hydrolysis time of 5.4 h, and hydrolysis temperature of 45 °C. Four peptides (LPFQR, PSFD, PSFDF, VPFPR) with strong binding affinities to the active site of α-glucosidase, primarily through hydrogen bonding and hydrophobic interactions. This study highlights the prospective utility of Antarctic krill-derived peptides in curtailing α-glucosidase activity, offering a theoretical foundation for the development of novel α-glucosidase inhibitors and related functional foods to enhance diabetes management.


Assuntos
Euphausiacea , Inibidores de Glicosídeo Hidrolases , Peptídeos , alfa-Glucosidases , Euphausiacea/química , Animais , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/isolamento & purificação , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , Hidrólise , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Pós , Regiões Antárticas , Sequência de Aminoácidos , Peso Molecular
16.
Biosci Biotechnol Biochem ; 88(5): 561-570, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305100

RESUMO

Although it is known that adequate sleep is crucial for maintaining a healthy lifestyle, approximately 30% of the general population has experienced insomnia. Thus, a better understanding of the relationship between food components and sleep quality is needed. North Pacific krill, Euphausia pacifica, is rich in marine n-3 polyunsaturated fatty acids in phospholipid form as well as 8R-hydroxy-eicosapentanoic acid. Here, emulsified oil powder derived from this krill was used in a trial involving 64 participants to assess its potential to enhance sleep quality. Consumption of the powdered emulsified oil was found to reduce drowsiness upon waking and enhance fatigue recovery, and for participants aged 40 and above, an improvement in sleep cycle was observed. In conclusion, consumption of krill emulsified oil powder was effective in enhancing sleep quality for individuals with partial sleep restrictions.


Assuntos
Euphausiacea , Pós , Qualidade do Sono , Humanos , Euphausiacea/química , Adulto , Masculino , Animais , Feminino , Voluntários Saudáveis , Pessoa de Meia-Idade , Emulsões , Óleos de Peixe/administração & dosagem , Sono/efeitos dos fármacos , Sono/fisiologia
17.
Food Funct ; 15(5): 2604-2615, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38356343

RESUMO

Krill oil (KO) is rich in bioactive ingredients including phospholipids, omega-3 fatty acids, and astaxanthin. While health benefits and roles of KO in modulating lipid metabolism are well documented, its ability to alleviate symptoms related to infectious colitis and modulate gut microbial interactions is still largely unknown. Here we used a multi-omics approach, including transcriptome, microbiome, and metabolome analyses, to understand how KO mediates gut microbial interactions and promotes epithelial healing in an infectious colitis model. KO reversed the infection-induced intestinal hyperplasia to baseline. KO dampened intestinal inflammation via multiple targets, mediating several proinflammatory pathways, including IL17 signaling, and reducing luminal histamine levels. KO supplementation enriched butyrate-producing bacteria, including Roseburia and Clostridium, and strengthened beneficial microbial interactions in the gut microbial community. Supplementation with phospholipid-rich KO also increased microbial phylogenetic diversity. KO enhanced mucosal barrier function by increasing the production of Muc6 and the antimicrobial peptide, Leap2. KO played an active role during epithelial healing by inhibiting the expression of granzyme K while increasing the expression of a colitis protective factor, Dclk1. Together, our findings demonstrate that KO rich in omega-3 phospholipids can play a protective role in infectious colitis and should be considered a dietary option for promoting gut health.


Assuntos
Colite , Euphausiacea , Ácidos Graxos Ômega-3 , Animais , Humanos , Fosfolipídeos , Filogenia , Ácidos Graxos Ômega-3/farmacologia , Colite/induzido quimicamente
18.
BMC Genomics ; 25(1): 210, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408914

RESUMO

BACKGROUND: Due to its enormous biomass, Antarctic krill (Euphausia superba) plays a crucial role in the Antarctic Ocean ecosystem. In recent years, Antarctic krill has found extensive application in aquaculture, emerging as a sustainable source of aquafeed with ideal nutritional profiles. However, a comprehensive study focused on the detailed effects of dietary Antarctic krill on aquaculture animals, especially farmed marine fishes, is yet to be demonstrated. RESULTS: In this study, a comparative experiment was performed using juvenile P. leopardus, fed with diets supplemented with Antarctic krill (the krill group) or without Antarctic krill (the control group). Histological observation revealed that dietary Antarctic krill could reduce lipid accumulation in the liver while the intestine exhibited no obvious changes. Enzyme activity measurements demonstrated that dietary Antarctic krill had an inhibitory effect on oxidative stress in both the intestine and the liver. By comparative transcriptome analysis, a total of 1,597 and 1,161 differentially expressed genes (DEGs) were identified in the intestine and liver, respectively. Functional analysis of the DEGs showed multiple enriched terms significantly related to cholesterol metabolism, antioxidants, and immunity. Furthermore, the expression profiles of representative DEGs, such as dhcr7, apoa4, sc5d, and scarf1, were validated by qRT-PCR and fluorescence in situ hybridization. Finally, a comparative transcriptome analysis was performed to demonstrate the biased effects of dietary Antarctic krill and astaxanthin on the liver of P. leopardus. CONCLUSIONS: Our study demonstrated that dietary Antarctic krill could reduce lipid accumulation in the liver of P. leopardus, enhance antioxidant capacities in both the intestine and liver, and exhibit molecular-level improvements in lipid metabolism, immunity, and antioxidants. It will contribute to understanding the protective effects of Antarctic krill in P. leopardus and provide insights into aquaculture nutritional strategies.


Assuntos
Bass , Euphausiacea , Animais , Antioxidantes , Euphausiacea/genética , Ecossistema , Hibridização in Situ Fluorescente , Perfilação da Expressão Gênica , Dieta , Bass/genética , Lipídeos , Regiões Antárticas
19.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396751

RESUMO

Chitin deacetylase (CDA) can catalyze the deacetylation of chitin to produce chitosan. In this study, we identified and characterized a chitin deacetylase gene from Euphausia superba (EsCDA-9k), and a soluble recombinant protein chitin deacetylase from Euphausia superba of molecular weight 45 kDa was cloned, expressed, and purified. The full-length cDNA sequence of EsCDA-9k was 1068 bp long and encoded 355 amino acid residues that contained the typical domain structure of carbohydrate esterase family 4. The predicted three-dimensional structure of EsCDA-9k showed a 67.32% homology with Penaeus monodon. Recombinant chitin deacetylase had the highest activity at 40 °C and pH 8.0 in Tris-HCl buffer. The enzyme activity was enhanced by metal ions Co2+, Fe3+, Ca2+, and Na+, while it was inhibited by Zn2+, Ba2+, Mg2+, and EDTA. Molecular simulation of EsCDA-9k was conducted based on sequence alignment and homology modeling. The EsCDA-9k F18G mutant showed a 1.6-fold higher activity than the wild-type enzyme. In summary, this is the first report of the cloning and heterologous expression of the chitin deacetylase gene in Euphausia superba. The characterization and function study of EsCDA-9k will serve as an important reference point for future application.


Assuntos
Euphausiacea , Animais , Clonagem Molecular , Alinhamento de Sequência , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Amidoidrolases/metabolismo , Quitina
20.
Proc Biol Sci ; 291(2017): 20232461, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38378145

RESUMO

In the marine environment, dynamic physical processes shape biological productivity and predator-prey interactions across multiple scales. Identifying pathways of physical-biological coupling is fundamental to understand the functioning of marine ecosystems yet it is challenging because the interactions are difficult to measure. We examined submesoscale (less than 100 km) surface current features using remote sensing techniques alongside ship-based surveys of krill and baleen whale distributions in the California Current System. We found that aggregative surface current features, represented by Lagrangian coherent structures (LCS) integrated over temporal scales between 2 and 10 days, were associated with increased (a) krill density (up to 2.6 times more dense), (b) baleen whale presence (up to 8.3 times more likely) and (c) subsurface seawater density (at depths up to 10 m). The link between physical oceanography, krill density and krill-predator distributions suggests that LCS are important features that drive the flux of energy and nutrients across trophic levels. Our results may help inform dynamic management strategies aimed at reducing large whales ship strikes and help assess the potential impacts of environmental change on this critical ecosystem.


Assuntos
Euphausiacea , Baleias , Animais , Ecossistema , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA