Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Plant ; 17(7): 1073-1089, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38807367

RESUMO

The gray mold fungus Botrytis cinerea is a necrotrophic pathogen that causes diseases in hundreds of plant species, including high-value crops. Its polyxenous nature and pathogenic success are due to its ability to perceive host signals in its favor. In this study, we found that laticifer cells of Euphorbia lathyris are a source of susceptibility factors required by B. cinerea to cause disease. Consequently, poor-in-latex (pil) mutants, which lack laticifer cells, show full resistance to this pathogen, whereas lot-of-latex mutants, which produce more laticifer cells, are hypersusceptible. These S factors are triterpenoid saponins, which are widely distributed natural products of vast structural diversity. The downregulation of laticifer-specific oxydosqualene cyclase genes, which encode the first committed step enzymes for triterpene and, therefore, saponin biosynthesis, conferred disease resistance to B. cinerea. Likewise, the Medicago truncatula lha-1 mutant, compromised in triterpenoid saponin biosynthesis, showed enhanced resistance. Interestingly, the application of different purified triterpenoid saponins pharmacologically complemented the disease-resistant phenotype of pil and hla-1 mutants and enhanced disease susceptibility in different plant species. We found that triterpenoid saponins function as plant cues that signal transcriptional reprogramming in B. cinerea, leading to a change in its growth habit and infection strategy, culminating in the abundant formation of infection cushions, the multicellular appressoria apparatus dedicated to plant penetration and biomass destruction in B. cinerea. Taken together, these results provide an explanation for how plant triterpenoid saponins function as disease susceptibility factors to promote B. cinerea pathogenicity.


Assuntos
Botrytis , Doenças das Plantas , Saponinas , Triterpenos , Botrytis/patogenicidade , Saponinas/farmacologia , Saponinas/metabolismo , Doenças das Plantas/microbiologia , Triterpenos/metabolismo , Triterpenos/farmacologia , Euphorbia/microbiologia , Euphorbia/metabolismo , Resistência à Doença/genética , Medicago truncatula/microbiologia , Medicago truncatula/metabolismo , Medicago truncatula/genética , Mutação , Regulação da Expressão Gênica de Plantas
2.
Chem Biodivers ; 21(6): e202400395, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623912

RESUMO

Endophytic fungi live asymptomatically inside vegetal tissues, and such uncommon habitat contributes to their exceptional chemical diversity. Isolating natural products from endophytic fungi could fail due to silent biosynthetic gene clusters under ordinary in vitro culture conditions, and co-culturing has been assayed to trigger their metabolism. We carried out single and dual cultures with 13 endophyte strains isolated from Euphorbia umbellata leaves. Multivariate statistics applied to untargeted metabolomics compared the chemical profiles of all endophyte cultures. PCA analysis guided the selection of the Aspergillus pseudonomiae J1 - Porogramme brasiliensis J9 dual culture for its most significant chemical differentiation: Five compounds were putatively annotated in the J1-J9 culture according to UHPLC-HRMS data, kojic acid, haliclonol and its diastereoisomer, caffeic acid, and 2-(3,4-dihydroxyphenyl)acetaldehyde. Analysis by PLS-DA using VIP score showed that kojic acid displayed the most significative importance in discriminating single and dual J1-J9 cultures.


Assuntos
Endófitos , Euphorbia , Metabolômica , Euphorbia/química , Euphorbia/microbiologia , Endófitos/química , Endófitos/metabolismo , Endófitos/isolamento & purificação , Folhas de Planta/microbiologia , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão , Pironas/química , Pironas/isolamento & purificação , Pironas/metabolismo , Aspergillus/metabolismo , Aspergillus/química , Aspergillus/isolamento & purificação
3.
Syst Appl Microbiol ; 47(2-3): 126489, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325043

RESUMO

Curtobacterium flaccumfaciens (Microbacteriaceae), a plant-pathogenic coryneform species includes five pathovars with valid names and a number of proposed - but unvalidated - new members. In this study, phenotypic features and DNA similarity indexes were investigated among all C. flaccumfaciens members. Results showed that the C. flaccumfaciens pv. poinsettiae strains causing bacterial canker of Euphorbia pulcherrima in the USA as well as the orange-/red-pigmented strains of C. flaccumfaciens pv. flaccumfaciens pathogenic on dry beans in Iran are too distinct from each other and from the type strain of the species to be considered members of C. flaccumfaciens. Hence, the latter two groups were elevated at the species level as C. poinsettiae sp. nov. (ATCC 9682T = CFBP 2403T = ICMP 2566T = LMG 3715T = NCPPB 854T as type strain), and C. aurantiacum sp. nov. (50RT = CFBP 8819T = ICMP 22071T as type strain). Within the emended species C. flaccumfaciens comb. nov., yellow-pigmented strains causing bacterial wilt of dry beans and those causing bacterial canker of Euphorbia pulcherrima in Europe were retained as C. flaccumfaciens pv. flaccumfaciens and C. flaccumfaciens pv. poinsettiae, respectively; while taxonomic position of the sugar beet pathogen C. flaccumfaciens pv. beticola ATCC BAA144PT was confirmed. The newly described onion pathogen C. allii was also reclassified as C. flaccumfaciens pv. allii with the pathotype strain LMG 32517PT. Furthermore, C. flaccumfaciens pv. basellae causing bacterial leaf spot of malabar spinach (Basella rubra) was transferred to C. citreum pv. basellae with ATCC BAA143PT as pathotype.


Assuntos
DNA Bacteriano , Filogenia , Doenças das Plantas , RNA Ribossômico 16S , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Irã (Geográfico) , Euphorbia/microbiologia , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Fabaceae/microbiologia , Fenótipo , Actinomycetaceae/classificação , Actinomycetaceae/genética , Actinomycetaceae/isolamento & purificação , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA