Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.046
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10680, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724608

RESUMO

Bosentan is a drug used to treat pulmonary hypertension via dual endothelial receptor antagonism. Bosentan has a restricted oral bioavailability, a problem that's mostly due to poor solubility and hepatic metabolism. It is extensively used for the elderly and children who require a friendly dosage form like orodispersible tablets. So, the goal of this research work was to hasten the dissolution rate of bosentan to produce an orodispersible tablet with immediate drug release. Bosentan was exposed to ethanol-assisted kneading with a rise of xylitol or menthol concentrations (1:1 and 1:2 molar ratio of bosentan with excipient). In addition to observing the dissolution behavior, the resulting dry products were investigated using Fourier transform infrared spectroscopy (FTIR), differential thermal analysis (DTA), and X-ray diffraction (XRD). The FTIR reflected possible hydrogen bonding with xylitol and menthol. DSC studies reflected a reduction in the enthalpy and Tm. These results with XRD data reflected partial co-amorphization in the case of xylitol and eutaxia in the case of menthol. These modifications were related to an accelerated dissolving rate. The developed systems were fabricated as orodispersible tablets which exhibited immediate release of bosentan. Thus, the current study offered simple co-processing for the preparation of orodispersible bosentan tablets.


Assuntos
Bosentana , Mentol , Solubilidade , Comprimidos , Xilitol , Bosentana/química , Xilitol/química , Mentol/química , Administração Oral , Espectroscopia de Infravermelho com Transformada de Fourier , Liberação Controlada de Fármacos , Difração de Raios X , Excipientes/química , Humanos , Composição de Medicamentos/métodos , Varredura Diferencial de Calorimetria
2.
AAPS PharmSciTech ; 25(5): 107, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730121

RESUMO

Treatment therapies used to manage osteoporosis are associated with severe side effects. So worldwide herbs are widely studied to develop alternative safe & effective treatments. Cissus quadrangularis (CQ) has a significant role in bone health and fracture healing. It is documented that its extracts increase osteoblastic differentiation & mineralization. Currently, Cissus quadrangularis is available in the form of tablets in the market for oral delivery. But these conventional forms are associated with poor bioavailability. There is a need for a novel drug delivery system with improving oral bioavailability. Therefore, a Cissus quadrangularis-loaded self-emulsifying drug delivery system (CQ-SEDDS) was developed which disperses rapidly in the gastrointestinal fluids, yielding nano-emulsions containing a solubilized drug. This solubilized form of the drug can be easily absorbed through lymphatic pathways and bypass the hepatic first-pass effect. The emulsification efficiency, zeta potential, globule size, in-vitro dissolution, ex-vivo, in-vivo and bone marker studies were performed to assess the absorption and permeation potential of CQ incorporated in SEDDS. CQ-SEDDS with excipients Tween 80, Cremophor RH40, Transcutol HP & α-Tocopherol acetate had shown about 76% enhancement in the bioavailability of active constituents of CQ. This study provided the pre-clinical data of CQ-SEDDS using osteoporotic rat model studies.


Assuntos
Disponibilidade Biológica , Cissus , Sistemas de Liberação de Medicamentos , Emulsões , Osteoporose , Animais , Osteoporose/tratamento farmacológico , Ratos , Cissus/química , Sistemas de Liberação de Medicamentos/métodos , Feminino , Administração Oral , Excipientes/química , Solubilidade , Extratos Vegetais/farmacocinética , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Tamanho da Partícula , Ratos Sprague-Dawley
3.
Allergol Immunopathol (Madr) ; 52(3): 60-64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721956

RESUMO

Delayed anaphylaxis after ingestion of red meat because of galactose-alpha-1,3-galactose (alpha-gal) syndrome has increased in recent years. The mechanism involves an immunoglobulin E reaction to alpha-gal, a molecule found in mammalian meat, dairy products, medications and excipients containing mammalian-derived components, and tick salivary glycans. Sensitization occurs due to the bite of a lone star tick and the transmission of alpha-gal molecules into person's bloodstream. We describe a case of alpha-gal syndrome with severe food, drug, and perioperative allergy in which anaphylaxis with hypovolemic shock occurred immediately after an emergency surgical procedure, when a gelatin-containing drug was injected. This case study confirms that the clinical manifestations of alpha-gal syndrome could be different depending on the route of administration, with immediate reactions if an alpha-gal-containing drug is injected and delayed type allergic manifestations occurring several hours after oral intake. The purpose of this report is to highlight the importance of risk communication in case of exposure to medical products and surgical procedures of patients with alpha-gal syndrome and to encourage drug manufacturers to indicate clearly the origin of excipients in product literature.


Assuntos
Anafilaxia , Hipersensibilidade Alimentar , Choque , Humanos , Anafilaxia/diagnóstico , Anafilaxia/terapia , Anafilaxia/etiologia , Hipersensibilidade Alimentar/diagnóstico , Hipersensibilidade Alimentar/complicações , Hipersensibilidade Alimentar/imunologia , Choque/etiologia , Choque/diagnóstico , Hipersensibilidade a Drogas/diagnóstico , Hipersensibilidade a Drogas/terapia , Masculino , Animais , Imunoglobulina E/imunologia , Excipientes/efeitos adversos , Dissacarídeos/imunologia , Dissacarídeos/efeitos adversos , Feminino , Trissacarídeos/imunologia , Gelatina/efeitos adversos , Síndrome
4.
Pak J Pharm Sci ; 37(1): 43-52, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741399

RESUMO

Drug-resistant malaria is a global risk to the modern world. Artremisinin (ART) is one of the drugs of choice against drug-resistant (malaria) which is practically insoluble in water. The objective of our study was to improve the solubility of artemisinin (ART) via development of binary complexes of ART with sulfobutylether ß-cyclodextrins (SBE7 ß-CD), sulfobutylether ß-cyclodextrins (SBE7 ß-CD) and oleic acid (ternary complexes). These are prepared in various drugs to excipients ratios by physical mixing (PM) and solvent evaporation (SE) methods. Characterizations were achieved by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and attenuated total reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. The aqueous-solubility in binary complexes was 12-folds enhanced than ternary complexes. Dissolution of binary and ternary complexes of artemisinin in simulated gastric fluid (pH 1.6) was found highest and 35 times higher for ternary SECx. The crystallinity of artemisinin was decreased in physical mixtures (PMs) while SECx exhibited displaced angles. The attenuated-intensity of SECx showed least peak numbers with more displaced-angles. SEM images of PMs and SECx showed reduced particle size in binary and ternary systems as compared to pure drug-particles. ATR-FTIR spectra of binary and ternary complexes revealed bonding interactions among artemisinin, SBE7 ß-CD and oleic acid.


Assuntos
Artemisininas , Ácido Oleico , Solubilidade , Difração de Raios X , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Artemisininas/química , Ácido Oleico/química , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia Eletrônica de Varredura , Antimaláricos/química , Excipientes/química , Composição de Medicamentos
5.
Pak J Pharm Sci ; 37(1): 115-121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741407

RESUMO

Migraine is one of the common neurological disease affecting around 23% of the Pakistani population. Prompt treatment is required to regain the functional ability of patients. The present study was designed to develop sumatriptan succinate orodispersible tablets that would quickly overcome acute migraine episodes using 22 full-factorial design. The chitosan and sodium starch glycolate were taken as independent variables; friability, disintegration, dispersion time and water absorption ratio as response variables. Eight trial formulations were generated by Design Expert® software. The main effect plots were used to check the interaction of formulations with response variables. All trial formulations showed good micromeritic properties in terms of angle of repose (19.59o-24.57°), Carr's index (17.08-24.90%) and Hausner's ratio (1.20-1.33). The tablets wetted quickly (17.1- 39 sec) in dispersion medium, showed higher water absorption ratio (188-341 sec) and disintegrated quickly (13-20 sec) with an excellent dissolution rate (94-99%). The main effect plots show interactions between the independent variables against most of the study responses. A 22 full-factorial model was found to be effective in studying the influence of formulation variables on response parameters. Both chitosan and sodium starch glycolate can be used in combination to fabricate an effective orodispersible formulation of sumatriptan succinate.


Assuntos
Quitosana , Transtornos de Enxaqueca , Amido , Sumatriptana , Comprimidos , Sumatriptana/administração & dosagem , Sumatriptana/química , Transtornos de Enxaqueca/tratamento farmacológico , Amido/química , Amido/análogos & derivados , Amido/administração & dosagem , Quitosana/química , Humanos , Administração Oral , Solubilidade , Composição de Medicamentos , Química Farmacêutica , Excipientes/química
6.
Zhongguo Zhong Yao Za Zhi ; 49(3): 607-617, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621864

RESUMO

This study aims to optimize the composite excipients suitable for the preparation of concentrated water pills of personalized traditional Chinese medicine prescriptions by the extruding-rounding method and investigate the roles of each excipient in the preparation process. The fiber materials and powder materials were taken as the standard materials suitable as excipients in the preparation of personalized concentrated water pills without excipient. Water absorption properties and torque rheology were used as indicators for selecting the materials of composite excipients. The ratio of composite excipients was optimized by D-optimal mixture design. Moreover, to demonstrate the universal applicability of the optimal composite excipients, this study selected three traditional Chinese medicine prescriptions with low, medium, and high extraction rates to verify the optimal ratio. Finally, the effects of each selected excipient on the molding of personalized concentrated water pills were investigated with the four parameters of the pill molding quality as indicators. The optimized composite excipients were dextrin∶microcrystalline cellulose(MCC)∶low-substituted hydroxypropyl cellulose(L-HPC) at a ratio of 1∶2∶4. The composite excipients were used for the preparation of personalized concentrated water pills with stable process, good quality, and a wide range of application. Dextrin acted as a diluent and accelerated the speed of extruding. MCC mainly served as an adhesive, increasing the cohesion and viscosity of the pills. L-HPC as a water absorbent and disintegrating agent can absorb and hold the water of the concentrate and has a strong disintegration effect.


Assuntos
Medicamentos de Ervas Chinesas , Excipientes , Excipientes/química , Medicina Tradicional Chinesa , Água/química , Medicamentos de Ervas Chinesas/química
7.
Zhongguo Zhong Yao Za Zhi ; 49(3): 618-624, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621865

RESUMO

In the process of preparing presonalized concentrated watered pills, the decoction needs to be concentrated by heat and mixed with medicinal slices or powder to prepare a wet mass. However, some of the traditional Chinese medicine(TCM) components are easily decomposed or transformed by heat. In order to optimize the preparation process of presonalized TCM concentrated watered pills and reduce the loss of heat-unstable components in prescriptions, this study uses five compound TCM prescriptions containing heat-unstable components as model prescriptions, namely the Linggui Zhugan Formula, Xiaochengqi Formula, Sanpian Formula, Xiaoer Qixing Formula, and Xiaoyao Formula. Based on the two kinds of preparation process of presonalized concentrated watered pills previously established by our research group, whole extract concentrated watered pills and concentrated watered pills without excipients are prepared, respectively. Characteristic maps are measured and compared with those of the corresponding decoction. The results show that the characteristic maps of the concentrated watered pills without excipients of the five model prescriptions are very close to those of the decoction, and the number of characteristic peaks and peak areas are higher than those of whole extract concentrated watered pills. In addition, the peak area of some peaks is higher than that of the corresponding decoction. Thus, it is recommended to select the preparation process of prescription-based concentrated watered pills without excipients based on the "unification of medicines and excipients" to preserve those heat-unstable components more effectively when the prescription contains a heat-unstable component of TCM. This study provides a basis for the subsequent reasonable development and application of presonalized TCM pills.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Excipientes , Temperatura Alta , Prescrições
8.
AAPS PharmSciTech ; 25(5): 90, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649513

RESUMO

To formulate and optimize Ozenoxacin nano-emulsion using Quality by Design (QbD) concept by means of Box-Behnken Design (BBD) and converting it to a gel to form Ozenoxacin nano-emulgel followed by physico-chemical, in-vitro, ex-vivo and in-vivo evaluation. This study demonstrates the application of QbD methodology for the development and optimization of an effective topical nanoemulgel formulation for the treatment of Impetigo focusing on the selection of appropriate excipients, optimization of formulation and process variables, and characterization of critical quality attributes. BBD was used to study the effect of "% of oil, % of Smix and homogenization speed" on critical quality attributes "globule size and % entrapment efficiency" for the optimisation of Ozenoxacin Nano-emulsion. Ozenoxacin loaded nano-emulgel was characterized for "description, identification, pH, specific gravity, amplitude sweep, viscosity, assay, organic impurities, antimicrobial effectiveness testing, in-vitro release testing, ex-vivo permeation testing, skin retention and in-vivo anti-bacterial activity". In-vitro release and ex-vivo permeation, skin retention and in-vivo anti-bacterial activity were found to be significantly (p < 0.01) higher for the nano-emulgel formulation compared to the innovator formulation (OZANEX™). Antimicrobial effectiveness testing was performed and found that even at 70% label claim of benzoic acid is effective to inhibit microbial growth in the drug product. The systematic application of QbD principles facilitated the successful development and optimization of a Ozenoxacin Nano-Emulsion. Optimised Ozenoxacin Nano-Emulgel can be considered as an effective alternative and found to be stable at least for 6 months at 40 °C / 75% RH and 30 °C / 75% RH.


Assuntos
Antibacterianos , Emulsões , Impetigo , Quinolonas , Animais , Impetigo/tratamento farmacológico , Camundongos , Quinolonas/administração & dosagem , Quinolonas/química , Quinolonas/farmacologia , Quinolonas/farmacocinética , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Emulsões/química , Nanopartículas/química , Géis/química , Química Farmacêutica/métodos , Modelos Animais de Doenças , Aminopiridinas/administração & dosagem , Aminopiridinas/farmacologia , Aminopiridinas/química , Aminopiridinas/farmacocinética , Excipientes/química , Pele/efeitos dos fármacos , Pele/metabolismo , Testes de Sensibilidade Microbiana/métodos , Absorção Cutânea/efeitos dos fármacos , Administração Tópica , Viscosidade , Composição de Medicamentos/métodos
9.
Int J Pharm ; 656: 124084, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38580072

RESUMO

In this study, a compartmental disintegration and dissolution model is proposed for the prediction and evaluation of the dissolution performance of directly compressed tablets. This dissolution model uses three compartments (Bound, Disintegrated, and Dissolved) to describe the state of each particle of active pharmaceutical ingredient. The disintegration of the tablet is captured by three fitting parameters. Two disintegration parameters, ß0 and ßt,0, describe the initial disintegration rate and the change in disintegration rate, respectively. A third parameter, α, describes the effect of the volume of dissolved drug on the disintegration process. As the tablet disintegrates, particles become available for dissolution. The dissolution rate is determined by the Nernst-Brunner equation, whilst taking into account the hydrodynamic effects within the vessel of a USP II (paddle) apparatus. This model uses the raw material properties of the active pharmaceutical ingredient (solubility, particle size distribution, true density), lending it towards early development activities during which time the amount of drug substance available may be limited. Additionally, the strong correlations between the fitting parameters and the tablet porosity indicate the potential to isolate the manufacturing effects and thus implement the model as part of a real-time release testing strategy for a continuous direct compression line.


Assuntos
Liberação Controlada de Fármacos , Tamanho da Partícula , Solubilidade , Comprimidos , Porosidade , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Excipientes/química , Modelos Químicos
10.
Int J Pharm ; 656: 124100, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609059

RESUMO

Transferring an existing marketed pharmaceutical product from batch to continuous manufacturing (CM) without changes in regulatory registration is a challenging task in the pharmaceutical industry. Continuous manufacturing can provide an increased production rate and better equipment utilisation while retaining key quality attributes of the final product. Continuous manufacturing necessitates the monitoring of critical quality attributes in real time by appropriate process analytical tools such as near infra-red (NIR) probes. The present work reports a successful transfer of an existing drug product from batch to continuous manufacturing process without changing the formulation. A key step was continuous powder blending, whose design and operating parameters including weir type, agitation rate, dynamic hold-up and residence time were systematically investigated with respect to process repeatability. A NIR-based multivariate data model for in-line composition monitoring has been developed and validated against an existing quality control method for measuring tablet content uniformity. A continuous manufacturing long-run with a throughput of 30 kg/h (approx. 128,000 tablets per hour), uninterrupted for 320 min, has been performed to test and validate the multivariate data model as well as the batch to continuous process transfer. The final disintegration and dissolution properties of tablets manufactured by the continuous process were found to be equivalent to those manufactured by the original batch process.


Assuntos
Comprimidos , Tecnologia Farmacêutica , Tecnologia Farmacêutica/métodos , Composição de Medicamentos/métodos , Controle de Qualidade , Pós/química , Química Farmacêutica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Excipientes/química , Solubilidade , Liberação Controlada de Fármacos
11.
Int J Pharm ; 656: 124116, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615803

RESUMO

Inhalation of pharmaceutical aerosol formulations is widely used to treat respiratory diseases. Spatially resolved thermal characterization offers promise for better understanding drug release rates from particles; however, this has been an analytical challenge due to the small particle size (from a few micrometers down to nanometers) and the complex composition of the formulations. Here, we employ nano-thermal analysis (nanoTA) to probe the nanothermal domain of a pharmaceutical aerosol formulation containing a mixture of fluticasone propionate (FP), salmeterol xinafoate (SX), and excipient lactose, which is widely used to treat asthma and chronic obstructive pulmonary disease (COPD). Furthermore, atomic force microscopy-infrared spectroscopy (AFM-IR) and AFM force measurements are performed to provide nanochemical and nanomechanical information to complement the nanothermal data. The colocalized thermal and chemical mapping clearly reveals the surface heterogeneity of the drugs in the aerosol particles and demonstrates the contribution of the surface chemical composition to the variation in the thermal properties of the particles. We present a powerful analytical approach for in-depth characterization of thermal/chemical/morphological properties of dry powder inhaler particles at micro- and nanometer scales. This approach can be used to facilitate the comparison between generics and reference inhalation products and further the development of high-performance pharmaceutical formulations.


Assuntos
Aerossóis , Inaladores de Pó Seco , Fluticasona , Lactose , Microscopia de Força Atômica , Tamanho da Partícula , Pós , Xinafoato de Salmeterol , Fluticasona/química , Fluticasona/administração & dosagem , Xinafoato de Salmeterol/química , Xinafoato de Salmeterol/administração & dosagem , Lactose/química , Microscopia de Força Atômica/métodos , Excipientes/química , Administração por Inalação , Broncodilatadores/administração & dosagem , Broncodilatadores/química , Espectrofotometria Infravermelho/métodos , Química Farmacêutica/métodos , Propriedades de Superfície
12.
AAPS PharmSciTech ; 25(4): 76, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580881

RESUMO

For liquid drug products, e.g., solutions or suspensions for oral or parenteral dosing, stability needs to be demonstrated in primary packaging during storage and in dosing devices during in-use periods per quality guidelines from the International Conference on Harmonisation (ICH) and the European Agency for the Evaluation of Medicinal Products (EMEA). One aspect of stability testing for liquid drug products is in-use stability, which typically includes transferring the liquid samples into another container for further sample preparation with extraction diluent and necessary agitation. Samples are then analyzed with traditional chromatography methods, which are laborious, prone to human errors, and time-consuming, especially when this process needs to be repeated multiple times during storage and in-use periods. Being able to analyze the liquid samples non-destructively would significantly improve testing efficiency. We investigated different Raman techniques, including transmission Raman (TRS) and back scatter Raman with a non-contact optic (NCO) probe, as alternative non-destructive tools to the UHPLC method for API quantitation in in-use liquid samples pulled into plastic dosing syringes. The linearity of the chemometric methods for these two techniques was demonstrated by cross-validation sample sets at three levels over an API concentration range of 60 to 80 mg/mL. The accuracy of the chemometric models was demonstrated by the accurate prediction of the API concentrations in independent samples from four different pilot plant batches manufactured at different sites. Both techniques were successful in measuring a signal through a plastic oral dosing syringe, and predicting the suspension API concentration to within 4% of the UHPLC-measured value. For future work, there are opportunities to improve the methodology by exploring additional probes or to expand the range of applications by using different sample presentations (such as prefilled syringes) or formulation matrices for solutions and suspensions.


Assuntos
Princípios Ativos , Seringas , Humanos , Embalagem de Medicamentos , Suspensões , Excipientes
13.
AAPS PharmSciTech ; 25(4): 79, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589718

RESUMO

The development of suitable dosage forms is essential for an effective pharmacological treatment in children. Orally disintegrating tablets (ODTs) are attractive dosage forms that avoid swallowing problems, ensure dosage accuracy and are easy to administer as they disintegrate in the oral cavity. This study aimed to develop ODTs containing losartan potassium (LP) for the treatment of arterial hypertension in children. The ODTs, produced by the cost-effective manufacturing process of direct compression, consisted of a mixture of diluent, superdisintegrant, glidant and lubricant. Five superdisintegrants (croscarmellose sodium, two grades of crospovidone, sodium starch glycolate and pregelatinized starch) were tested (at two concentrations), and combined with three diluents (mannitol, lactose and sorbitol). Thus, thirty formulations were evaluated based on disintegration time, hardness and friability. Two formulations, exhibiting the best results concerning disintegration time (< 30 s), hardness and friability (≤ 1.0%), were selected as the most promising ones for further evaluation. These ODTs presented favourable drug-excipient compatibility, tabletability and flow properties. The in vitro dissolution studies demonstrated 'very rapid' drug release. Preliminary stability studies highlighted the requirement of a protective packaging. All quality properties retained appropriate results after 12 months of storage in airtight containers. In conclusion, the ODTs were successfully developed and characterised, suggesting a potential means to accomplish a final prototype that enables an improvement in childhood arterial hypertension treatment.


Assuntos
Hipertensão , Losartan , Humanos , Criança , Análise Custo-Benefício , Solubilidade , Administração Oral , Composição de Medicamentos/métodos , Excipientes , Hipertensão/tratamento farmacológico , Comprimidos , Dureza
14.
AAPS PharmSciTech ; 25(4): 81, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600252

RESUMO

MALCORE®, a novel manufacturing technology for drug-containing particles (DCPs), relies on the melt granulation method to produce spherical particles with high drug content. The crucial aspect of particle preparation through MALCORE® involves utilizing polymers that dissolve in the melt component, thereby enhancing viscosity upon heating. However, only aminoalkyl methacrylate copolymer E (AMCE) has been previously utilized. Therefore, this study aims to discover other polymers and comprehend the essential properties these polymers need to possess. The results showed that polyvinylpyrrolidone (PVP) was soluble in the stearic acid (SA) melt component. FTIR examination revealed no interaction between SA and polymer. The phase diagram was used to analyze the state of the SA and polymer mixture during heating. It revealed the mixing ratio and temperature range where the mixture remained in a liquid state. The viscosity of the mixture depended on the quantity and molecular weight of the polymer dissolved in SA. Furthermore, the DCPs prepared using PVP via MALCORE® exhibited similar pharmaceutical properties to those prepared with AMCE. In conclusion, understanding the properties required for polymers in the melt granulation process of MALCORE® allows for the optimization of manufacturing conditions, such as temperature and mixing ratios, for efficient and consistent drug layering.


Assuntos
Polímeros , Povidona , Tecnologia Farmacêutica/métodos , Temperatura , Excipientes , Tecnologia , Metacrilatos , Composição de Medicamentos/métodos , Solubilidade
15.
AAPS PharmSciTech ; 25(5): 88, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637407

RESUMO

Although biopharmaceuticals constitute around 10% of the drug landscape, eight of the ten top-selling products were biopharmaceuticals in 2023. This study did a comprehensive analysis of the FDA's Purple Book database. Firstly, our research uncovered market trends and provided insights into biologics distributions. According to the investigation, although biotechnology has advanced and legislative shifts have made the approval process faster, there are still challenges to overcome, such as molecular instability and formulation design. Moreover, our research comprehensively analyzed biological formulations, pointing out significant strategies regarding administration routes, dosage forms, product packaging, and excipients. In conjunction with biologics, the widespread integration of innovative delivery strategies will be implemented to confront the evolving challenges in healthcare and meet an expanding array of treatment needs.


Assuntos
Produtos Biológicos , Excipientes , Estados Unidos , Preparações Farmacêuticas , United States Food and Drug Administration , Aprovação de Drogas
16.
Clin Chem ; 70(4): 683-684, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565211
17.
AMA J Ethics ; 26(4): E289-294, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564743

RESUMO

This commentary responds to a case about diethylene glycol-contaminated glycerin in cough syrup. Glycerin is a commonly used excipient in medicines to improve texture and taste. Excipients are typically pharmacologically inactive ingredients contained in prescription and over-the-counter drugs that play a critical role in the delivery, effectiveness, and stability of active drug substances. The commentary first canvasses how contaminants enter the excipient supply chains. One way is by misleading labeling or intentional adulteration by manufacturers or suppliers. Another way is by human or systemic error. This commentary then discusses quality control testing and suggests the ethical and clinical importance of increased transparency in excipient supply chains.


Assuntos
Excipientes , Glicerol , Criança , Humanos , Excipientes/efeitos adversos , Preparações Farmacêuticas , Contaminação de Medicamentos , Tosse/tratamento farmacológico
18.
Anal Chem ; 96(17): 6746-6755, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38632675

RESUMO

Nonionic surfactant excipients (NISEs) are commonly added to biologics formulations to mitigate the effects of stress incurred by the active biotherapeutic during manufacturing, transport, and storage. During manufacturing, NISEs are added by dilution of a stock solution directly into a protein formulation, and their accurate addition is critical in maintaining the quality and integrity of the drug product and thus ensuring patient safety. This is especially true for the common NISEs, polysorbates 20 and 80 (PS20 and PS80, respectively) and poloxamer 188 (P188). With the increasing diversity of biologic modalities within modern pharmaceutical pipelines, there is thus a critical need to develop and deploy convenient and user-accessible analytical techniques that can rapidly and reliably quantify these NISEs under biopharmaceutically relevant conditions. We thus pursued 60 MHz benchtop quantitative NMR (qNMR) as a nondestructive and user-friendly analytical technique for the quantification of PS20, PS80, and P188 under such conditions. We demonstrated the ability of benchtop qNMR (1) to quantify simulated PS20, PS80, and P188 stock solutions representative of those used during the drug substance (DS) formulation step in biomanufacturing and (2) to quantify these NISEs at and below their target concentrations (≤0.025% w/v) directly in biologics formulations containing histidine, sucrose, and one of three biotherapeutic modalities (monoclonal antibody, antibody-drug conjugate, and Fc-fusion protein). Our results demonstrate that benchtop qNMR offers a fit-for-purpose, reliable, user-friendly, and green analytical route by which NISE of interest to the biopharmaceutical industry may be readily and reliably quantified. We conclude that benchtop qNMR has the potential to be applied to other excipient formulation components in the presence of various biological modalities as well as the potential for routine integration within analytical and QC laboratories across pharmaceutical development and manufacturing sites.


Assuntos
Excipientes , Espectroscopia de Ressonância Magnética , Tensoativos , Tensoativos/química , Excipientes/química , Excipientes/análise , Espectroscopia de Ressonância Magnética/métodos , Polissorbatos/química , Poloxâmero/química , Produtos Biológicos/química , Produtos Biológicos/análise
20.
Mol Pharm ; 21(5): 2484-2500, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38647432

RESUMO

Excipients are ubiquitous in pharmaceutical products, and often, they can also play a critical role in maintaining product quality. For a product containing a moisture-sensitive drug, moisture can be deleterious to the product stability during storage. Therefore, using excipients that interact with moisture in situ can potentially alleviate product stability issues. In this study, the interactive behavior of starch with moisture was augmented by coprocessing maize starch with sodium chloride (NaCl) or magnesium nitrate hexahydrate [Mg(NO3)2·6H2O] at different concentrations (5 and 10%, w/w). The effect of the formulation on drug stability was assessed through the degradation of acetylsalicylic acid, which was used as the model drug. The results showed that coprocessing of the starch with either NaCl or Mg(NO3)2·6H2O impacted the number of water molecule binding sites on the starch and how the sorbed moisture was distributed. The coprocessed excipients also resulted in lower drug degradation and lesser changes in tablet tensile strength during post-compaction storage. However, corresponding tablet formulations containing physical mixtures of starch and salts did not yield promising outcomes. This study demonstrated the advantageous concomitant use of common excipients by coprocessing to synergistically mitigate the adverse effects of moisture and promote product stability when formulating a moisture-sensitive drug. In addition, the findings could help to improve the understanding of moisture-excipient interactions and allow for the judicious choice of excipients when designing formulations containing moisture-sensitive drugs.


Assuntos
Estabilidade de Medicamentos , Excipientes , Amido , Comprimidos , Resistência à Tração , Excipientes/química , Amido/química , Comprimidos/química , Água/química , Química Farmacêutica/métodos , Cloreto de Sódio/química , Composição de Medicamentos/métodos , Aspirina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA