Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.313
Filtrar
1.
Sci Rep ; 14(1): 10680, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724608

RESUMO

Bosentan is a drug used to treat pulmonary hypertension via dual endothelial receptor antagonism. Bosentan has a restricted oral bioavailability, a problem that's mostly due to poor solubility and hepatic metabolism. It is extensively used for the elderly and children who require a friendly dosage form like orodispersible tablets. So, the goal of this research work was to hasten the dissolution rate of bosentan to produce an orodispersible tablet with immediate drug release. Bosentan was exposed to ethanol-assisted kneading with a rise of xylitol or menthol concentrations (1:1 and 1:2 molar ratio of bosentan with excipient). In addition to observing the dissolution behavior, the resulting dry products were investigated using Fourier transform infrared spectroscopy (FTIR), differential thermal analysis (DTA), and X-ray diffraction (XRD). The FTIR reflected possible hydrogen bonding with xylitol and menthol. DSC studies reflected a reduction in the enthalpy and Tm. These results with XRD data reflected partial co-amorphization in the case of xylitol and eutaxia in the case of menthol. These modifications were related to an accelerated dissolving rate. The developed systems were fabricated as orodispersible tablets which exhibited immediate release of bosentan. Thus, the current study offered simple co-processing for the preparation of orodispersible bosentan tablets.


Assuntos
Bosentana , Mentol , Solubilidade , Comprimidos , Xilitol , Bosentana/química , Xilitol/química , Mentol/química , Administração Oral , Espectroscopia de Infravermelho com Transformada de Fourier , Liberação Controlada de Fármacos , Difração de Raios X , Excipientes/química , Humanos , Composição de Medicamentos/métodos , Varredura Diferencial de Calorimetria
2.
AAPS PharmSciTech ; 25(5): 107, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730121

RESUMO

Treatment therapies used to manage osteoporosis are associated with severe side effects. So worldwide herbs are widely studied to develop alternative safe & effective treatments. Cissus quadrangularis (CQ) has a significant role in bone health and fracture healing. It is documented that its extracts increase osteoblastic differentiation & mineralization. Currently, Cissus quadrangularis is available in the form of tablets in the market for oral delivery. But these conventional forms are associated with poor bioavailability. There is a need for a novel drug delivery system with improving oral bioavailability. Therefore, a Cissus quadrangularis-loaded self-emulsifying drug delivery system (CQ-SEDDS) was developed which disperses rapidly in the gastrointestinal fluids, yielding nano-emulsions containing a solubilized drug. This solubilized form of the drug can be easily absorbed through lymphatic pathways and bypass the hepatic first-pass effect. The emulsification efficiency, zeta potential, globule size, in-vitro dissolution, ex-vivo, in-vivo and bone marker studies were performed to assess the absorption and permeation potential of CQ incorporated in SEDDS. CQ-SEDDS with excipients Tween 80, Cremophor RH40, Transcutol HP & α-Tocopherol acetate had shown about 76% enhancement in the bioavailability of active constituents of CQ. This study provided the pre-clinical data of CQ-SEDDS using osteoporotic rat model studies.


Assuntos
Disponibilidade Biológica , Cissus , Sistemas de Liberação de Medicamentos , Emulsões , Osteoporose , Animais , Osteoporose/tratamento farmacológico , Ratos , Cissus/química , Sistemas de Liberação de Medicamentos/métodos , Feminino , Administração Oral , Excipientes/química , Solubilidade , Extratos Vegetais/farmacocinética , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Tamanho da Partícula , Ratos Sprague-Dawley
3.
Pak J Pharm Sci ; 37(1): 43-52, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741399

RESUMO

Drug-resistant malaria is a global risk to the modern world. Artremisinin (ART) is one of the drugs of choice against drug-resistant (malaria) which is practically insoluble in water. The objective of our study was to improve the solubility of artemisinin (ART) via development of binary complexes of ART with sulfobutylether ß-cyclodextrins (SBE7 ß-CD), sulfobutylether ß-cyclodextrins (SBE7 ß-CD) and oleic acid (ternary complexes). These are prepared in various drugs to excipients ratios by physical mixing (PM) and solvent evaporation (SE) methods. Characterizations were achieved by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and attenuated total reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. The aqueous-solubility in binary complexes was 12-folds enhanced than ternary complexes. Dissolution of binary and ternary complexes of artemisinin in simulated gastric fluid (pH 1.6) was found highest and 35 times higher for ternary SECx. The crystallinity of artemisinin was decreased in physical mixtures (PMs) while SECx exhibited displaced angles. The attenuated-intensity of SECx showed least peak numbers with more displaced-angles. SEM images of PMs and SECx showed reduced particle size in binary and ternary systems as compared to pure drug-particles. ATR-FTIR spectra of binary and ternary complexes revealed bonding interactions among artemisinin, SBE7 ß-CD and oleic acid.


Assuntos
Artemisininas , Ácido Oleico , Solubilidade , Difração de Raios X , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Artemisininas/química , Ácido Oleico/química , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia Eletrônica de Varredura , Antimaláricos/química , Excipientes/química , Composição de Medicamentos
4.
Pak J Pharm Sci ; 37(1): 115-121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741407

RESUMO

Migraine is one of the common neurological disease affecting around 23% of the Pakistani population. Prompt treatment is required to regain the functional ability of patients. The present study was designed to develop sumatriptan succinate orodispersible tablets that would quickly overcome acute migraine episodes using 22 full-factorial design. The chitosan and sodium starch glycolate were taken as independent variables; friability, disintegration, dispersion time and water absorption ratio as response variables. Eight trial formulations were generated by Design Expert® software. The main effect plots were used to check the interaction of formulations with response variables. All trial formulations showed good micromeritic properties in terms of angle of repose (19.59o-24.57°), Carr's index (17.08-24.90%) and Hausner's ratio (1.20-1.33). The tablets wetted quickly (17.1- 39 sec) in dispersion medium, showed higher water absorption ratio (188-341 sec) and disintegrated quickly (13-20 sec) with an excellent dissolution rate (94-99%). The main effect plots show interactions between the independent variables against most of the study responses. A 22 full-factorial model was found to be effective in studying the influence of formulation variables on response parameters. Both chitosan and sodium starch glycolate can be used in combination to fabricate an effective orodispersible formulation of sumatriptan succinate.


Assuntos
Quitosana , Transtornos de Enxaqueca , Amido , Sumatriptana , Comprimidos , Sumatriptana/administração & dosagem , Sumatriptana/química , Transtornos de Enxaqueca/tratamento farmacológico , Amido/química , Amido/análogos & derivados , Amido/administração & dosagem , Quitosana/química , Humanos , Administração Oral , Solubilidade , Composição de Medicamentos , Química Farmacêutica , Excipientes/química
5.
Zhongguo Zhong Yao Za Zhi ; 49(3): 607-617, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621864

RESUMO

This study aims to optimize the composite excipients suitable for the preparation of concentrated water pills of personalized traditional Chinese medicine prescriptions by the extruding-rounding method and investigate the roles of each excipient in the preparation process. The fiber materials and powder materials were taken as the standard materials suitable as excipients in the preparation of personalized concentrated water pills without excipient. Water absorption properties and torque rheology were used as indicators for selecting the materials of composite excipients. The ratio of composite excipients was optimized by D-optimal mixture design. Moreover, to demonstrate the universal applicability of the optimal composite excipients, this study selected three traditional Chinese medicine prescriptions with low, medium, and high extraction rates to verify the optimal ratio. Finally, the effects of each selected excipient on the molding of personalized concentrated water pills were investigated with the four parameters of the pill molding quality as indicators. The optimized composite excipients were dextrin∶microcrystalline cellulose(MCC)∶low-substituted hydroxypropyl cellulose(L-HPC) at a ratio of 1∶2∶4. The composite excipients were used for the preparation of personalized concentrated water pills with stable process, good quality, and a wide range of application. Dextrin acted as a diluent and accelerated the speed of extruding. MCC mainly served as an adhesive, increasing the cohesion and viscosity of the pills. L-HPC as a water absorbent and disintegrating agent can absorb and hold the water of the concentrate and has a strong disintegration effect.


Assuntos
Medicamentos de Ervas Chinesas , Excipientes , Excipientes/química , Medicina Tradicional Chinesa , Água/química , Medicamentos de Ervas Chinesas/química
6.
AAPS PharmSciTech ; 25(5): 90, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649513

RESUMO

To formulate and optimize Ozenoxacin nano-emulsion using Quality by Design (QbD) concept by means of Box-Behnken Design (BBD) and converting it to a gel to form Ozenoxacin nano-emulgel followed by physico-chemical, in-vitro, ex-vivo and in-vivo evaluation. This study demonstrates the application of QbD methodology for the development and optimization of an effective topical nanoemulgel formulation for the treatment of Impetigo focusing on the selection of appropriate excipients, optimization of formulation and process variables, and characterization of critical quality attributes. BBD was used to study the effect of "% of oil, % of Smix and homogenization speed" on critical quality attributes "globule size and % entrapment efficiency" for the optimisation of Ozenoxacin Nano-emulsion. Ozenoxacin loaded nano-emulgel was characterized for "description, identification, pH, specific gravity, amplitude sweep, viscosity, assay, organic impurities, antimicrobial effectiveness testing, in-vitro release testing, ex-vivo permeation testing, skin retention and in-vivo anti-bacterial activity". In-vitro release and ex-vivo permeation, skin retention and in-vivo anti-bacterial activity were found to be significantly (p < 0.01) higher for the nano-emulgel formulation compared to the innovator formulation (OZANEX™). Antimicrobial effectiveness testing was performed and found that even at 70% label claim of benzoic acid is effective to inhibit microbial growth in the drug product. The systematic application of QbD principles facilitated the successful development and optimization of a Ozenoxacin Nano-Emulsion. Optimised Ozenoxacin Nano-Emulgel can be considered as an effective alternative and found to be stable at least for 6 months at 40 °C / 75% RH and 30 °C / 75% RH.


Assuntos
Antibacterianos , Emulsões , Impetigo , Quinolonas , Animais , Impetigo/tratamento farmacológico , Camundongos , Quinolonas/administração & dosagem , Quinolonas/química , Quinolonas/farmacologia , Quinolonas/farmacocinética , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Emulsões/química , Nanopartículas/química , Géis/química , Química Farmacêutica/métodos , Modelos Animais de Doenças , Aminopiridinas/administração & dosagem , Aminopiridinas/farmacologia , Aminopiridinas/química , Aminopiridinas/farmacocinética , Excipientes/química , Pele/efeitos dos fármacos , Pele/metabolismo , Testes de Sensibilidade Microbiana/métodos , Absorção Cutânea/efeitos dos fármacos , Administração Tópica , Viscosidade , Composição de Medicamentos/métodos
7.
Int J Pharm ; 656: 124084, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38580072

RESUMO

In this study, a compartmental disintegration and dissolution model is proposed for the prediction and evaluation of the dissolution performance of directly compressed tablets. This dissolution model uses three compartments (Bound, Disintegrated, and Dissolved) to describe the state of each particle of active pharmaceutical ingredient. The disintegration of the tablet is captured by three fitting parameters. Two disintegration parameters, ß0 and ßt,0, describe the initial disintegration rate and the change in disintegration rate, respectively. A third parameter, α, describes the effect of the volume of dissolved drug on the disintegration process. As the tablet disintegrates, particles become available for dissolution. The dissolution rate is determined by the Nernst-Brunner equation, whilst taking into account the hydrodynamic effects within the vessel of a USP II (paddle) apparatus. This model uses the raw material properties of the active pharmaceutical ingredient (solubility, particle size distribution, true density), lending it towards early development activities during which time the amount of drug substance available may be limited. Additionally, the strong correlations between the fitting parameters and the tablet porosity indicate the potential to isolate the manufacturing effects and thus implement the model as part of a real-time release testing strategy for a continuous direct compression line.


Assuntos
Liberação Controlada de Fármacos , Tamanho da Partícula , Solubilidade , Comprimidos , Porosidade , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Excipientes/química , Modelos Químicos
8.
Int J Pharm ; 656: 124100, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609059

RESUMO

Transferring an existing marketed pharmaceutical product from batch to continuous manufacturing (CM) without changes in regulatory registration is a challenging task in the pharmaceutical industry. Continuous manufacturing can provide an increased production rate and better equipment utilisation while retaining key quality attributes of the final product. Continuous manufacturing necessitates the monitoring of critical quality attributes in real time by appropriate process analytical tools such as near infra-red (NIR) probes. The present work reports a successful transfer of an existing drug product from batch to continuous manufacturing process without changing the formulation. A key step was continuous powder blending, whose design and operating parameters including weir type, agitation rate, dynamic hold-up and residence time were systematically investigated with respect to process repeatability. A NIR-based multivariate data model for in-line composition monitoring has been developed and validated against an existing quality control method for measuring tablet content uniformity. A continuous manufacturing long-run with a throughput of 30 kg/h (approx. 128,000 tablets per hour), uninterrupted for 320 min, has been performed to test and validate the multivariate data model as well as the batch to continuous process transfer. The final disintegration and dissolution properties of tablets manufactured by the continuous process were found to be equivalent to those manufactured by the original batch process.


Assuntos
Comprimidos , Tecnologia Farmacêutica , Tecnologia Farmacêutica/métodos , Composição de Medicamentos/métodos , Controle de Qualidade , Pós/química , Química Farmacêutica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Excipientes/química , Solubilidade , Liberação Controlada de Fármacos
9.
Int J Pharm ; 656: 124116, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615803

RESUMO

Inhalation of pharmaceutical aerosol formulations is widely used to treat respiratory diseases. Spatially resolved thermal characterization offers promise for better understanding drug release rates from particles; however, this has been an analytical challenge due to the small particle size (from a few micrometers down to nanometers) and the complex composition of the formulations. Here, we employ nano-thermal analysis (nanoTA) to probe the nanothermal domain of a pharmaceutical aerosol formulation containing a mixture of fluticasone propionate (FP), salmeterol xinafoate (SX), and excipient lactose, which is widely used to treat asthma and chronic obstructive pulmonary disease (COPD). Furthermore, atomic force microscopy-infrared spectroscopy (AFM-IR) and AFM force measurements are performed to provide nanochemical and nanomechanical information to complement the nanothermal data. The colocalized thermal and chemical mapping clearly reveals the surface heterogeneity of the drugs in the aerosol particles and demonstrates the contribution of the surface chemical composition to the variation in the thermal properties of the particles. We present a powerful analytical approach for in-depth characterization of thermal/chemical/morphological properties of dry powder inhaler particles at micro- and nanometer scales. This approach can be used to facilitate the comparison between generics and reference inhalation products and further the development of high-performance pharmaceutical formulations.


Assuntos
Aerossóis , Inaladores de Pó Seco , Fluticasona , Lactose , Microscopia de Força Atômica , Tamanho da Partícula , Pós , Xinafoato de Salmeterol , Fluticasona/química , Fluticasona/administração & dosagem , Xinafoato de Salmeterol/química , Xinafoato de Salmeterol/administração & dosagem , Lactose/química , Microscopia de Força Atômica/métodos , Excipientes/química , Administração por Inalação , Broncodilatadores/administração & dosagem , Broncodilatadores/química , Espectrofotometria Infravermelho/métodos , Química Farmacêutica/métodos , Propriedades de Superfície
10.
Anal Chem ; 96(17): 6746-6755, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38632675

RESUMO

Nonionic surfactant excipients (NISEs) are commonly added to biologics formulations to mitigate the effects of stress incurred by the active biotherapeutic during manufacturing, transport, and storage. During manufacturing, NISEs are added by dilution of a stock solution directly into a protein formulation, and their accurate addition is critical in maintaining the quality and integrity of the drug product and thus ensuring patient safety. This is especially true for the common NISEs, polysorbates 20 and 80 (PS20 and PS80, respectively) and poloxamer 188 (P188). With the increasing diversity of biologic modalities within modern pharmaceutical pipelines, there is thus a critical need to develop and deploy convenient and user-accessible analytical techniques that can rapidly and reliably quantify these NISEs under biopharmaceutically relevant conditions. We thus pursued 60 MHz benchtop quantitative NMR (qNMR) as a nondestructive and user-friendly analytical technique for the quantification of PS20, PS80, and P188 under such conditions. We demonstrated the ability of benchtop qNMR (1) to quantify simulated PS20, PS80, and P188 stock solutions representative of those used during the drug substance (DS) formulation step in biomanufacturing and (2) to quantify these NISEs at and below their target concentrations (≤0.025% w/v) directly in biologics formulations containing histidine, sucrose, and one of three biotherapeutic modalities (monoclonal antibody, antibody-drug conjugate, and Fc-fusion protein). Our results demonstrate that benchtop qNMR offers a fit-for-purpose, reliable, user-friendly, and green analytical route by which NISE of interest to the biopharmaceutical industry may be readily and reliably quantified. We conclude that benchtop qNMR has the potential to be applied to other excipient formulation components in the presence of various biological modalities as well as the potential for routine integration within analytical and QC laboratories across pharmaceutical development and manufacturing sites.


Assuntos
Excipientes , Espectroscopia de Ressonância Magnética , Tensoativos , Tensoativos/química , Excipientes/química , Excipientes/análise , Espectroscopia de Ressonância Magnética/métodos , Polissorbatos/química , Poloxâmero/química , Produtos Biológicos/química , Produtos Biológicos/análise
11.
Mol Pharm ; 21(5): 2484-2500, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38647432

RESUMO

Excipients are ubiquitous in pharmaceutical products, and often, they can also play a critical role in maintaining product quality. For a product containing a moisture-sensitive drug, moisture can be deleterious to the product stability during storage. Therefore, using excipients that interact with moisture in situ can potentially alleviate product stability issues. In this study, the interactive behavior of starch with moisture was augmented by coprocessing maize starch with sodium chloride (NaCl) or magnesium nitrate hexahydrate [Mg(NO3)2·6H2O] at different concentrations (5 and 10%, w/w). The effect of the formulation on drug stability was assessed through the degradation of acetylsalicylic acid, which was used as the model drug. The results showed that coprocessing of the starch with either NaCl or Mg(NO3)2·6H2O impacted the number of water molecule binding sites on the starch and how the sorbed moisture was distributed. The coprocessed excipients also resulted in lower drug degradation and lesser changes in tablet tensile strength during post-compaction storage. However, corresponding tablet formulations containing physical mixtures of starch and salts did not yield promising outcomes. This study demonstrated the advantageous concomitant use of common excipients by coprocessing to synergistically mitigate the adverse effects of moisture and promote product stability when formulating a moisture-sensitive drug. In addition, the findings could help to improve the understanding of moisture-excipient interactions and allow for the judicious choice of excipients when designing formulations containing moisture-sensitive drugs.


Assuntos
Estabilidade de Medicamentos , Excipientes , Amido , Comprimidos , Resistência à Tração , Excipientes/química , Amido/química , Comprimidos/química , Água/química , Química Farmacêutica/métodos , Cloreto de Sódio/química , Composição de Medicamentos/métodos , Aspirina/química
12.
Mol Pharm ; 21(5): 2590-2605, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38656981

RESUMO

We report a novel utilization of a pH modifier as a disproportionation retardant in a tablet formulation. The drug molecule of interest has significant bioavailability challenges that require solubility enhancement. In addition to limited salt/cocrystal options, disproportionation of the potential salt(s) was identified as a substantial risk. Using a combination of Raman spectroscopy with chemometrics and quantitative X-ray diffraction in specially designed stress testing, we investigated the disproportionation phenomena. The learnings and insight drawn from crystallography drove the selection of the maleate form as the target API. Inspired by the fumarate form's unique stability and solubility characteristics, we used fumaric acid as the microenvironmental pH modulator. Proof-of-concept experiments with high-risk (HCl) and moderate-risk (maleate) scenarios confirmed the synergistic advantage of fumaric acid, which interacts with the freebase released by disproportionation to form a more soluble species. The resultant hemifumarate helps maintain the solubility at an elevated level. This work demonstrates an innovative technique to mediate the solubility drop during the "parachute" phase of drug absorption using compendial excipients, and this approach can potentially serve as an effective risk-mitigating strategy for salt disproportionation.


Assuntos
Química Farmacêutica , Composição de Medicamentos , Fumaratos , Solubilidade , Fumaratos/química , Concentração de Íons de Hidrogênio , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Análise Espectral Raman/métodos , Difração de Raios X/métodos , Comprimidos/química , Sais/química , Maleatos/química , Excipientes/química , Disponibilidade Biológica
13.
Int J Pharm ; 656: 124059, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38552753

RESUMO

Most of biopharmaceuticals, in their liquid form, are prone to instabilities during storage. In order to improve their stability, lyophilization is the most commonly used drying technique in the pharmaceutical industry. In addition, certain applications of biopharmaceutical products can be considered by oral administration and tablets are the most frequent solid pharmaceutical dosage form used for oral route. Thus, the tableting properties of freeze-dried products used as cryo and lyoprotectant could be a key element for future pharmaceutical developments and applications. In this study, we investigated the properties that might play a particular role in the specific compaction behavior of freeze-dried excipients. The tableting properties of freeze-dried trehalose, lactose and mannitol were investigated and compared to other forms of these excipients (spray-dried, commercial crystalline and commercial crystalline milled powders). The obtained results showed a specific behavior in terms of compressibility, tabletability and brittleness for the amorphous powders obtained after freeze-drying. The comparison with the other powders showed that this specific tableting behavior is linked to both the specific texture and the physical state (amorphization) of these freeze-dried powders.


Assuntos
Composição de Medicamentos , Excipientes , Liofilização , Lactose , Manitol , Pós , Comprimidos , Trealose , Excipientes/química , Manitol/química , Composição de Medicamentos/métodos , Trealose/química , Lactose/química , Pós/química , Secagem por Atomização , Química Farmacêutica/métodos
14.
Pharm Dev Technol ; 29(4): 353-358, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528824

RESUMO

One of the widely used approaches for improving the dissolution of poorly water-soluble drugs is particle size reduction. Ball milling is a mechanical, top-down technique used to reduce particle size. The effect of ball number, ball size, and milling speed on the properties of milled Aprepitant is evaluated. A full factorial design was employed to investigate the influence of affecting factors on particle size reduction. The initial suspension was made by suspending the drug in distilled water using excipients followed by milling in a planetary ball mill. Ball size, ball number, and milling speed modulated particle size distribution of Aprepitant. Increasing the number of balls from minimum to maximum for each ball size led to approximately a 28% reduction in mean particle size, a 37% decrease in D90%, and a 25% decrease in the ratio of volume mean particle diameter to numeric mean particle diameter. On average, using 10 mm balls instead of 30 mm balls reduced mean particle size by 1.689 µm. As a result, ball size, ball number, and milling speed are three effective factors in the process of ball milling. By increasing the ball number and decreasing the ball size, efficient micronization of drug particles takes place and the particle size is more uniform.


Assuntos
Aprepitanto , Composição de Medicamentos , Excipientes , Tamanho da Partícula , Aprepitanto/química , Aprepitanto/administração & dosagem , Composição de Medicamentos/métodos , Excipientes/química , Solubilidade , Química Farmacêutica/métodos
15.
Chemosphere ; 353: 141589, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432465

RESUMO

A comparative toxicity of widely applied organic solvents (methanol, ethanol, n-propanol, i-propanol, n-butanol, 2-butanol, i-butanol, t-butanol, 3-methoxy-3-methylbutanol-1 (MMB), ethylene glycol, diethylene glycol, 2-methoxyethanol, 2-ethoxyethanol, glycerol, ethyl acetate, acetonitrile, benzene, dioxane, dimethylformamide, dimethylacetamide, dimethylsulfoxide, 2-pyrrolidone, and N-methyl-2-pyrrolidone) and surfactants (PEG 300, PEG 6000, Tween 20, Tween 80, miramistin, and Cremophor EL) was studied using a sea urchin embryo model. Sea urchin embryo morphological alterations caused by the tested chemicals were described. The tested molecules affected P. lividus embryo development in a concentration-dependent manner. The observed phenotypic anomalies ranged from developmental delay and retardation of plutei growth to formation of aberrant blastules and gastrules, cleavage alteration/arrest, and embryo mortality. Discernible morphological defects were found after embryo exposure with common pharmaceutical ingredients, such as glycerol, Tween 80, and Cremophor EL. In general, solvents were less toxic than surfactants. PEG 6000 PEG 300, DMSO, ethanol, and methanol were identified as the most tolerable compounds with minimum effective concentration (MEC) values of 3.0-7.92 mg/mL. Previously reported MEC value of Pluronic F127 (4.0 mg/mL) fell within the same concentration range. Toxic effects of methanol, ethanol, DMSO, 2-methoxyethanol, 2-ethoxyethanol, Tween 20, and Tween 80 on P. lividus embryos correlated well with their toxicity obtained using other cell and animal models. The sea urchin embryos could be considered as an appropriate test system for toxicity assessment of solvents and surfactants for their further application as solubilizers of hydrophobic molecules in conventional in vitro cell-based assays and in vivo mammalian models. Nevertheless, to avoid adverse effect of a solubilizing agent in ecotoxicological and biological experiments, the preliminary assessment of its toxicity on a chosen test model would be beneficial.


Assuntos
Etilenoglicóis , Glicerol/análogos & derivados , Metanol , Polissorbatos , Animais , Polissorbatos/toxicidade , Glicerol/toxicidade , Dimetil Sulfóxido , Tensoativos/toxicidade , Solventes/toxicidade , Ouriços-do-Mar , Etanol/farmacologia , Excipientes/química , 1-Propanol , Embrião não Mamífero , Mamíferos , Polietilenoglicóis
16.
Int J Pharm ; 655: 124014, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38513817

RESUMO

Despite extensive research in spray drying of biopharmaceuticals, identifying the optimal formulation composition and process conditions to minimize the various stresses a biopharmaceutical undergoes during this drying process. The current study extends previous research on investigating how spray drying processing and solution composition can affect the stability of monoclonal antibodies (mAbs) in reconstituted solutions for subcutaneous injections. The decoupling process stresses on a model mAb (mAb-A) compared to the effect of coupled spray-drying stresses revealed that excipients and protein concentration had a more pronounced effect on stabilizing mAb-A against shear and thermal/dehydration stresses than spray drying operating conditions. These results prompted the continuation of the study, with the aim to investigate in greater depth the effect of mAb-A concentration in the formulation designated to spray-drying and then the effect of type and the concentration of individual excipients (sugars, amino acids and surfactants). The outcomes of this investigation suggest that a general increase in the concentration of excipients, particularly surfactants, correlates with a reduction in aggregation and turbidity observed in the reconstituted spray-dried mAb-A powders. These results, contribute to the identification of a suitable composition for a spray-dried mAb-A powder that ensures robust stability of the protein in reconstituted solutions intended for subcutaneous injection. This valuable insight has important implications for advancing the development of pharmaceutical formulations with enhanced stability and efficacy.


Assuntos
Química Farmacêutica , Excipientes , Excipientes/química , Química Farmacêutica/métodos , Secagem por Atomização , Anticorpos Monoclonais/química , Injeções Subcutâneas , Tensoativos , Pós/química , Liofilização
17.
Int J Pharm ; 655: 124055, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38554741

RESUMO

Administration of monoclonal antibodies (mAbs) is currently focused on subcutaneous injection associated with increased patient adherence and reduced treatment cost, leading to sustainable healthcare. The main bottleneck is low volume that can be injected, requiring highly concentrated mAb solutions. The latter results in increased solution viscosity with pronounced mAb aggregation propensity because of intensive protein-protein interactions. Small molecule excipients have been proposed to restrict the protein-protein interactions, contributing to reduced viscosity. The aim of the study was to discover novel compounds that reduce the viscosity of highly concentrated mAb solution. First, the chemical space of proline analogs was explored and 35 compounds were determined. Viscosity measurements revealed that 18 proline analogs reduced the mAb solution viscosity similar to or more than proline. The compounds forming both electrostatic and hydrophobic interactions with mAb reduced the viscosity of the formulation more efficiently without detrimentally effecting mAb physical stability. A correlation between the level of interaction and viscosity-reducing effect was confirmed with molecular dynamic simulations. Structure rigidity of the compounds and aromaticity contributed to their viscosity-reducing effect, dependent on molecule size. The study results highlight the novel proline analogs as an effective approach in viscosity reduction in development of biopharmaceuticals for subcutaneous administration.


Assuntos
Anticorpos Monoclonais , Prolina , Humanos , Anticorpos Monoclonais/química , Viscosidade , Simulação de Dinâmica Molecular , Excipientes/química , Soluções
18.
Int J Pharm ; 655: 124070, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38554740

RESUMO

The importance of ink rheology to the outcome of 3D printing is well recognized. However, rheological properties of printing inks containing drug nanocrystals have not been widely investigated. Therefore, the objective of this study was to establish a correlation between the composition of nanocrystal printing ink, the ink rheology, and the entire printing process. Indomethacin was used as a model poorly soluble drug to produce nanosuspensions with improved solubility properties through particle size reduction. The nanosuspensions were further developed into semisolid extrusion 3D printing inks with varying nanocrystal and poloxamer 407 concentrations. Nanocrystals were found to affect the rheological properties of the printing inks both by being less self-supporting and having higher yielding resistances. During printing, nozzle blockages occurred. Nevertheless, all inks were found to be printable. Finally, the rheological properties of the inks were successfully correlated with various printing and product properties. Overall, these experiments shed new light on the rheological properties of printing inks containing nanocrystals.


Assuntos
Nanopartículas , Poloxâmero , Géis , Excipientes/química , Impressão Tridimensional , Reologia , Tinta
19.
Int J Pharm ; 655: 123966, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38452834

RESUMO

The potential of fine excipient materials to improve the aerodynamic performance of carrier-based dry powder inhalation (DPI) formulations is well acknowledged but not fully elucidated. To improve the understanding of this potential, we studied two fine excipient materials: micronized lactose particles and silica microspheres. Inhalation formulations, each composed of a coarse lactose carrier, one of the two fine excipient materials (0.0-15.0 % w/w), and a spray-dried drug (fluticasone propionate) material (1.5 % w/w) were prepared. The physical structure, the flow behavior, the aerosolization behavior, and the aerodynamic performance of the formulations were studied. The two fine excipient materials similarly occupied carrier surface macropores. However, only the micronized lactose particles formed agglomerates and appeared to increase the tensile strength of the formulations. At 2.5 % w/w, the two fine excipient materials similarly improved drug dispersibility, whereas at higher concentrations, the micronized lactose material was more beneficial than the silica microspheres. The findings suggest that fine excipient materials improve drug dispersibility from carrier-based DPI formulations at low concentrations by filling carrier surface macropores and at high concentrations by forming agglomerates and/or enforcing fluidization. The study emphasizes critical attributes of fine excipient materials in carrier-based DPI formulations.


Assuntos
Excipientes , Lactose , Excipientes/química , Pós/química , Lactose/química , Portadores de Fármacos/química , Inaladores de Pó Seco , Administração por Inalação , Propriedades de Superfície , Dióxido de Silício , Tamanho da Partícula , Aerossóis/química
20.
Mol Pharm ; 21(4): 1965-1976, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38516985

RESUMO

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) previously elucidated the interactions between excipients and proteins for liquid granulocyte colony stimulating factor (G-CSF) formulations, confirming predictions made using computational structure docking. More recently, solid-state HDX mass spectrometry (ssHDX-MS) was developed for proteins in the lyophilized state. Deuterium uptake in ssHDX-MS has been shown for various proteins, including monoclonal antibodies, to be highly correlated with storage stability, as measured by protein aggregation and chemical degradation. As G-CSF is known to lose activity through aggregation upon lyophilization, we applied the ssHDX-MS method with peptide mapping to four different lyophilized formulations of G-CSF to compare the impact of three excipients on local structure and exchange dynamics. HDX at 22 °C was confirmed to correlate well with the monomer content remaining after lyophilization and storage at -20 °C, with sucrose providing the greatest protection, and then phenylalanine, mannitol, and no excipient leading to progressively less protection. Storage at 45 °C led to little difference in final monomer content among the formulations, and so there was no discernible relationship with total deuterium uptake on ssHDX. Incubation at 45 °C may have led to a structural conformation and/or aggregation mechanism no longer probed by HDX at 22 °C. Such a conformational change was observed previously at 37 °C for liquid-formulated G-CSF using NMR. Peptide mapping revealed that tolerance to lyophilization and -20 °C storage was linked to increased stability in the small helix, loop AB, helix C, and loop CD. LC-MS HDX and NMR had previously linked loop AB and loop CD to the formation of a native-like state (N*) prior to aggregation in liquid formulations, suggesting a similar structural basis for G-CSF aggregation in the liquid and solid states.


Assuntos
Medição da Troca de Deutério , Fator Estimulador de Colônias de Granulócitos , Humanos , Deutério/química , Medição da Troca de Deutério/métodos , Excipientes/química , Fator Estimulador de Colônias de Granulócitos/química , Espectrometria de Massas/métodos , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA