Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.560
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Chemosphere ; 358: 142225, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705415

RESUMO

Short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs) have garnered significant attention because they have persistence and potential toxicity, and can undergo long-distance transport. Chlorinated paraffins (CPs) inhaled in the size-fractionated particulate phase and gas phase can carry different risks to human health due to their ability to accumulate in different regions of the respiratory tract and exhibit varying deposition efficiencies. In our study, large-volume ambient air samples in both the size-fractionated particulate phase (Dp < 1.0 µm, 1.0-2.5 µm, 2.5-10 µm, and Dp ≥ 10 µm) and gas phase were collected simultaneously in Beijing using an active sampler. The overall levels of SCCPs and MCCPs were relatively high, the ranges being 57-881 and 30-385 ng/m3, respectively. SCCPs tended to be partitioned in the gas phase (on average 75% of the ΣSCCP concentration), while MCCPs tended to be partitioned in the particulate phase (on average 62% of the ΣMCCP concentration). Significant correlations were discovered between the logarithm-transformed gas-particle partition coefficients (KP) and predicted subcooled vapor pressures (PL0) (p < 0.01 for SCCPs and MCCPs) and between the logarithm-transformed KP values and octanol-air partition coefficients (KOA) (p < 0.01 for SCCPs and MCCPs). Thus, the slopes indicated that organic matter absorption was the dominant process involved in gas-particle partitioning. We used the ICRP model to calculate deposition concentrations for particulate-associated CPs in head airways region (15.6-71.4 ng/m³), tracheobronchial region (0.8-4.8 ng/m³), and alveolar region (5.1-21.9 ng/m³), then combined these concentrations with the CP concentrations in the gas phase to calculate estimated daily intakes (EDIs) for inhalation. The EDIs for SCCPs and MCCPs through inhalation of ambient air for the all-ages group were 67.5-184.2 ng/kg/day and 19.7-53.7 ng/kg/day, respectively. The results indicated that SCCPs and MCCPs in ambient air do not currently pose strong risks to human health in the study area.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Hidrocarbonetos Clorados , Parafina , Tamanho da Partícula , Material Particulado , Parafina/análise , Poluentes Atmosféricos/análise , Humanos , Material Particulado/análise , Hidrocarbonetos Clorados/análise , Medição de Risco , Exposição por Inalação/análise , Exposição por Inalação/estatística & dados numéricos , Pequim , Halogenação , Gases/análise
2.
Part Fibre Toxicol ; 21(1): 24, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760761

RESUMO

BACKGROUND: Significant variations exist in the forms of ZnO, making it impossible to test all forms in in vivo inhalation studies. Hence, grouping and read-across is a common approach under REACH to evaluate the toxicological profile of familiar substances. The objective of this paper is to investigate the potential role of dissolution, size, or coating in grouping ZnO (nano)forms for the purpose of hazard assessment. We performed a 90-day inhalation study (OECD test guideline no. (TG) 413) in rats combined with a reproduction/developmental (neuro)toxicity screening test (TG 421/424/426) with coated and uncoated ZnO nanoforms in comparison with microscale ZnO particles and soluble zinc sulfate. In addition, genotoxicity in the nasal cavity, lungs, liver, and bone marrow was examined via comet assay (TG 489) after 14-day inhalation exposure. RESULTS: ZnO nanoparticles caused local toxicity in the respiratory tract. Systemic effects that were not related to the local irritation were not observed. There was no indication of impaired fertility, developmental toxicity, or developmental neurotoxicity. No indication for genotoxicity of any of the test substances was observed. Local effects were similar across the different ZnO test substances and were reversible after the end of the exposure. CONCLUSION: With exception of local toxicity, this study could not confirm the occasional findings in some of the previous studies regarding the above-mentioned toxicological endpoints. The two representative ZnO nanoforms and the microscale particles showed similar local effects. The ZnO nanoforms most likely exhibit their effects by zinc ions as no particles could be detected after the end of the exposure, and exposure to rapidly soluble zinc sulfate had similar effects. Obviously, material differences between the ZnO particles do not substantially alter their toxicokinetics and toxicodynamics. The grouping of ZnO nanoforms into a set of similar nanoforms is justified by these observations.


Assuntos
Exposição por Inalação , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Masculino , Feminino , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Tamanho da Partícula , Administração por Inalação , Dano ao DNA , Ratos , Ensaio Cometa , Ratos Wistar , Reprodução/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo
3.
Environ Sci Technol ; 58(19): 8417-8431, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38701378

RESUMO

This study evaluated workers' exposures to flame retardants, including polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs), and other brominated flame retardants (BFRs), in various industries. The study aimed to characterize OPE metabolite urinary concentrations and PBDE serum concentrations among workers from different industries, compare these concentrations between industries and the general population, and evaluate the likely route of exposure (dermal or inhalation). The results showed that workers from chemical manufacturing had significantly higher (p <0.05) urinary concentrations of OPE metabolites compared to other industries. Spray polyurethane foam workers had significantly higher (p <0.05) urinary concentrations of bis(1-chloro-2-propyl) phosphate (BCPP) compared to other industries. Electronic scrap workers had higher serum concentrations of certain PBDE congeners compared to the general population. Correlations were observed between hand wipe samples and air samples containing specific flame-retardant parent chemicals and urinary metabolite concentrations for some industries, suggesting both dermal absorption and inhalation as primary routes of exposure for OPEs. Overall, this study provides insights into occupational exposure to flame retardants in different industries and highlights the need for further research on emerging flame retardants and exposure reduction interventions.


Assuntos
Biomarcadores , Retardadores de Chama , Éteres Difenil Halogenados , Exposição Ocupacional , Organofosfatos , Retardadores de Chama/metabolismo , Humanos , Exposição por Inalação , Adulto , Masculino , Pele/metabolismo , Estados Unidos , Feminino
4.
Environ Sci Technol ; 58(19): 8278-8288, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38697947

RESUMO

Chemicals assessment and management frameworks rely on regulatory toxicity values, which are based on points of departure (POD) identified following rigorous dose-response assessments. Yet, regulatory PODs and toxicity values for inhalation exposure (i.e., reference concentrations [RfCs]) are available for only ∼200 chemicals. To address this gap, we applied a workflow to determine surrogate inhalation route PODs and corresponding toxicity values, where regulatory assessments are lacking. We curated and selected inhalation in vivo data from the U.S. EPA's ToxValDB and adjusted reported effect values to chronic human equivalent benchmark concentrations (BMCh) following the WHO/IPCS framework. Using ToxValDB chemicals with existing PODs associated with regulatory toxicity values, we found that the 25th %-ile of a chemical's BMCh distribution (PODp25BMCh) could serve as a suitable surrogate for regulatory PODs (Q2 ≥ 0.76, RSE ≤ 0.82 log10 units). We applied this approach to derive PODp25BMCh for 2,095 substances with general non-cancer toxicity effects and 638 substances with reproductive/developmental toxicity effects, yielding a total coverage of 2,160 substances. From these PODp25BMCh, we derived probabilistic RfCs and human population effect concentrations. With this work, we have expanded the number of chemicals with toxicity values available, thereby enabling a much broader coverage for inhalation risk and impact assessment.


Assuntos
Exposição por Inalação , Reprodução , Humanos , Reprodução/efeitos dos fármacos , Medição de Risco
5.
Exp Biol Med (Maywood) ; 249: 10135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711460

RESUMO

Environmental air pollution is a global health concern, associated with multiple respiratory and systemic diseases. Epidemiological supports continued urbanization and industrialization increasing the prevalence of inhalation exposures. Exposure to these inhaled pollutants induces toxicity via activation of numerous cellular mechanisms including oxidative stress, autophagy, disrupted cellular metabolism, inflammation, tumorigenesis, and others contributing to disease development. The mechanistic target of rapamycin (mTOR) is a key regulator involved in various cellular processes related to the modulation of metabolism and maintenance of homeostasis. Dysregulation of mTOR occurs following inhalation exposures and has also been implicated in many diseases such as cancer, obesity, cardiovascular disease, diabetes, asthma, and neurodegeneration. Moreover, mTOR plays a fundamental role in protein transcription and translation involved in many inflammatory and autoimmune diseases. It is necessary to understand inhalation exposure-induced dysregulation of mTOR since it is key regulator which may contribute to numerous disease processes. This mini review evaluates the available literature regarding several types of inhalation exposure and their impacts on mTOR signaling. Particularly we focus on the mTOR signaling pathway related outcomes of autophagy, lipid metabolism, and inflammation. Furthermore, we will examine the implications of dysregulated mTOR pathway in exposure-induced diseases. Throughout this mini review, current gaps will be identified related to exposure-induced mTOR dysregulation which may enable the targeting of mTOR signaling for the development of therapeutics.


Assuntos
Exposição por Inalação , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Exposição por Inalação/efeitos adversos , Animais , Transdução de Sinais/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Inflamação/metabolismo
6.
Front Public Health ; 12: 1368112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784567

RESUMO

Introduction: Little is known on the association between cross-shift changes in pulmonary function and personal inhalation exposure to particulate matter (PM) among informal electronic-waste (e-waste) recovery workers who have substantial occupational exposure to airborne pollutants from burning e-waste. Methods: Using a cross-shift design, pre- and post-shift pulmonary function assessments and accompanying personal inhalation exposure to PM (sizes <1, <2.5 µm, and the coarse fraction, 2.5-10 µm in aerodynamic diameter) were measured among e-waste workers (n = 142) at the Agbogbloshie e-waste site and a comparison population (n = 65) in Accra, Ghana during 2017 and 2018. Linear mixed models estimated associations between percent changes in pulmonary function and personal PM. Results: Declines in forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) per hour were not significantly associated with increases in PM (all sizes) among either study population, despite breathing zone concentrations of PM (all sizes) that exceeded health-based guidelines in both populations. E-waste workers who worked "yesterday" did, however, have larger cross-shift declines in FVC [-2.4% (95%CI: -4.04%, -0.81%)] in comparison to those who did not work "yesterday," suggesting a possible role of cumulative exposure. Discussion: Overall, short-term respiratory-related health effects related to PM exposure among e-waste workers were not seen in this sample. Selection bias due to the "healthy worker" effect, short shift duration, and inability to capture a true "pre-shift" pulmonary function test among workers who live at the worksite may explain results and suggest the need to adapt cross-shift studies for informal settings.


Assuntos
Exposição Ocupacional , Material Particulado , Testes de Função Respiratória , Humanos , Gana , Masculino , Adulto , Material Particulado/análise , Feminino , Resíduo Eletrônico/estatística & dados numéricos , Pessoa de Meia-Idade , Exposição por Inalação/efeitos adversos , Exposição por Inalação/estatística & dados numéricos , Capacidade Vital , Volume Expiratório Forçado , Poluentes Ocupacionais do Ar/análise
7.
Environ Sci Process Impacts ; 26(5): 843-857, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38597352

RESUMO

Inhalation of welding fumes (WFs) containing high levels of transition metals (Cr, Cu, Fe, Mn, Ni…) is associated with numerous health effects including oxidative stress. However, the measurements of the oxidative potential (OP) and bioaccessibility of WF transition metals depend on several physicochemical parameters and may be subject to several experimental artifacts. In this work, we investigated the influence of the experimental conditions that may affect the bioaccessibility of transition metals and their OP on stainless-steel WF extracts. WFs were produced using a generation bench and sampled on filters. The soluble fraction of the metals was analysed. Two different extraction fluids mimicking physiological pulmonary conditions were studied: phosphate buffer and Hatch's solution. Three extraction times were tested to determine the optimal time for a significant OPDTT using the dithiothreitol (DTT) method. The storage conditions of WFs after filter sampling such as duration, temperature and atmospheric conditions were investigated. The results indicate that experimental conditions can significantly affect the OPDTT and metal bioaccessibility analyses. Cr, Cu and Ni show higher solubility in Hatch's solution than in the phosphate buffer. Mn is highly sensitive to DTT and shows close solubility in the two fluids. An extraction time of 0.5 h in phosphate buffer allows a better sensitivity to OPDTT, probably by limiting complexations, interactions between metals and precipitation. Storage time and temperature can influence the physical or chemical evolution of the WFs, which can affect their OPDTT and Mn solubility. However, storage under N2(g) limits these changes. On-line measurements of OPDTT could provide an alternative to filter sampling to overcome these artifacts.


Assuntos
Poluentes Ocupacionais do Ar , Oxirredução , Soldagem , Poluentes Ocupacionais do Ar/análise , Exposição Ocupacional/análise , Humanos , Exposição por Inalação/análise , Metais/análise , Metais/química , Elementos de Transição/química , Monitoramento Ambiental/métodos
8.
Chemosphere ; 358: 142139, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688349

RESUMO

The widespread and increasing use of nanomaterials has resulted in a higher likelihood of exposure by inhalation for nanotechnology workers. However, tracking the internal dose of nanoparticles deposited at the airways level, is still challenging. To assess the suitability of particle number concentration determination as biomarker of internal dose, we carried out a cross sectional investigation involving 80 workers handling nanomaterials. External exposure was characterized by portable counters of particles DISCminiTM (Testo, DE), allowing to categorize 51 workers as exposed and 29 as non-exposed (NE) to nanoparticles. Each subject filled in a questionnaire reporting working practices and health status. Exhaled breath condensate was collected and analysed for the number of particles/ml as well as for inflammatory biomarkers. A clear-cut relationship between the number of airborne particles in the nano-size range determined by the particle counters and the particle concentration in exhaled breath condensate (EBC) was apparent. Moreover, inflammatory cytokines (IL-1ß, IL-10, and TNF-α) measured in EBC, were significantly higher in the exposed subjects as compared to not exposed. Finally, significant correlations were found between external exposure, the number concentration of particles measured by the nanoparticle tracking analysis (NTA) and inflammatory cytokines. As a whole, the present study, suggests that NTA can be regarded as a reliable tool to assess the inhaled dose of particles and that this dose can effectively elicit inflammatory effects.


Assuntos
Biomarcadores , Testes Respiratórios , Citocinas , Exposição por Inalação , Nanopartículas , Nanoestruturas , Exposição Ocupacional , Humanos , Biomarcadores/análise , Biomarcadores/metabolismo , Exposição Ocupacional/análise , Adulto , Exposição por Inalação/análise , Exposição por Inalação/estatística & dados numéricos , Masculino , Estudos Transversais , Citocinas/metabolismo , Citocinas/análise , Pessoa de Meia-Idade , Expiração , Feminino , Tamanho da Partícula , Pulmão/metabolismo , Poluentes Ocupacionais do Ar/análise , Inflamação/induzido quimicamente , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/análise
9.
Sci Total Environ ; 927: 171997, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565357

RESUMO

Marathon running significantly increases breathing volumes and, consequently, air pollution inhalation doses. This is of special concern for elite athletes who ventilate at very high rates. However, race organizers and sport governing bodies have little guidance to support events scheduling to protect runners. A key limitation is the lack of hyper-local, high temporal resolution air quality data representative of exposure along the racecourse. This work aimed to understand the air pollution exposures and dose inhaled by athletes, by means of a dynamic monitoring methodology designed for road races. Air quality monitors were deployed during three marathons, monitoring nitrogen dioxide (NO2), ozone (O3), particulate matter (PMx), air temperature, and relative humidity. One fixed monitor was installed at the Start/Finish line and one mobile monitor followed the women elite runner pack. The data from the fixed monitors, deployed prior the race, described daily air pollution trends. Mobile monitors in combination with heatmap analysis facilitated the hyper-local characterization of athletes' exposures and helped identify local hotspots (e.g., areas prone to PM resuspension) which should be preferably bypassed. The estimation of inhaled doses disaggregated by gender and ventilation showed that doses inhaled by last finishers may be equal or higher than those inhaled by first finishers for O3 and PMx, due to longer exposures as well as the increase of these pollutants over time (e.g., 58.2 ± 9.6 and 72.1 ± 23.7 µg of PM2.5 for first and last man during Rome marathon). Similarly, men received significantly higher doses than women due to their higher ventilation rate, with differences of 31-114 µg for NO2, 79-232 µg for O3, and 6-41 µg for PMx. Finally, the aggregated data obtained during the 4 week- period prior the marathon can support better race scheduling by the organizers and provide actionable information to mitigate air pollution impacts on athletes' health and performance.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Feminino , Poluição do Ar/estatística & dados numéricos , Masculino , Corrida/fisiologia , Ozônio/análise , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/análise , Exposição por Inalação/estatística & dados numéricos , Exposição por Inalação/análise , Dióxido de Nitrogênio/análise , Atletas
10.
Circ Res ; 134(9): 1061-1082, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662865

RESUMO

Wildfire smoke (WFS) is a mixture of respirable particulate matter, environmental gases, and other hazardous pollutants that originate from the unplanned burning of arid vegetation during wildfires. The increasing size and frequency of recent wildfires has escalated public and occupational health concerns regarding WFS inhalation, by either individuals living nearby and downstream an active fire or wildland firefighters and other workers that face unavoidable exposure because of their profession. In this review, we first synthesize current evidence from environmental, controlled, and interventional human exposure studies, to highlight positive associations between WFS inhalation and cardiovascular morbidity and mortality. Motivated by these findings, we discuss preventative measures and suggest interventions to mitigate the cardiovascular impact of wildfires. We then review animal and cell exposure studies to call attention on the pathophysiological processes that support the deterioration of cardiovascular tissues and organs in response to WFS inhalation. Acknowledging the challenges of integrating evidence across independent sources, we contextualize laboratory-scale exposure approaches according to the biological processes that they model and offer suggestions for ensuring relevance to the human condition. Noting that wildfires are significant contributors to ambient air pollution, we compare the biological responses triggered by WFS to those of other harmful pollutants. We also review evidence for how WFS inhalation may trigger mechanisms that have been proposed as mediators of adverse cardiovascular effects upon exposure to air pollution. We finally conclude by highlighting research areas that demand further consideration. Overall, we aspire for this work to serve as a catalyst for regulatory initiatives to mitigate the adverse cardiovascular effects of WFS inhalation in the community and alleviate the occupational risk in wildland firefighters.


Assuntos
Doenças Cardiovasculares , Fumaça , Incêndios Florestais , Humanos , Animais , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Fumaça/efeitos adversos , Exposição por Inalação/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Material Particulado/efeitos adversos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/prevenção & controle , Exposição Ambiental/efeitos adversos
11.
Arch Prev Riesgos Labor ; 27(1): 41-53, 2024 Jan 18.
Artigo em Espanhol | MEDLINE | ID: mdl-38655606

RESUMO

OBJECTIVE: To evaluate silica exposure among Chilean miners at high altitude, using different methodological approaches, for the purpose of determining the safest method to control exposures.  Methods: The 46 miners in the sample worked at 3000 meters above sea level in nonstandard work shifts, consisting of four consecutive 12-hour days, followed by four consecutive days off. Silica samples were obtained in each of the jobs positions of these 46 high-altitude miners. The results of the concentrations are presented in mg/m3. Exposures were evaluated in compatison to the Threshold Limit Value (Method 1) and using two other methodologies that incorporate respiratory parameters (Methods 2 and 3). The proportion of miners at risk was determined with each of these methods and compared. RESULTS: Based on the Threshold Limit Value (Method 1), 43.48% of miners were classified as being at risk. With the other two methods that incorporate respiratory parameters, the proportion of overexposed miners was 82.61% with Method 2, and 73.91% with Method 3. CONCLUSIONS: Of the three methods analyzed, the one that considers the respiratory parameter minute volume, through the estimation of the inhaled dose, is the safest to define the group of miners at risk due to exposure to silica at high altitude.


OBJETIVO: Evaluar la exposición a sílice de mineros chilenos en altitud usando diferentes metodologías, con el propósito de determinar el método más seguro para controlar la exposición.  Métodos: Los 46 mineros que conforman la muestra trabajan a 3000 metros sobre el nivel del mar con sistema de turnos no convencionales, en jornadas de 12 horas diarias por 4 días consecutivos, después de los cuales se descansa por otros 4 días. Se tomaron muestras de sílice en cada uno de los puestos de trabajo de estos 46 mineros en altitud. Los resultados de las concentraciones se presentan en (mg/m3). La exposición se evaluó usando el Threshold Limit Value y otras dos metodologías que incorporan parámetros respiratorios. Se determinó el grupo de mineros en riesgo con cada uno de estos métodos y se comparó la proporción de mineros expuestos en cada caso. RESULTADOS: evaluando con el Threshold Limit Value (método 1) se obtuvo un 43,48% de mineros en riesgo. Con los métodos que incluyen parámetros respiratorios se obtuvo una proporción de mineros sobre-expuestos del 82,61% con el método 2, y 73,91% con el método 3. CONCLUSIONES: de los tres métodos analizados, el que considera el parámetro respiratorio volumen minuto, a través de la estimación de la dosis inhalada, es el más seguro para definir el grupo de mineros en riesgo por exposición a sílice a gran altura.


Assuntos
Altitude , Mineração , Exposição Ocupacional , Dióxido de Silício , Humanos , Chile , Exposição por Inalação/efeitos adversos , Masculino , Adulto
12.
Ecotoxicol Environ Saf ; 276: 116279, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581906

RESUMO

Hydrogen sulfide (H2S) is a typical odour compound mainly causing respiratory and central nervous system symptoms. However, the immunotoxicity of inhaled H2S and the underlying mechanisms remain largely unknown. In this study, a low-dose inhalation exposure to H2S was arranged to observe inflammatory response and immunotoxicity in lung tissue of rats. Low concentrations of H2S exposure affected the immune level of pulmonary tissue and peripheral blood. Significant pathological changes in lung tissue in the exposure group were observed. At low concentration, H2S not only induced the upregulation of AQP-4 and MMP-9 expression but also stimulated immune responses, initiating various anti-inflammatory and inflammatory factors, altering tissue homeostatic environments. The TNF and chemokine signaling pathway played an important role which can promote the deterioration of pulmonary inflammatory processes and lead to lung injury and fibrosis. Excessive immune response causes an inflammatory effect and blood-gas barrier damage. These data will be of value in evaluating future occupational health risks and providing technical support for the further development of reliable, sensitive, and easy-to-use screening indicators of exposure injury.


Assuntos
Sulfeto de Hidrogênio , Exposição por Inalação , Pulmão , Animais , Sulfeto de Hidrogênio/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/imunologia , Ratos , Exposição por Inalação/efeitos adversos , Masculino , Inflamação/induzido quimicamente , Inflamação/patologia , Ratos Sprague-Dawley , Metaloproteinase 9 da Matriz/metabolismo , Poluentes Atmosféricos/toxicidade
13.
J Hazard Mater ; 471: 134307, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678702

RESUMO

This systematic review and meta-analysis investigated studies on formaldehyde (FA) inhalation exposure in indoor environments and related carcinogenic (CR) and non-carcinogenic (HQ) risk. Studies were obtained from Scopus, PubMed, Web of Science, Medline, and Embase databases without time limitation until November 21, 2023. Studies not meeting the criteria of Population, Exposure, Comparator, and Outcomes (PECO) were excluded. The 45 articles included belonged to the 5 types of sites: dwelling environments, educational centers, kindergartens, vehicle cabins, and other indoor environments. A meta-analysis determined the average effect size (ES) between indoor FA concentrations, CR, and HQ values in each type of indoor environment. FA concentrations ranged from 0.01 to 1620 µg/m3. The highest FA concentrations were stated in water pipe cafés and the lowest in residential environments. In more than 90% of the studies uncertain (1.00 ×10-6 1.00 ×10-4) due to FA inhalation exposure was reported and non-carcinogenic risk was stated acceptable. The meta-analysis revealed the highest CR values due to inhalation of indoor FA in high-income countries. As 90% of the time is spent indoors, it is crucial to adopt effective strategies to reduce FA concentrations, especially in kindergartens and schools, with regular monitoring of indoor air quality.


Assuntos
Poluição do Ar em Ambientes Fechados , Formaldeído , Exposição por Inalação , Formaldeído/análise , Formaldeído/toxicidade , Poluição do Ar em Ambientes Fechados/análise , Exposição por Inalação/análise , Medição de Risco , Humanos
14.
Eur Respir Rev ; 33(172)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657996

RESUMO

Common airborne allergens (pollen, animal dander and those from fungi and insects) are the main triggers of type I allergic disorder in the respiratory system and are associated with allergic rhinitis, allergic asthma, as well as immunoglobulin E (IgE)-mediated allergic bronchopulmonary aspergillosis. These allergens promote IgE crosslinking, vasodilation, infiltration of inflammatory cells, mucosal barrier dysfunction, extracellular matrix deposition and smooth muscle spasm, which collectively cause remodelling of the airways. Fungus and insect (house dust mite and cockroaches) indoor allergens are particularly rich in proteases. Indeed, more than 40 different types of aeroallergen proteases, which have both IgE-neutralising and tissue-destructive activities, have been documented in the Allergen Nomenclature database. Of all the inhaled protease allergens, 85% are classed as serine protease activities and include trypsin-like, chymotrypsin-like and collagenolytic serine proteases. In this article, we review and compare the allergenicity and proteolytic effect of allergen serine proteases as listed in the Allergen Nomenclature and MEROPS databases and highlight their contribution to allergic sensitisation, disruption of the epithelial barrier and activation of innate immunity in allergic airways disease. The utility of small-molecule inhibitors of allergen serine proteases as a potential treatment strategy for allergic airways disease will also be discussed.


Assuntos
Alérgenos , Imunidade Inata , Serina Proteases , Humanos , Alérgenos/imunologia , Serina Proteases/metabolismo , Serina Proteases/imunologia , Animais , Poluição do Ar em Ambientes Fechados/efeitos adversos , Inibidores de Serina Proteinase/uso terapêutico , Exposição por Inalação/efeitos adversos , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/enzimologia
15.
Sci Total Environ ; 929: 172488, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631625

RESUMO

Quarantine work is widely recognized as an indispensable endeavor in curbing the propagation of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Furthermore, the heavy workload places workers at a heightened risk of chemical exposure and respiratory damage. Consequently, it is paramount to systematically perform health risk assessments and meticulously oversee the work by wearing personal protective equipment to minimize these risks. To assess the inhalation exposure, this study examined data on disinfectant exposure from quarantine professional users who utilized disinfectants containing quaternary ammonium compounds. Through a survey of 6,199 cases conducted by 300 quarantine professional users who actively engaged in quarantine work, we assembled a database of exposure factors derived from their utilization of spray-type disinfectants for quarantine purposes. Based on these data, we formulated an inhalation exposure algorithm, which considers the time-weighted average (TWA) air concentrations. The test results demonstrated that the industrial-grade respirator mask could prevent a minimum of 68.3 % of particles, reducing respiratory exposure. Consequently, the hazard quotient (HQ) due to disinfectant exposure also decreased. This research is essential in safeguarding the safety and health of professional users engaged in quarantine-related tasks. By implementing strict measures like health risk assessments and personal protective equipment, individuals with quarantine experience can safely carry out their quarantine work. The results of this study are expected to serve as a framework for improving policies and regulations concerning quarantine work and safeguarding the health of professional users.


Assuntos
COVID-19 , Desinfetantes , Exposição por Inalação , Exposição Ocupacional , Quarentena , Compostos de Amônio Quaternário , Desinfetantes/análise , Humanos , Exposição por Inalação/estatística & dados numéricos , COVID-19/prevenção & controle , Medição de Risco , SARS-CoV-2 , Equipamento de Proteção Individual
16.
Sci Total Environ ; 932: 172556, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38679085

RESUMO

This study reviewed scientific literature on inhalation exposure to heavy metals (HMs) in various indoor and outdoor environments and related carcinogenic and non-carcinogenic risk. A systematic search in Web of Science, Scopus, PubMed, Embase, and Medline databases yielded 712 results and 43 articles met the requirements of the Population, Exposure, Comparator, and Outcomes (PECO) criteria. Results revealed that HM concentrations in most households exceeded the World Health Organization (WHO) guideline values, indicating moderate pollution and dominant anthropogenic emission sources of HMs. In the analyzed schools, universities, and offices low to moderate levels of air pollution with HMs were revealed, while in commercial environments high levels of air pollution were stated. The non-carcinogenic risk due to inhalation HM exposure exceeded the acceptable level of 1 in households, cafes, hospitals, restaurants, and metros. The carcinogenic risk for As and Cr in households, for Cd, Cr, Ni, As, and Co in educational environments, for Pb, Cd, Cr, and Co in offices and commercial environments, and for Ni in metros exceeded the acceptable level of 1 × 10-4. Carcinogenic risk was revealed to be higher indoors than outdoors. This review advocates for fast and effective actions to reduce HM exposure for safer breathing.


Assuntos
Poluentes Atmosféricos , Exposição por Inalação , Metais Pesados , Metais Pesados/análise , Humanos , Exposição por Inalação/estatística & dados numéricos , Poluentes Atmosféricos/análise , Medição de Risco , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar/estatística & dados numéricos
17.
Chemosphere ; 357: 141975, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615960

RESUMO

This study investigated the determinants of personal exposures (PE) to coarse (PM2.5-10) and fine particulate matter (PM2.5) for elderly communities in Hong Kong. The mean PE PM2.5 and PM2.5-10 were 23.6 ± 10.8 and 13.5 ± 22.1 µg/m3, respectively during the sampling period. Approximately 76% of study subjects presented statistically significant differences between PE and ambient origin for PM2.5 compared to approximately 56% for PM2.5-10, possibly due to the coarse-size particles being more influenced by similar sources (road dust and construction dust emissions) compared to the PM2.5 particles. Individual PE to ambient (P/A) ratios for PM2.5 all exceeded unity (≥1), suggesting the dominant influences of non-ambient particles contributed towards total PE values. There were about 80% individual P/A ratios (≤1) for PM2.5-10, implying possible effective infiltration prevention of larger size particulate matter particles leading to dominant influences from the outdoor sources. The higher concentration of NO3- and SO42- in PM2.5-10 compared to PM2.5 suggests possible heterogeneous reactions of alkaline minerals leading to the formation of NO3- and SO42- in PM2.5-10 particles. The PE and ambient OC/EC ratios in PM2.5 (8.8 ± 3.3 and 10.4 ± 22.4, respectively) and in PM2.5-10 (6.0 ± 1.9 and 3.0 ± 1.1, respectively) suggest possible secondary formed OC from surrounding rural areas. Heterogeneous distributions (COD >0.2) between the PE and ambient concentrations were found for both the PM2.5 and PM2.5-10 samples. The calibration coefficient as the association between personal and surrogate exposure measure of PE to PM2.5 (0.84) was higher than PM2.5-10 (0.52). The findings further confirm that local sources were the dominant contributor to the coarse particles and these coefficients can potentially be used to estimate different PE to PM2.5 and PM2.5-10 conditions. A comprehensive understanding of the PE to determinants in coarse particles is essential to further reduce potential exposure misclassification.


Assuntos
Poluição do Ar , Exposição por Inalação , Material Particulado , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Feminino , Material Particulado/análise , Exposição por Inalação/estatística & dados numéricos , Poluição do Ar/estatística & dados numéricos , Hong Kong , Tamanho da Partícula , Monitoramento Ambiental , Nitratos/análise , Sulfatos/análise
18.
Artigo em Chinês | MEDLINE | ID: mdl-38677995

RESUMO

Dinitrogen tetroxide is often used as an oxidant in rocket propellant and has strong irritant and corrosive properties. This paper analyzes the clinical data of a patient with dinitrogen tetroxide poisoning admitted in the 63710 Army Hospital of Chinese People's Liberation Army, so as to further explore the poisoning mechanism, clinical characteristics and key points of acute inhaled dinitrogen tetroxide poisoning.


Assuntos
Exposição por Inalação , Óxidos de Nitrogênio , Adulto , Humanos , Masculino , Exposição por Inalação/efeitos adversos , Óxidos de Nitrogênio/intoxicação
19.
Regul Toxicol Pharmacol ; 149: 105627, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621522

RESUMO

CropLife Europe collected literature values from monitoring studies measuring air concentrations of Plant Protection Products (PPPs) that may be inhaled by humans located in rural areas but not immediately adjacent to PPP applications. The resulting "Combined Air Concentration Database" (CACD) was used to determine whether air concentrations of PPPs reported by the French "Agency for Food, Environmental and Occupational Health & Safety" (ANSES) are consistent with those measured by others to increase confidence in values of exposure to humans. The results were put into risk assessment context. Results show that 25-90% of samples do not contain measurable PPP concentrations. Measured respirable fractions were below EU default air concentrations used for risk assessment for resident exposure by the European Food Safety Authority. All measured exposures in the CACD were also below established toxicological endpoints, even when considering the highest maximum average reported concentrations and very conservative inhalation rates. The highest recorded air concentration was for prosulfocarb (0.696 µg/m³ measured over 48 h) which is below the EFSA default limit of 1 µg/m³ for low volatility substances. In conclusion, based on the CACD, measured air concentrations of PPPs are significantly lower than EFSA default limits and relevant toxicological reference values.


Assuntos
Poluentes Atmosféricos , Bases de Dados Factuais , Monitoramento Ambiental , Medição de Risco , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Exposição por Inalação/análise , Exposição por Inalação/efeitos adversos
20.
Hum Exp Toxicol ; 43: 9603271241248631, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646969

RESUMO

BACKGROUND: Fresh Menthol 3% Nicotine (FM3) is a novel JUUL e-liquid formulation. Its potential toxicity and that of the corresponding base formulation relative to a filtered air (FA) control was studied in a subchronic inhalation study conducted in general accordance with OECD 413. METHODS: Aerosols generated with an intense puffing regime were administered to rats in a nose-only fashion at 1400 µg aerosol collected mass/L on a 6 hour/day basis for 90 days with a 42-day recovery. Exposure atmospheres met target criteria. Systemic exposure was confirmed by plasma measurement of nicotine. RESULTS: No test article-related mortality, clinical signs (other than reversible lower body weight gains in males), clinical pathology or gross findings were noted during this study. No microscopic lesions related to base formulation exposure were identified. Minimal microscopic lesions were observed in the FM3 6-hour exposure group. Microscopic lesions observed in the FM3 6-hour exposure group comprised only minimal laryngeal squamous metaplasia in one male and one female animal. No microscopic lesions related to FM3 exposure remained after the recovery period. CONCLUSION: Exposure atmosphere characterization indicated that conditions were achieved to permit thorough assessment of test articles and results indicate a low order of toxicity for the FM3 Electronic nicotine delivery systems (ENDS) formulation and its base formulation.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Animais , Masculino , Feminino , Nicotina/toxicidade , Nicotina/administração & dosagem , Administração por Inalação , Testes de Toxicidade Subcrônica , Aerossóis , Mentol/toxicidade , Mentol/administração & dosagem , Ratos Sprague-Dawley , Ratos , Exposição por Inalação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA