Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.249
Filtrar
1.
Proc Biol Sci ; 291(2023): 20232832, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747704

RESUMO

Asexual reproduction by means of splitting, also called fissiparity, is a common feature in some asterozoan groups, especially in ophiactid brittle stars. Most fissiparous brittle stars show six instead of the usual five rays, live as epibionts on host organisms, and use clonal fragmentation to rapidly colonize secluded habitats and effectively expand the margins of their distribution area. While the biology and ecology of clonal fragmentation are comparatively well understood, virtually nothing is known about the evolution and geological history of that phenomenon. Here, we describe an exceptional fossil of an articulated six-armed brittle star from the Late Jurassic of Germany, showing one body half in the process of regeneration, and assign it to the new species Ophiactis hex sp. nov. Phylogenetic inference shows that the fossil represents the oldest member of the extant family Ophiactidae. Because the Ophiactis hex specimen shows an original six-fold symmetry combined with a morphology typically found in epizoic ophiuroids, in line with recent fissiparous ophiactid relatives, we assume that the regenerating body half is an indication for fissiparity. Ophiactis hex thus shows that fissiparity was established as a means of asexual reproduction in asterozoan echinoderms by the Late Jurassic.


Assuntos
Equinodermos , Fósseis , Filogenia , Reprodução Assexuada , Animais , Fósseis/anatomia & histologia , Equinodermos/anatomia & histologia , Equinodermos/fisiologia , Evolução Biológica , Alemanha
2.
Proc Biol Sci ; 291(2023): 20240537, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747705

RESUMO

The noasaurid ceratosaur Kiyacursor longipes gen. et sp. nov. is described based on a fragmentary skeleton including cervical vertebra, pectoral girdle, humerus and hind limbs from the Lower Cretaceous (Aptian) Ilek Formation at Shestakovo 1 locality in Western Siberia, Russia. This is the first ceratosaur from the Early Cretaceous of Asia, extending the stratigraphic range of Ceratosauria by 40 Myr on that continent. Kiyacursor shares unique hind limb proportions with Elaphrosaurus and Limusaurus, suggesting improved cursorial ability. These taxa show an ostrich-like specialization of the pes, with a large third metatarsal and greatly reduced second metatarsal. By contrast, all other fast running non-avian theropod dinosaurs have an arctometatarsalian pes, with the third metatarsal strongly reduced proximally. The new taxon lived in the Early Cretaceous ecosystem containing a number of other Jurassic relics, such as stem salamanders, protosuchian and shartegosuchid crocodyliforms, tritylodontid synapsids and docodontan mammaliaforms.


Assuntos
Dinossauros , Fósseis , Animais , Dinossauros/anatomia & histologia , Dinossauros/classificação , Fósseis/anatomia & histologia , Sibéria , Evolução Biológica
4.
J Morphol ; 285(5): e21700, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717130

RESUMO

A sample of phosphatized, originally calcareous, mollusk shells from the Katian age uppermost Mójcza Limestone at its type locality yielded a few hundred polyplacophoran plates. The chelodids are very rare among them. Three septemchitonid species dominate. They represent a gradation from underived steep roof-like plates to almost cylindrical ones, leaving only a narrow ventral slit for the foot. Apparently, this represents the first step toward the extremely derived 'segmented clam' Bauplan of the Silurian Carnicoleus, with plates completely closed at the venter except for the mouth and anal openings. To enable growth, the plates became thinner and more flexible (or perhaps resorbed) along the dorsum. The tendency toward reduction of the ventral gap of the plates in the early Paleozoic septemchitonid polyplacophorans implies their lack of ability to cling to the substrate with a muscular foot. In compensation, their plates changed toward a more efficient protective function, covering the animal body sides more and more completely. This may explain the origin of the ventral furrow of extant solenogasters hiding the rudimentary foot. An opposite route was chosen by the coeval Acaenoplax lineage, in which the plates did not contact each other, exposing much of the soft body on the dorsum. In both cases the animals appeared to be worm-like, perhaps representing different ways of evolution from the Paleozoic chitons to the extant aplacophorans.


Assuntos
Fósseis , Animais , Fósseis/anatomia & histologia , Poliplacóforos/anatomia & histologia , Evolução Biológica , Exoesqueleto/anatomia & histologia
5.
Am J Bot ; 111(4): e16321, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38659272

RESUMO

PREMISE: We studied the 3D morphology of a small, well-preserved cone from the Pennsylvanian Mazon Creek Lagerstätte to characterize its structure and determine its systematic affinity. Previously tentatively assigned to the enigmatic Tetraphyllostrobus, we show that it differs in key respects from that genus as described. METHODS: We systematically compared the new fossil with relevant Paleozoic cone genera and employed advanced imaging techniques, including scanning electron microscopy, Airyscan confocal super-resolution microscopy, optical microscopy, and X-ray microcomputed tomography to visualize and reconstruct the fossil cone in 3D. RESULTS: The analyses demonstrate unequivocally that the sporophylls of the new Mazon Creek cone are arranged in whorls of six and have characters typical of Sphenophyllales, including epidermal cells with undulatory margins and in situ spores assignable to Columinisporites. The combination of characters, including sporophyll arrangement, anatomy, and spore type, supports the establishment of Hexaphyllostrobus kostorhysii gen. et sp. nov. within Sphenophyllales. Furthermore, we show that Tetraphyllostrobus, although originally described as possessing smooth monolete spores, actually possesses Columinisporites-type spores, indicating that it, too, was most likely a sphenophyll. CONCLUSIONS: The recognition of Hexaphyllostrobus contributes to our knowledge of Pennsylvanian sphenophyll diversity, and in particular increases the number of species with in situ Columinisporites-type spores. Attribution of Hexaphyllostrobus to Sphenophyllales calls into question current interpretations of Tetraphyllostrobus suggesting that future research on better-preserved macrofossil material may demonstrate a sphenophyllalean relationship.


Assuntos
Fósseis , Fósseis/anatomia & histologia , Microtomografia por Raio-X , Microscopia Eletrônica de Varredura , Traqueófitas/anatomia & histologia , Traqueófitas/ultraestrutura
6.
BMC Biol ; 22(1): 96, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679748

RESUMO

BACKGROUND: The early Cambrian arthropod clade Megacheira, also referred to as great appendage arthropods, comprised a group of diminutive and elongated predators during the early Palaeozoic era, around 518 million years ago. In addition to those identified in the mid-Cambrian Burgess Shale biota, numerous species are documented in the renowned 518-million-year-old Chengjiang biota of South China. Notably, one species, Tanglangia longicaudata, has remained inadequately understood due to limited available material and technological constraints. In this study, we, for the first time, examined eight fossil specimens (six individuals) utilizing state-of-the-art µCT and computer-based 3D rendering techniques to unveil the hitherto hidden ventral and appendicular morphology of this species. RESULTS: We have identified a set of slender endopodites gradually narrowing distally, along with a leaf-shaped exopodite adorned with fringed setae along its margins, and a small putative exite attached to the basipodite. Our techniques have further revealed the presence of four pairs of biramous appendages in the head, aligning with the recently reported six-segmented head in other early euarthropods. Additionally, we have discerned two peduncle elements for the great appendage. These findings underscore that, despite the morphological diversity observed in early euarthropods, there exists similarity in appendicular morphology across various groups. In addition, we critically examine the existing literature on this taxon, disentangling previous mislabelings, mentions, descriptions, and, most importantly, illustrations. CONCLUSIONS: The µCT-based investigation of fossil material of Tanglangia longicaudata, a distinctive early Cambrian euarthropod from the renowned Chengjiang biota, enhances our comprehensive understanding of the evolutionary morphology of the Megacheira. Its overall morphological features, including large cup-shaped eyes, raptorial great appendages, and a remarkably elongated telson, suggest its potential ecological role as a crepuscular predator and adept swimmer in turbid waters.


Assuntos
Artrópodes , Fósseis , Animais , Fósseis/anatomia & histologia , Artrópodes/anatomia & histologia , China , Evolução Biológica , Biota , Microtomografia por Raio-X
7.
Proc Biol Sci ; 291(2021): 20240262, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38654646

RESUMO

The fossil fish Ptychodus Agassiz, 1834, characterized by a highly distinctive grinding dentition and an estimated gigantic body size (up to around 10 m), has remained one of the most enigmatic extinct elasmobranchs (i.e. sharks, skates and rays) for nearly two centuries. This widespread Cretaceous taxon is common in Albian to Campanian deposits from almost all continents. However, specimens mostly consist of isolated teeth or more or less complete dentitions, whereas cranial and post-cranial skeletal elements are very rare. Here we describe newly discovered material from the early Late Cretaceous of Mexico, including complete articulated specimens with preserved body outline, which reveals crucial information on the anatomy and systematic position of Ptychodus. Our phylogenetic and ecomorphological analyses indicate that ptychodontids were high-speed (tachypelagic) durophagous lamniforms (mackerel sharks), which occupied a specialized predatory niche previously unknown in fossil and extant elasmobranchs. Our results support the view that lamniforms were ecomorphologically highly diverse and represented the dominant group of sharks in Cretaceous marine ecosystems. Ptychodus may have fed predominantly on nektonic hard-shelled prey items such as ammonites and sea turtles rather than on benthic invertebrates, and its extinction during the Campanian, well before the end-Cretaceous crisis, might have been related to competition with emerging blunt-toothed globidensine and prognathodontine mosasaurs.


Assuntos
Fósseis , Filogenia , Tubarões , Animais , Fósseis/anatomia & histologia , México , Tubarões/anatomia & histologia , Tubarões/classificação , Tubarões/fisiologia , Evolução Biológica , Dente/anatomia & histologia
8.
PLoS One ; 19(4): e0298216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683802

RESUMO

Among the diverse basal reptile clade Parareptilia, the nycteroleters are among the most poorly understood. The interrelationships of nycteroleters are contentious, being recovered as both monophyletic and paraphyletic in different analyses, yet their anatomy has received little attention. We utilized x-ray computed tomography to investigate the skull of the nycteroleterid Emeroleter levis, revealing aspects of both the external and internal cranial anatomy that were previously unknown or undescribed, especially relating to the palate, braincase, and mandible. Our results reveal a greater diversity in nycteroleter cranial anatomy than was previously recognized, including variation in the contribution of the palatal elements to the orbitonasal ridge among nycteroleters. Of particular note are the unique dentition patterns in Emeroleter, including the presence of dentition on the ectopterygoid, an element which is typically edentulous in most parareptiles. We then incorporate the novel information gained from the computed tomography analysis into an updated phylogenetic analysis of parareptiles, producing a fully resolved Nycteroleteridae and further supporting previous suggestions that the genus 'Bashkyroleter' is paraphyletic.


Assuntos
Filogenia , Crânio , Tomografia Computadorizada por Raios X , Animais , Crânio/anatomia & histologia , Crânio/diagnóstico por imagem , Répteis/anatomia & histologia , Répteis/classificação , Fósseis/anatomia & histologia , Mandíbula/anatomia & histologia
9.
Curr Biol ; 34(8): 1755-1761.e6, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38521061

RESUMO

All ∼14,000 extant ant species descended from the same common ancestor, which lived ∼140-120 million years ago (Ma).1,2 While modern ants began to diversify in the Cretaceous, recent fossil evidence has demonstrated that older lineages concomitantly occupied the same ancient ecosystems.3 These early-diverging ant lineages, or stem ants, left no modern descendants; however, they dominated the fossil record throughout the Cretaceous until their ultimate extinction sometime around the K-Pg boundary. Even as stem ant lineages appear to be diverse and abundant throughout the Cretaceous, the extent of their longevity in the fossil record and circumstances contributing to their extinction remain unknown.3 Here we report the youngest stem ants, preserved in ∼77 Ma Cretaceous amber from North Carolina, which illustrate unexpected morphological stability and lineage persistence in this enigmatic group, rivaling the longevity of contemporary ants. Through phylogenetic reconstruction and morphometric analyses, we find evidence that total taxic turnover in ants was not accompanied by a fundamental morphological shift, in contrast to other analogous stem extinctions such as theropod dinosaurs. While stem taxa showed broad morphological variation, high-density ant morphospace remained relatively constant through the last 100 million years, detailing a parallel, but temporally staggered, evolutionary history of modern and stem ants.


Assuntos
Âmbar , Formigas , Evolução Biológica , Fósseis , Filogenia , Animais , Formigas/fisiologia , Formigas/anatomia & histologia , Formigas/classificação , Fósseis/anatomia & histologia , North Carolina , Extinção Biológica
10.
Curr Biol ; 34(8): 1762-1771.e3, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38521062

RESUMO

Amber preserves an exceptional record of tiny, soft-bodied organisms and chemical environmental signatures, elucidating the evolution of arthropod lineages and the diversity, ecology, and biogeochemistry of ancient ecosystems. However, globally, fossiliferous amber deposits are rare in the latest Cretaceous and surrounding the Cretaceous-Paleogene (K-Pg) mass extinction.1,2,3,4,5 This faunal gap limits our understanding of arthropod diversity and survival across the extinction boundary.2,6 Contrasting hypotheses propose that arthropods were either relatively unaffected by the K-Pg extinction or experienced a steady decline in diversity before the extinction event followed by rapid diversification in the Cenozoic.2,6 These hypotheses are primarily based on arthropod feeding traces on fossil leaves and time-calibrated molecular phylogenies, not direct observation of the fossil record.2,7 Here, we report a diverse amber assemblage from the Late Cretaceous (67.04 ± 0.16 Ma) of the Big Muddy Badlands, Canada. The new deposit fills a critical 16-million-year gap in the arthropod fossil record spanning the K-Pg mass extinction. Seven arthropod orders and at least 11 insect families have been recovered, making the Big Muddy amber deposit the most diverse arthropod assemblage near the K-Pg extinction. Amber chemistry and stable isotopes suggest the amber was produced by coniferous (Cupressaceae) trees in a subtropical swamp near remnants of the Western Interior Seaway. The unexpected abundance of ants from extant families and the virtual absence of arthropods from common, exclusively Cretaceous families suggests that Big Muddy amber may represent a yet unsampled Late Cretaceous environment and provides evidence of a faunal transition before the end of the Cretaceous.


Assuntos
Âmbar , Artrópodes , Extinção Biológica , Fósseis , Fósseis/anatomia & histologia , Animais , Artrópodes/anatomia & histologia , Artrópodes/classificação , Evolução Biológica , Biodiversidade , Canadá
11.
Curr Biol ; 34(8): 1794-1800.e3, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38552627

RESUMO

Extant baleen whales (Mysticeti) uniquely use keratinous baleen for filter-feeding and lack dentition, but the fossil record clearly shows that "toothed" baleen whales first appeared in the Late Eocene.1 Globally, only two Eocene mysticetes have been found, and both are from the Southern Hemisphere: Mystacodon selenensis from Peru, 36.4 mega-annum (Ma) ago1,2 and Llanocetus denticrenatus from Antarctica, 34.2 Ma ago.3,4 Based on a partial skull from the lower part of the Lincoln Creek Formation in Washington State, USA, we describe the Northern Hemisphere's geochronologically earliest mysticete, Fucaia humilis sp. nov. Geology, biostratigraphy, and magnetostratigraphy places Fucaia humilis sp. nov. in the latest Eocene (ca. 34.5 Ma ago, near the Eocene/Oligocene transition at 33.9 Ma ago), approximately coeval with the oldest record of fossil kelps, also in the northeastern Pacific.5 This observation leads to our hypothesis that the origin and development of a relatively stable, nutrient-rich kelp ecosystem5,6 in the latest Eocene may have fostered the radiation of small-sized toothed mysticetes (Family Aetiocetidae) in the North Pacific basin, a stark contrast to the larger Llanocetidae (whether Mystacodon belongs to llanocetids or another independent clade remains unresolved) with the latest Eocene onset of the Antarctic Circumpolar Current in the Southern Hemisphere.7,8,9 Our discovery suggests that disparate mechanisms and ecological scenarios may have nurtured contrasting early mysticete evolutionary histories in the Northern and Southern hemispheres.


Assuntos
Fósseis , Baleias , Fósseis/anatomia & histologia , Animais , Baleias/anatomia & histologia , Baleias/fisiologia , Evolução Biológica , Crânio/anatomia & histologia , Washington
12.
PLoS One ; 18(10): e0292636, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37878550

RESUMO

For the first time, ophiuroids have been found in South African strata predating the lowermost Bokkeveld Group. These comprise natural moulds and casts from two localities in the 'upper unit' of the Baviaanskloof Formation (Table Mountain Group). As a Pragian to earliest Emsian age has been inferred for this member, the new taxa comprise the earliest high-palaeolatitude ophiuroid records from southern Gondwana. Morphological analysis of the specimens revealed the presence of two distinct taxa. One is here described as Krommaster spinosus gen. et sp. nov., a new encrinasterid characterised by very large spines on the dorsal side of the disc, the ventral interradial marginal plates and the arm midlines. The second taxon is a poorly preserved specimen of Hexuraster weitzi, a cheiropterasterid previously described from the slightly younger Bokkeveld Group.


Assuntos
Equinodermos , Fósseis , África do Sul , Equinodermos/classificação , Fósseis/anatomia & histologia
13.
PeerJ ; 11: e15776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671356

RESUMO

The initial radiation of Eosauropterygia during the Triassic biotic recovery represents a key event in the dominance of reptiles secondarily adapted to marine environments. Recent studies on Mesozoic marine reptile disparity highlighted that eosauropterygians had their greatest morphological diversity during the Middle Triassic, with the co-occurrence of Pachypleurosauroidea, Nothosauroidea and Pistosauroidea, mostly along the margins of the Tethys Ocean. However, these previous studies quantitatively analysed the disparity of Eosauropterygia as a whole without focussing on Triassic taxa, thus limiting our understanding of their diversification and morphospace occupation during the Middle Triassic. Our multivariate morphometric analyses highlight a clearly distinct colonization of the ecomorphospace by the three clades, with no evidence of whole-body convergent evolution with the exception of the peculiar pistosauroid Wangosaurus brevirostris, which appears phenotypically much more similar to nothosauroids. This global pattern is mostly driven by craniodental differences and inferred feeding specializations. We also reveal noticeable regional differences among nothosauroids and pachypleurosauroids of which the latter likely experienced a remarkable diversification in the eastern Tethys during the Pelsonian. Our results demonstrate that the high phenotypic plasticity characterizing the evolution of the pelagic plesiosaurians was already present in their Triassic ancestors, casting eosauropterygians as particularly adaptable animals.


Assuntos
Fósseis , Fenótipo , Répteis , Animais , Adaptação Fisiológica , Análise Multivariada , Répteis/anatomia & histologia , Répteis/classificação , Fósseis/anatomia & histologia , Filogenia
14.
Zootaxa ; 5306(5): 595-598, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37518664

RESUMO

This paper describes a new species of the genus Burmadactylus Heads, 2009 (Tridactylidae: Dentridactylinae) from Burmese amber, namely: Burmadactylus tenuicerci sp. nov. This new species is similar to Burmadactylus grimaldi Heads, 2009, but differs from latter by mesotibia basally inflated and almost as long as mesofemur; the second segment of cercus distinctly slender; paraproctal lobe covered with sparse and slender setae, one of the setae near the apex distinct thick and long.


Assuntos
Fósseis , Ortópteros , Animais , Âmbar , Fósseis/anatomia & histologia , Mianmar , Ortópteros/anatomia & histologia , Ortópteros/classificação , Especificidade da Espécie
15.
PeerJ ; 11: e15512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483966

RESUMO

Metriorhynchids are marine crocodylomorphs found across Jurassic and Lower Cretaceous deposits of Europe and Central and South America. Despite being one of the oldest fossil families named in paleontology, the phylogenetic relationships within Metriorhynchidae have been subject to many revisions over the past 15 years. Herein, we describe a new metriorhynchid from the Kimmeridgian of Porrentruy, Switzerland. The material consists of a relatively complete, disarticulated skeleton preserving pieces of the skull, including the frontal, prefrontals, right postorbital, nasals, maxillae, right premaxillae and nearly the entire mandible, and many remains of the axial and appendicular skeleton such as cervical, dorsal, and caudal vertebrae, ribs, the left ischium, the right femur, and the right fibula. This new specimen is referred to the new species Torvoneustes jurensis sp. nov. as part of the large-bodied macrophagous tribe Geosaurini. Torvoneustes jurensis presents a unique combination of cranial and dental characters including a smooth cranium, a unique frontal shape, acute ziphodont teeth, an enamel ornamentation made of numerous apicobasal ridges shifting to small ridges forming an anastomosed pattern toward the apex of the crown and an enamel ornamentation touching the carina. The description of this new species allows to take a new look at the currently proposed evolutionary trends within the genus Torvoneustes and provides new information on the evolution of this clade.


Assuntos
Fósseis , Filogenia , Répteis , Fósseis/anatomia & histologia , Suíça , Répteis/anatomia & histologia , Répteis/classificação , Especificidade da Espécie , Osso e Ossos/anatomia & histologia , Animais
16.
PeerJ ; 11: e15576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377790

RESUMO

Odontocetes first appeared in the fossil record by the early Oligocene, and their early evolutionary history can provide clues as to how some of their unique adaptations, such as echolocation, evolved. Here, three new specimens from the early to late Oligocene Pysht Formation are described further increasing our understanding of the richness and diversity of early odontocetes, particularly for the North Pacific. Phylogenetic analysis shows that the new specimens are part of a more inclusive, redefined Simocetidae, which now includes Simocetus rayi, Olympicetus sp. 1, Olympicetus avitus, O. thalassodon sp. nov., and a large unnamed taxon (Simocetidae gen. et sp. A), all part of a North Pacific clade that represents one of the earliest diverging groups of odontocetes. Amongst these, Olympicetus thalassodon sp. nov. represents one of the best known simocetids, offering new information on the cranial and dental morphology of early odontocetes. Furthermore, the inclusion of CCNHM 1000, here considered to represent a neonate of Olympicetus sp., as part of the Simocetidae, suggests that members of this group may not have had the capability of ultrasonic hearing, at least during their early ontogenetic stages. Based on the new specimens, the dentition of simocetids is interpreted as being plesiomorphic, with a tooth count more akin to that of basilosaurids and early toothed mysticetes, while other features of the skull and hyoid suggest various forms of prey acquisition, including raptorial or combined feeding in Olympicetus spp., and suction feeding in Simocetus. Finally, body size estimates show that small to moderately large taxa are present in Simocetidae, with the largest taxon represented by Simocetidae gen. et sp. A with an estimated body length of 3 m, which places it as the largest known simocetid, and amongst the largest Oligocene odontocetes. The new specimens described here add to a growing list of Oligocene marine tetrapods from the North Pacific, further promoting faunistic comparisons across other contemporaneous and younger assemblages, that will allow for an improved understanding of the evolution of marine faunas in the region.


Assuntos
Cetáceos , Classificação , Fósseis , Baleias , Washington , Baleias/anatomia & histologia , Baleias/classificação , Cetáceos/anatomia & histologia , Cetáceos/classificação , Especificidade da Espécie , Fósseis/anatomia & histologia , Filogenia , Crânio/anatomia & histologia , Dente/anatomia & histologia
17.
Proc Biol Sci ; 290(1995): 20230160, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36919426

RESUMO

Skeletal pneumaticity is a key feature of extant avian structure and biology, which first evolved among the non-flying archosaurian ancestors of birds. The widespread presence of air-filled bones across the postcranial skeleton is unique to birds among living vertebrates, but the true extent of skeletal pneumaticity has never been quantitatively investigated-hindering fundamental insights into the evolution of this key avian feature. Here, we use microCT scans of fresh, frozen birds to directly quantify the fraction of humerus volume occupied by air across a phylogenetically diverse taxon sample to test longstanding hypotheses regarding the evolution and function of avian skeletal pneumatization. Among other insights, we document weak positive allometry of internal air volume with humeral size among pneumatized humeri and provide strong support that humeral size, body mass, aquatic diving, and the presence or absence of pneumaticity all have independent effects on cortical bone thickness. Our quantitative evaluation of humeral pneumaticity across extant avian phylogeny sheds new light on the evolution and ontogenetic progression of an important aspect of avian skeletal architecture, and suggests that the last common ancestor of crown birds possessed a highly pneumatized humerus.


Assuntos
Ar , Evolução Biológica , Aves , Úmero , Animais , Aves/anatomia & histologia , Fósseis/anatomia & histologia , Filogenia , Microtomografia por Raio-X , Úmero/anatomia & histologia , Úmero/diagnóstico por imagem , Osso Cortical/anatomia & histologia , Osso Cortical/diagnóstico por imagem
18.
Evol Dev ; 25(1): 119-133, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308394

RESUMO

In modern vertebrates, the craniofacial skeleton is complex, comprising cartilage and bone of the neurocranium, dermatocranium and splanchnocranium (and their derivatives), housing a range of sensory structures such as eyes, nasal and vestibulo-acoustic capsules, with the splanchnocranium including branchial arches, used in respiration and feeding. It is well understood that the skeleton derives from neural crest and mesoderm, while the sensory elements derive from ectodermal thickenings known as placodes. Recent research demonstrates that neural crest and placodes have an evolutionary history outside of vertebrates, while the vertebrate fossil record allows the sequence of the evolution of these various features to be understood. Stem-group vertebrates such as Metaspriggina walcotti (Burgess Shale, Middle Cambrian) possess eyes, paired nasal capsules and well-developed branchial arches, the latter derived from cranial neural crest in extant vertebrates, indicating that placodes and neural crest evolved over 500 million years ago. Since that time the vertebrate craniofacial skeleton has evolved, including different types of bone, of potential neural crest or mesodermal origin. One problematic part of the craniofacial skeleton concerns the evolution of the nasal organs, with evidence for both paired and unpaired nasal sacs being the primitive state for vertebrates.


Assuntos
Evolução Biológica , Fósseis , Crânio , Animais , Fósseis/anatomia & histologia , Crista Neural/anatomia & histologia , Crânio/anatomia & histologia , Vertebrados/anatomia & histologia , Vertebrados/classificação
19.
Evol Dev ; 24(6): 177-188, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36111749

RESUMO

The trilobite head served multiple functions and was composed of several fused segments. Yet, the underlying organization of the trilobite head, and whether patterns are conserved across trilobites, remains unclear. Modeling the head as being composed of modules, or subunits that vary and thus have the potential to evolve semi-independently can reveal underlying patterns of organization. Hypotheses of modular organization based on the comparative developmental biology of arthropods were evaluated using geometric morphometrics. Two-dimensional (semi)landmark datasets collected from the cranidia of two Ordovician trilobite species, Calyptaulax annulata (Phacopida) and Cloacaspis senilis (Olenida sensu Adrain, 2011) were analyzed. The degree and pattern of modularity were assessed using the covariance ratio (CR), which compares the covariation within putative modules to the covariation between them, and the fit of different models was compared using an effect size measure derived from the CR. When treating the eyes as a distinct module, the best modular hypothesis identified for C. annulata shows the eyes and anteriormost region of the head integrated as a single module. The best modular hypotheses for C. senilis are more complex but the eyes still covary mostly strongly with the anterior part of the head. The latter is also the case for all other well-supported models for both species. These results can be interpreted as a developmental signal corresponding to the anteriormost ocular segment of early arthropods that is retained throughout development, despite any likely selective pressures related to functional needs.


Assuntos
Artrópodes , Fósseis , Animais , Artrópodes/anatomia & histologia , Evolução Biológica , Fósseis/anatomia & histologia , Especificidade da Espécie , Cabeça/anatomia & histologia , Olho/anatomia & histologia
20.
Proc Natl Acad Sci U S A ; 119(35): e2123366119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994633

RESUMO

Variability in resource availability is hypothesized to be a significant driver of primate adaptation and evolution, but most paleoclimate proxies cannot recover environmental seasonality on the scale of an individual lifespan. Oxygen isotope compositions (δ18O values) sampled at high spatial resolution in the dentitions of modern African primates (n = 2,352 near weekly measurements from 26 teeth) track concurrent seasonal precipitation, regional climatic patterns, discrete meteorological events, and niche partitioning. We leverage these data to contextualize the first δ18O values of two 17 Ma Afropithecus turkanensis individuals from Kalodirr, Kenya, from which we infer variably bimodal wet seasons, supported by rainfall reconstructions in a global Earth system model. Afropithecus' δ18O fluctuations are intermediate in magnitude between those measured at high resolution in baboons (Papio spp.) living across a gradient of aridity and modern forest-dwelling chimpanzees (Pan troglodytes verus). This large-bodied Miocene ape consumed seasonally variable food and water sources enriched in 18O compared to contemporaneous terrestrial fauna (n = 66 fossil specimens). Reliance on fallback foods during documented dry seasons potentially contributed to novel dental features long considered adaptations to hard-object feeding. Developmentally informed microsampling recovers greater ecological complexity than conventional isotope sampling; the two Miocene apes (n = 248 near weekly measurements) evince as great a range of seasonal δ18O variation as more time-averaged bulk measurements from 101 eastern African Plio-Pleistocene hominins and 42 papionins spanning 4 million y. These results reveal unprecedented environmental histories in primate teeth and suggest a framework for evaluating climate change and primate paleoecology throughout the Cenozoic.


Assuntos
Evolução Biológica , Mudança Climática , Fósseis , Isótopos de Oxigênio , Pan troglodytes , Dente , África , Animais , Guiné Equatorial , Fósseis/anatomia & histologia , História do Século XXI , Hominidae/anatomia & histologia , Quênia , Isótopos de Oxigênio/análise , Pan troglodytes/anatomia & histologia , Papio/anatomia & histologia , Primatas/anatomia & histologia , Dente/anatomia & histologia , Dente/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA