Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.226
Filtrar
1.
Commun Biol ; 7(1): 1259, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367101

RESUMO

Foveal and peripheral vision are two distinct modes of visual processing essential for navigating the world. However, it remains unclear if they engage different neural mechanisms and circuits within the visual attentional system. Here, we trained macaques to perform a free-gaze visual search task using natural face and object stimuli and recorded a large number of 14588 visually responsive units from a broadly distributed network of brain regions involved in visual attentional processing. Foveal and peripheral units had substantially different proportions across brain regions and exhibited systematic differences in encoding visual information and visual attention. The spike-local field potential (LFP) coherence of foveal units was more extensively modulated by both attention and visual selectivity, thus indicating differential engagement of the attention and visual coding network compared to peripheral units. Furthermore, we delineated the interaction and coordination between foveal and peripheral processing for spatial attention and saccade selection. Together, the systematic differences between foveal and peripheral processing provide valuable insights into how the brain processes and integrates visual information from different regions of the visual field.


Assuntos
Atenção , Fóvea Central , Macaca mulatta , Campos Visuais , Animais , Campos Visuais/fisiologia , Macaca mulatta/fisiologia , Fóvea Central/fisiologia , Masculino , Atenção/fisiologia , Percepção Visual/fisiologia , Estimulação Luminosa , Movimentos Sacádicos/fisiologia , Vias Visuais/fisiologia
2.
J Vis ; 24(11): 3, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39365250

RESUMO

Microsaccades are known to be associated with a deficit in perceptual detection performance for brief probe flashes presented in their temporal vicinity. However, it is still not clear how such a deficit might depend on the visual environment across which microsaccades are generated. Here, and motivated by studies demonstrating an interaction between visual background image appearance and perceptual suppression strength associated with large saccades, we probed peripheral perceptual detection performance of human subjects while they generated microsaccades over three different visual backgrounds. Subjects fixated near the center of a low spatial frequency grating, a high spatial frequency grating, or a small white fixation spot over an otherwise gray background. When a computer process detected a microsaccade, it presented a brief peripheral probe flash at one of four locations (over a uniform gray background) and at different times. After collecting full psychometric curves, we found that both perceptual detection thresholds and slopes of psychometric curves were impaired for peripheral flashes in the immediate temporal vicinity of microsaccades, and they recovered with later flash times. Importantly, the threshold elevations, but not the psychometric slope reductions, were stronger for the white fixation spot than for either of the two gratings. Thus, like with larger saccades, microsaccadic suppression strength can show a certain degree of image dependence. However, unlike with larger saccades, stronger microsaccadic suppression did not occur with low spatial frequency textures. This observation might reflect the different spatiotemporal retinal transients associated with the small microsaccades in our study versus larger saccades.


Assuntos
Estimulação Luminosa , Movimentos Sacádicos , Humanos , Movimentos Sacádicos/fisiologia , Estimulação Luminosa/métodos , Adulto , Masculino , Feminino , Fóvea Central/fisiologia , Limiar Sensorial/fisiologia , Adulto Jovem , Percepção Visual/fisiologia , Campos Visuais/fisiologia , Fixação Ocular/fisiologia , Psicometria/métodos
3.
J Vis ; 24(9): 13, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39287597

RESUMO

Contrast processing is suggested to interact with eye growth and myopia development. A novel contrast-reducing myopia control lens design decreases image contrast and was shown to slow myopia progression. Limited insights exist regarding neural visual processing following adaptation to image contrast reduction. This study investigated foveal neural contrast sensitivity in 29 young adults following a 30-minute adaptation to scattering using a Bangerter occlusion foil 0.8, +0.5-diopter defocus, and a clear lens control condition. Neural contrast sensitivity at its peak sensitivity of 6 cycles per degree was assessed before and after adaptation to the lens conditions, employing a unique interferometric system. Pre-adaptation measurements were averaged from six replicates and post-adaptation measurements by the first and last three of six replicates. The change in neural contrast sensitivity was largest for scattering across the first and last three post-adaptation measurements (+0.05 ± 0.01 logCS and +0.04 ± 0.01 logCS, respectively) compared with control and defocus (all +0.03 ± 0.01 logCS). For scattering, the observed increase of neural contrast sensitivity within the first three measurements differed significantly from the pre-adaptation baseline (p = 0.04) and was significantly higher compared with the control condition (p = 0.04). The sensitivity increases in the control and defocus conditions were not significant (all p > 0.05). As the adaptation effect diminished, no significant differences were found from baseline or between the conditions in the last three measurements (all p > 0.05). When post-adaptation neural contrast sensitivities were clustered into 25-second sequences, a significant effect was observed between the conditions, with only a significant relevant effect between control and scattering at 25 seconds (p = 0.04) and no further significant effects (all p > 0.05). The alteration in neural contrast sensitivity at peak sensitivity was most pronounced following adaptation to the scattering condition compared with defocus and control, suggesting that induced scattering might be considered for myopia control.


Assuntos
Adaptação Ocular , Sensibilidades de Contraste , Fóvea Central , Miopia , Humanos , Sensibilidades de Contraste/fisiologia , Fóvea Central/fisiologia , Adulto Jovem , Miopia/fisiopatologia , Masculino , Feminino , Adulto , Adaptação Ocular/fisiologia , Adaptação Fisiológica/fisiologia , Óculos , Estimulação Luminosa/métodos
4.
Proc Natl Acad Sci U S A ; 121(37): e2408067121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39226351

RESUMO

Humans explore visual scenes by alternating short fixations with saccades directing the fovea to points of interest. During fixation, the visual system not only examines the foveal stimulus at high resolution, but it also processes the extrafoveal input to plan the next saccade. Although foveal analysis and peripheral selection occur in parallel, little is known about the temporal dynamics of foveal and peripheral processing upon saccade landing, during fixation. Here we investigate whether the ability to localize changes across the visual field differs depending on when the change occurs during fixation, and on whether the change localization involves foveal, extrafoveal processing, or both. Our findings reveal that the ability to localize changes in peripheral areas of the visual field improves as a function of time after fixation onset, whereas localization accuracy for foveal stimuli remains approximately constant. Importantly, this pattern holds regardless of whether individuals monitor only foveal or peripheral stimuli, or both simultaneously. Altogether, these results show that the visual system is more attuned to the foveal input early on during fixation, whereas change localization for peripheral stimuli progressively improves throughout fixation, possibly as a consequence of an increased readiness to plan the next saccade.


Assuntos
Fixação Ocular , Fóvea Central , Movimentos Sacádicos , Campos Visuais , Humanos , Fixação Ocular/fisiologia , Fóvea Central/fisiologia , Movimentos Sacádicos/fisiologia , Masculino , Feminino , Adulto , Campos Visuais/fisiologia , Adulto Jovem , Estimulação Luminosa/métodos , Percepção Visual/fisiologia
5.
Proc Natl Acad Sci U S A ; 121(36): e2405138121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39190352

RESUMO

The neural pathways that start human color vision begin in the complex synaptic network of the foveal retina where signals originating in long (L), middle (M), and short (S) wavelength-sensitive cone photoreceptor types are compared through antagonistic interactions, referred to as opponency. In nonhuman primates, two cone opponent pathways are well established: an L vs. M cone circuit linked to the midget ganglion cell type, often called the red-green pathway, and an S vs. L + M cone circuit linked to the small bistratified ganglion cell type, often called the blue-yellow pathway. These pathways have been taken to correspond in human vision to cardinal directions in a trichromatic color space, providing the parallel inputs to higher-level color processing. Yet linking cone opponency in the nonhuman primate retina to color mechanisms in human vision has proven particularly difficult. Here, we apply connectomic reconstruction to the human foveal retina to trace parallel excitatory synaptic outputs from the S-ON (or "blue-cone") bipolar cell to the small bistratified cell and two additional ganglion cell types: a large bistratified ganglion cell and a subpopulation of ON-midget ganglion cells, whose synaptic connections suggest a significant and unique role in color vision. These two ganglion cell types are postsynaptic to both S-ON and L vs. M opponent midget bipolar cells and thus define excitatory pathways in the foveal retina that merge the cardinal red-green and blue-yellow circuits, with the potential for trichromatic cone opponency at the first stage of human vision.


Assuntos
Percepção de Cores , Visão de Cores , Fóvea Central , Células Fotorreceptoras Retinianas Cones , Células Ganglionares da Retina , Humanos , Fóvea Central/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Visão de Cores/fisiologia , Células Ganglionares da Retina/fisiologia , Percepção de Cores/fisiologia , Células Bipolares da Retina/fisiologia , Células Bipolares da Retina/metabolismo , Retina/fisiologia , Masculino , Feminino , Adulto , Conectoma , Vias Visuais/fisiologia
6.
Vision Res ; 222: 108453, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38991467

RESUMO

Visual processing differs between the foveal and peripheral visual field. These differences can lead to different appearances of objects in the periphery and the fovea, posing a challenge to perception across saccades. Differences in the appearance of visual features between the peripheral and foveal visual field may bias change discrimination across saccades. Previously it has been reported that spatial frequency (SF) appears higher in the periphery compared to the fovea (Davis et al., 1987). In this study, we investigated the visual appearance of SF before and after a saccade and the discrimination of SF changes during saccades. In addition, we tested the contributions of pre- and postsaccadic information to change discrimination performance. In the first experiment, we found no differences in the appearance of SF before and after a saccade. However, participants showed a clear bias to report SF increases. Interestingly, a 200-ms postsaccadic blank improved the precision of the responses but did not affect the bias. In the second experiment, participants showed lower thresholds for SF increases than for decreases, suggesting that the bias in the first experiment was not just a response bias. Finally, we asked participants to discriminate the SF of stimuli presented before a saccade. Thresholds in the presaccadic discrimination task were lower than in the change discrimination task, suggesting that transsaccadic change discrimination is not merely limited by presaccadic discrimination in the periphery. The change direction bias might stem from more effective masking or overwriting of the presaccadic stimulus by the postsaccadic low SF stimulus.


Assuntos
Estimulação Luminosa , Movimentos Sacádicos , Humanos , Movimentos Sacádicos/fisiologia , Masculino , Feminino , Adulto , Adulto Jovem , Estimulação Luminosa/métodos , Discriminação Psicológica/fisiologia , Campos Visuais/fisiologia , Percepção Espacial/fisiologia , Limiar Sensorial/fisiologia , Percepção Visual/fisiologia , Análise de Variância , Fóvea Central/fisiologia
7.
Elife ; 122024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968325

RESUMO

Humans can read and comprehend text rapidly, implying that readers might process multiple words per fixation. However, the extent to which parafoveal words are previewed and integrated into the evolving sentence context remains disputed. We investigated parafoveal processing during natural reading by recording brain activity and eye movements using MEG and an eye tracker while participants silently read one-line sentences. The sentences contained an unpredictable target word that was either congruent or incongruent with the sentence context. To measure parafoveal processing, we flickered the target words at 60 Hz and measured the resulting brain responses (i.e. Rapid Invisible Frequency Tagging, RIFT) during fixations on the pre-target words. Our results revealed a significantly weaker tagging response for target words that were incongruent with the previous context compared to congruent ones, even within 100ms of fixating the word immediately preceding the target. This reduction in the RIFT response was also found to be predictive of individual reading speed. We conclude that semantic information is not only extracted from the parafovea but can also be integrated with the previous context before the word is fixated. This early and extensive parafoveal processing supports the rapid word processing required for natural reading. Our study suggests that theoretical frameworks of natural reading should incorporate the concept of deep parafoveal processing.


Assuntos
Movimentos Oculares , Leitura , Semântica , Humanos , Feminino , Masculino , Adulto , Adulto Jovem , Movimentos Oculares/fisiologia , Fóvea Central/fisiologia , Fixação Ocular/fisiologia , Magnetoencefalografia , Encéfalo/fisiologia , Compreensão/fisiologia
8.
Cell Rep ; 43(7): 114371, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923458

RESUMO

High-dimensional brain activity is often organized into lower-dimensional neural manifolds. However, the neural manifolds of the visual cortex remain understudied. Here, we study large-scale multi-electrode electrophysiological recordings of macaque (Macaca mulatta) areas V1, V4, and DP with a high spatiotemporal resolution. We find that the population activity of V1 contains two separate neural manifolds, which correlate strongly with eye closure (eyes open/closed) and have distinct dimensionalities. Moreover, we find strong top-down signals from V4 to V1, particularly to the foveal region of V1, which are significantly stronger during the eyes-open periods. Finally, in silico simulations of a balanced spiking neuron network qualitatively reproduce the experimental findings. Taken together, our analyses and simulations suggest that top-down signals modulate the population activity of V1. We postulate that the top-down modulation during the eyes-open periods prepares V1 for fast and efficient visual responses, resulting in a type of visual stand-by state.


Assuntos
Fóvea Central , Macaca mulatta , Córtex Visual , Animais , Córtex Visual/fisiologia , Fóvea Central/fisiologia , Neurônios/fisiologia , Masculino , Modelos Neurológicos , Simulação por Computador
9.
J Cogn Neurosci ; 36(9): 1807-1826, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38940724

RESUMO

Visual working memory is believed to rely on top-down attentional mechanisms that sustain active sensory representations in early visual cortex, a mechanism referred to as sensory recruitment. However, both bottom-up sensory input and top-down attentional modulations thereof appear to prioritize the fovea over the periphery, such that initially peripheral percepts may even be assimilated by foveal processes. This raises the question whether and how visual working memory differs for central and peripheral input. To address this, we conducted a delayed orientation recall task in which an orientation was presented either at the center of the screen or at 15° eccentricity to the left or right. Response accuracy, EEG activity, and gaze position were recorded from 30 participants. Accuracy was slightly but significantly higher for foveal versus peripheral memories. Decoding of EEG recordings revealed a clear dissociation between early sensory and later maintenance signals. Although sensory signals were clearly decodable for foveal stimuli, they were not for peripheral input. In contrast, maintenance signals were equally decodable for both foveal and peripheral memories, suggesting comparable top-down components regardless of eccentricity. Moreover, although memory representations were initially spatially specific and reflected in voltage fluctuations, later during the maintenance period, they generalized across locations, as emerged in alpha oscillations, thus revealing a dynamic transformation within memory from separate sensory traces to what we propose are common output-related codes. Furthermore, the combined absence of reliable decoding of sensory signals and robust presence of maintenance decoding indicates that storage activity patterns as measured by EEG reflect signals beyond primary visual cortex. We discuss the implications for the sensory recruitment hypothesis.


Assuntos
Eletroencefalografia , Fóvea Central , Memória de Curto Prazo , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Memória de Curto Prazo/fisiologia , Fóvea Central/fisiologia , Percepção Visual/fisiologia , Atenção/fisiologia , Rememoração Mental/fisiologia
10.
J Vis ; 24(6): 2, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38833255

RESUMO

The spectral locus of unique yellow was determined for flashes of different sizes (<11 arcmin) and durations (<500 ms) presented in and near the fovea. An adaptive optics scanning laser ophthalmoscope was used to minimize the effects of higher-order aberrations during simultaneous stimulus delivery and retinal imaging. In certain subjects, parafoveal cones were classified as L, M, or S, which permitted the comparison of unique yellow measurements with variations in local L/M ratios within and between observers. Unique yellow shifted to longer wavelengths as stimulus size or duration was reduced. This effect is most pronounced for changes in size and more apparent in the fovea than in the parafovea. The observed variations in unique yellow are not entirely predicted from variations in L/M ratio and therefore implicate neural processes beyond photoreception.


Assuntos
Fóvea Central , Estimulação Luminosa , Células Fotorreceptoras Retinianas Cones , Humanos , Estimulação Luminosa/métodos , Células Fotorreceptoras Retinianas Cones/fisiologia , Fóvea Central/fisiologia , Percepção de Cores/fisiologia , Retina/fisiologia , Adulto , Oftalmoscopia/métodos
11.
Sci Rep ; 14(1): 13757, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877079

RESUMO

While perceiving the emotional state of others may be crucial for our behavior even when this information is present outside of central vision, emotion perception studies typically focus on central visual field. We have recently investigated emotional valence (pleasantness) perception across the parafovea (≤ 4°) and found that for briefly presented (200 ms) emotional face images (from the established KDEF image-set), positive (happy) valence was the least affected by eccentricity (distance from the central visual field) and negative (fearful) valence the most. Furthermore, we found that performance at 2° predicted performance at 4°. Here we tested (n = 37) whether these effects replicate with face stimuli of different identities from a different well-established image-set (NimStim). All our prior findings replicated and eccentricity-based modulation magnitude was smaller with NimStim (~ 16.6% accuracy reduction at 4°) than with KDEF stimuli (~ 27.3% reduction). Our current investigations support our earlier findings that for briefly presented parafoveal stimuli, positive and negative valence perception are differently affected by eccentricity and may be dissociated. Furthermore, our results highlight the importance of investigating emotions beyond central vision and demonstrate commonalities and differences across different image sets in the parafovea, emphasizing the contribution of replication studies to substantiate our knowledge about perceptual mechanisms.


Assuntos
Emoções , Campos Visuais , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Emoções/fisiologia , Campos Visuais/fisiologia , Expressão Facial , Estimulação Luminosa , Reconhecimento Facial/fisiologia , Fóvea Central/fisiologia , Percepção Visual/fisiologia , Adolescente
12.
J Vis ; 24(6): 11, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38869372

RESUMO

Microsaccades-tiny fixational eye movements-improve discriminability in high-acuity tasks in the foveola. To investigate whether they help compensate for low discriminability at the perifovea, we examined microsaccade characteristics relative to the adult visual performance field, which is characterized by two perceptual asymmetries: horizontal-vertical anisotropy (better discrimination along the horizontal than vertical meridian) and vertical meridian asymmetry (better discrimination along the lower than upper vertical meridian). We investigated whether and to what extent microsaccade directionality varies when stimuli are at isoeccentric locations along the cardinals under conditions of heterogeneous discriminability (Experiment 1) and homogeneous discriminability, equated by adjusting stimulus contrast (Experiment 2). Participants performed a two-alternative forced-choice orientation discrimination task. In both experiments, performance was better on trials without microsaccades between ready signal onset and stimulus offset than on trials with microsaccades. Across the trial sequence, the microsaccade rate and directional pattern were similar across locations. Our results indicate that microsaccades were similar regardless of stimulus discriminability and target location, except during the response period-once the stimuli were no longer present and target location no longer uncertain-when microsaccades were biased toward the target location. Thus, this study reveals that microsaccades do not flexibly adapt as a function of varying discriminability in a basic visual task around the visual field.


Assuntos
Estimulação Luminosa , Movimentos Sacádicos , Campos Visuais , Humanos , Movimentos Sacádicos/fisiologia , Campos Visuais/fisiologia , Masculino , Adulto , Feminino , Adulto Jovem , Estimulação Luminosa/métodos , Fixação Ocular/fisiologia , Orientação/fisiologia , Discriminação Psicológica/fisiologia , Fóvea Central/fisiologia
13.
J Vis ; 24(6): 4, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38842836

RESUMO

The interception (or avoidance) of moving objects is a common component of various daily living tasks; however, it remains unclear whether precise alignment of foveal vision with a target is important for motor performance. Furthermore, there has also been little examination of individual differences in visual tracking strategy and the use of anticipatory gaze adjustments. We examined the importance of in-flight tracking and predictive visual behaviors using a virtual reality environment that required participants (n = 41) to intercept tennis balls projected from one of two possible locations. Here, we explored whether different tracking strategies spontaneously arose during the task, and which were most effective. Although indices of closer in-flight tracking (pursuit gain, tracking coherence, tracking lag, and saccades) were predictive of better interception performance, these relationships were rather weak. Anticipatory gaze shifts toward the correct release location of the ball provided no benefit for subsequent interception. Nonetheless, two interceptive strategies were evident: 1) early anticipation of the ball's onset location followed by attempts to closely track the ball in flight (i.e., predictive strategy); or 2) positioning gaze between possible onset locations and then using peripheral vision to locate the moving ball (i.e., a visual pivot strategy). Despite showing much poorer in-flight foveal tracking of the ball, participants adopting a visual pivot strategy performed slightly better in the task. Overall, these results indicate that precise alignment of the fovea with the target may not be critical for interception tasks, but that observers can adopt quite varied visual guidance approaches.


Assuntos
Individualidade , Percepção de Movimento , Humanos , Masculino , Feminino , Adulto Jovem , Percepção de Movimento/fisiologia , Adulto , Desempenho Psicomotor/fisiologia , Fixação Ocular/fisiologia , Realidade Virtual , Movimentos Sacádicos/fisiologia , Fóvea Central/fisiologia , Movimentos Oculares/fisiologia
14.
Sci Robot ; 9(90): eadk6903, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809996

RESUMO

Avian eyes have deep central foveae as a result of extensive evolution. Deep foveae efficiently refract incident light, creating a magnified image of the target object and making it easier to track object motion. These features are essential for detecting and tracking remote objects in dynamic environments. Furthermore, avian eyes respond to a wide spectrum of light, including visible and ultraviolet light, allowing them to efficiently distinguish the target object from complex backgrounds. Despite notable advances in artificial vision systems that mimic animal vision, the exceptional object detection and targeting capabilities of avian eyes via foveated and multispectral imaging remain underexplored. Here, we present an artificial vision system that capitalizes on these aspects of avian vision. We introduce an artificial fovea and vertically stacked perovskite photodetector arrays whose designs were optimized by theoretical simulations for the demonstration of foveated and multispectral imaging. The artificial vision system successfully identifies colored and mixed-color objects and detects remote objects through foveated imaging. The potential for use in uncrewed aerial vehicles that need to detect, track, and recognize distant targets in dynamic environments is also discussed. Our avian eye-inspired perovskite artificial vision system marks a notable advance in bioinspired artificial visions.


Assuntos
Biomimética , Aves , Compostos de Cálcio , Óxidos , Titânio , Visão Ocular , Animais , Aves/fisiologia , Visão Ocular/fisiologia , Biomimética/instrumentação , Fóvea Central/fisiologia , Desenho de Equipamento , Materiais Biomiméticos , Simulação por Computador
15.
Proc Natl Acad Sci U S A ; 121(16): e2313820121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598343

RESUMO

In primates, high-acuity vision is mediated by the fovea, a small specialized central region of the retina. The fovea, unique to the anthropoid lineage among mammals, undergoes notable neuronal morphological changes during postnatal maturation. However, the extent of cellular similarity across anthropoid foveas and the molecular underpinnings of foveal maturation remain unclear. Here, we used high-throughput single-cell RNA sequencing to profile retinal cells of the common marmoset (Callithrix jacchus), an early divergent in anthropoid evolution from humans, apes, and macaques. We generated atlases of the marmoset fovea and peripheral retina for both neonates and adults. Our comparative analysis revealed that marmosets share almost all their foveal types with both humans and macaques, highlighting a conserved cellular structure among primate foveas. Furthermore, by tracing the developmental trajectory of cell types in the foveal and peripheral retina, we found distinct maturation paths for each. In-depth analysis of gene expression differences demonstrated that cone photoreceptors and Müller glia (MG), among others, show the greatest molecular divergence between these two regions. Utilizing single-cell ATAC-seq and gene-regulatory network inference, we uncovered distinct transcriptional regulations differentiating foveal cones from their peripheral counterparts. Further analysis of predicted ligand-receptor interactions suggested a potential role for MG in supporting the maturation of foveal cones. Together, these results provide valuable insights into foveal development, structure, and evolution.


Assuntos
Callithrix , Retina , Humanos , Animais , Recém-Nascido , Callithrix/anatomia & histologia , Retina/metabolismo , Fóvea Central/fisiologia , Células Fotorreceptoras Retinianas Cones , Macaca , Mamíferos
16.
J Vis ; 24(4): 23, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38662346

RESUMO

This paper reviews projection models and their perception in realistic pictures, and proposes hypotheses for three-dimensional (3D) shape and space perception in pictures. In these hypotheses, eye fixations, and foveal vision play a central role. Many past theories and experimental studies focus solely on linear perspective. Yet, these theories fail to explain many important perceptual phenomena, including the effectiveness of nonlinear projections. Indeed, few classical paintings strictly obey linear perspective, nor do the best distortion-avoidance techniques for wide-angle computational photography. The hypotheses here employ a two-stage model for 3D human vision. When viewing a picture, the first stage perceives 3D shape for the current gaze. Each fixation has its own perspective projection, but, owing to the nature of foveal and peripheral vision, shape information is obtained primarily for a small region of the picture around the fixation. As a viewer moves their eyes, the second stage continually integrates some of the per-gaze information into an overall interpretation of a picture. The interpretation need not be geometrically stable or consistent over time. It is argued that this framework could explain many disparate pictorial phenomena, including different projection styles throughout art history and computational photography, while being consistent with the constraints of human 3D vision. The paper reviews open questions and suggests new studies to explore these hypotheses.


Assuntos
Fixação Ocular , Humanos , Fixação Ocular/fisiologia , Percepção de Forma/fisiologia , Percepção de Profundidade/fisiologia , Percepção Espacial/fisiologia , Movimentos Oculares/fisiologia , Fóvea Central/fisiologia
17.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548340

RESUMO

A long-standing question in vision science is how the three cone photoreceptor types-long (L), medium (M), and short (S) wavelength sensitive-combine to generate our perception of color. Hue perception can be described along two opponent axes: red-green and blue-yellow. Psychophysical measurements of color appearance indicate that the cone inputs to the red-green and blue-yellow opponent axes are M vs. L + S and L vs. M + S, respectively. However, the "cardinal directions of color space" revealed by psychophysical measurements of color detection thresholds following adaptation are L vs. M and S vs. L + M. These cardinal directions match the most common cone-opponent retinal ganglion cells (RGCs) in the primate retina. Accordingly, the cone opponency necessary for color appearance is thought to be established in the cortex. While neurons with the appropriate M vs. L + S and L vs. M + S opponency have been reported in the retina and lateral geniculate nucleus, their existence continues to be debated. Resolving this long-standing debate is necessary because a complete account of the cone opponency in the retinal output is critical for understanding how downstream neural circuits process color. Here, we performed adaptive optics calcium imaging to noninvasively measure foveal RGC light responses in the living Macaca fascicularis eye. We confirm the presence of L vs. M + S and M vs. L + S neurons with noncardinal cone opponency and demonstrate that cone-opponent signals in the retinal output are more diverse than classically thought.


Assuntos
Percepção de Cores , Fóvea Central , Células Fotorreceptoras Retinianas Cones , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Fóvea Central/fisiologia , Percepção de Cores/fisiologia , Estimulação Luminosa/métodos , Masculino , Feminino , Macaca fascicularis
18.
Atten Percept Psychophys ; 86(4): 1360-1374, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38532237

RESUMO

Words with high orthographic relatedness are termed "word neighbors" (angle/angel; birch/birth). Activation-based models of word recognition assume that lateral inhibition occurs between words and their activated neighbors. However, studies of eye movements during reading have not found inhibitory effects in early measures assumed to reflect lexical access (e.g., gaze duration). Instead, inhibition in eye-movement studies has been found in later measures of processing (e.g., total time, regressions in). We conducted an eye-movement boundary change study (Rayner, Cognitive Psychology, 7(1), 65-81, 1975) that manipulated the parafoveal preview of the word following the neighbor word (word N+1). In this way, we explored whether the late inhibitory effects seen with transposed letter words and words with higher-frequency neighbors result from reduced parafoveal preview due to increased foveal load and/or interference during late stages of lexical processing (the L2 stage within the E-Z Reader framework). For word N+1, while there were clear preview effects, there was not an effect of the neighborhood status of word N, nor a significant interaction. This suggests that the late inhibitory effects of earlier eye-movement studies are driven by misidentification of neighbor words rather than being due to increased foveal load.


Assuntos
Movimentos Oculares , Fóvea Central , Reconhecimento Visual de Modelos , Leitura , Humanos , Fóvea Central/fisiologia , Movimentos Oculares/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Inibição Psicológica , Atenção/fisiologia , Fixação Ocular/fisiologia , Adulto , Adulto Jovem
19.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050093

RESUMO

Human visual performance for basic visual dimensions (e.g., contrast sensitivity and acuity) peaks at the fovea and decreases with eccentricity. The eccentricity effect is related to the larger visual cortical surface area corresponding to the fovea, but it is unknown if differential feature tuning contributes to this eccentricity effect. Here, we investigated two system-level computations underlying the eccentricity effect: featural representation (tuning) and internal noise. Observers (both sexes) detected a Gabor embedded in filtered white noise which appeared at the fovea or one of four perifoveal locations. We used psychophysical reverse correlation to estimate the weights assigned by the visual system to a range of orientations and spatial frequencies (SFs) in noisy stimuli, which are conventionally interpreted as perceptual sensitivity to the corresponding features. We found higher sensitivity to task-relevant orientations and SFs at the fovea than that at the perifovea, and no difference in selectivity for either orientation or SF. Concurrently, we measured response consistency using a double-pass method, which allowed us to infer the level of internal noise by implementing a noisy observer model. We found lower internal noise at the fovea than that at the perifovea. Finally, individual variability in contrast sensitivity correlated with sensitivity to and selectivity for task-relevant features as well as with internal noise. Moreover, the behavioral eccentricity effect mainly reflects the foveal advantage in orientation sensitivity compared with other computations. These findings suggest that the eccentricity effect stems from a better representation of task-relevant features and lower internal noise at the fovea than that at the perifovea.


Assuntos
Sensibilidades de Contraste , Córtex Visual , Masculino , Feminino , Humanos , Orientação/fisiologia , Córtex Visual/fisiologia , Fóvea Central/fisiologia , Ruído
20.
Bioessays ; 46(1): e2300054, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037292

RESUMO

The human fovea is known for its distinctive pit-like appearance, which results from the displacement of retinal layers superficial to the photoreceptors cells. The photoreceptors are found at high density within the foveal region but not the surrounding retina. Efforts to elucidate the mechanisms responsible for these unique features have ruled out cell death as an explanation for pit formation and changes in cell proliferation as the cause of increased photoreceptor density. These findings have led to speculation that mechanical forces acting within and on the retina during development underly the formation of foveal architecture. Here we review eye morphogenesis and retinal remodeling in human embryonic development. Our meta-analysis of the literature suggests that fovea formation is a protracted process involving dynamic changes in ocular shape that start early and continue throughout most of human embryonic development. From these observations, we propose a new model for fovea development.


Assuntos
Fóvea Central , Retina , Humanos , Fóvea Central/fisiologia , Células Fotorreceptoras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA