Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 478
Filtrar
1.
J Acoust Soc Am ; 155(3): 2241-2246, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535629

RESUMO

Auditory brainstem responses (ABRs) were measured at 57 kHz in two dolphins warned of an impending intense tone at 40 kHz. Over the course of testing, the duration of the intense tone was increased from 0.5 to 16 s to determine if changes in ABRs observed after cessation of the intense sound were the result of post-stimulatory auditory fatigue or conditioned hearing attenuation. One dolphin exhibited conditioned hearing attenuation after the warning sound preceding the intense sound, but little evidence of post-stimulatory fatigue after the intense sound. The second dolphin showed no conditioned attenuation before the intense sound, but auditory fatigue afterwards. The fatigue was observed within a few seconds after cessation of the intense tone: i.e., at time scales much shorter than those in previous studies of marine mammal noise-induced threshold shifts, which feature measurements on the order of a few minutes after exposure. The differences observed between the two individuals (less auditory fatigue in the dolphin that exhibited the conditioned attenuation) support the hypothesis that conditioned attenuation is a form of "self-mitigation."


Assuntos
Fadiga Auditiva , Golfinhos , Animais , Audição , Som
2.
J Acoust Soc Am ; 155(1): 396-404, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38240666

RESUMO

When they are exposed to loud fatiguing sounds in the oceans, marine mammals are susceptible to hearing damage in the form of temporary hearing threshold shifts (TTSs) or permanent hearing threshold shifts. We compared the level-dependent and frequency-dependent susceptibility to TTSs in harbor seals and harbor porpoises, species with different hearing sensitivities in the low- and high-frequency regions. Both species were exposed to 100% duty cycle one-sixth-octave noise bands at frequencies that covered their entire hearing range. In the case of the 6.5 kHz exposure for the harbor seals, a pure tone (continuous wave) was used. TTS was quantified as a function of sound pressure level (SPL) half an octave above the center frequency of the fatiguing sound. The species have different audiograms, but their frequency-specific susceptibility to TTS was more similar. The hearing frequency range in which both species were most susceptible to TTS was 22.5-50 kHz. Furthermore, the frequency ranges were characterized by having similar critical levels (defined as the SPL of the fatiguing sound above which the magnitude of TTS induced as a function of SPL increases more strongly). This standardized between-species comparison indicates that the audiogram is not a good predictor of frequency-dependent susceptibility to TTS.


Assuntos
Phoca , Phocoena , Animais , Estimulação Acústica , Fadiga Auditiva , Espectrografia do Som , Recuperação de Função Fisiológica , Audição , Limiar Auditivo
3.
J Acoust Soc Am ; 154(2): 1003-1017, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584467

RESUMO

Noise pollution in aquatic environments can cause hearing loss in noise-exposed animals. We investigated whether exposure to continuous underwater white noise (50-1000 Hz) affects the auditory sensitivity of an aquatic turtle Trachemys scripta elegans (red-eared slider) across 16 noise conditions of differing durations and amplitudes. Sound exposure levels (SELs) ranged between 155 and 193 dB re 1 µPa2 s, and auditory sensitivity was measured at 400 Hz using auditory evoked potential methods. Comparing control and post-exposure thresholds revealed temporary threshold shifts (TTS) in all three individuals, with at least two of the three turtles experiencing TTS at all but the two lowest SELs tested, and shifts up to 40 dB. There were significant positive relationships between shift magnitude and exposure duration, amplitude, and SEL. The mean predicted TTS onset was 160 dB re 1 µPa2 s. There was individual variation in susceptibility to TTS, threshold shift magnitude, and recovery rate, which was non-monotonic and occurred on time scales ranging from < 1 h to > 2 days post-exposure. Recovery rates were generally greater after higher magnitude shifts. Sound levels inducing hearing loss were comparatively low, suggesting aquatic turtles may be more sensitive to underwater noise than previously considered.


Assuntos
Surdez , Perda Auditiva Provocada por Ruído , Tartarugas , Animais , Perda Auditiva Provocada por Ruído/etiologia , Ruído/efeitos adversos , Potenciais Evocados Auditivos , Limiar Auditivo/fisiologia , Fadiga Auditiva
4.
Audiol., Commun. res ; 28: e2797, 2023. tab, graf
Artigo em Português | LILACS | ID: biblio-1527921

RESUMO

RESUMO Objetivo Comparar as habilidades auditivas centrais de mulheres no climatério, com e sem terapia de reposição hormonal. Métodos Estudo observacional, realizado com mulheres no climatério, divididas em dois grupos, segundo o uso ou não de terapia hormonal. Foram realizados os testes de Localização Sonora em cinco direções; Memória Sequencial para Sons Verbais e Não Verbais; Padrão de Duração; Random Gap Detection Test (RGDT); Masking Level Difference (MLD); Dicótico de Dígitos; Fala Com Ruído Branco, e aplicado o Questionário Avaliação Informal de Fadiga. Resultados Houve diferença tendenciosa de melhor desempenho médio no grupo com terapia hormonal, em comparação ao grupo sem terapia para o teste de Memória para Sons Não Verbais. Nos testes de Localização Sonora, Memória para Sons Verbais, RGDT e MLD, o grupo com terapia hormonal apresentou resultados quantitativamente melhores. O grupo com terapia hormonal demonstrou maior porcentagem de mulheres com alto nível de fadiga. Conclusão Mulheres no climatério, com e sem terapia hormonal, apresentam transtorno de processamento auditivo central envolvendo as habilidades auditivas de localização sonora, ordenação temporal simples e complexa, figura-fundo, resolução temporal e interação binaural. No entanto, as mulheres do grupo com terapia hormonal apresentam melhor desempenho em ordenação temporal simples.


ABSTRACT Purpose To compare the central auditory abilities of climacteric women, with and without hormone replacement therapy. Methods Observational study, performed with climacteric women with and without hormone replacement therapy. Sound localization tests were performed in five directions; Sequential Verbal Memory Test; Sequential Memory Test for Nonverbal Sounds; Duration Pattern Test; Random Gap Detection Test); Masking Level Difference; Dichotic Digit Test and Speech With White Noise Test and the questionnaire "Informal Fatigue Assessment" was applied. Results The differences pointed out revealed the biased difference that occurs due to higher average performance in the group with TH compared to the group without TH for TMSnV. In the TLS, TMSN, RGDT and MLD tests, the group with HT presented quantitatively better results. Conclusion Climacteric women, with and without hormone therapy, have central auditory processing disorder involving the auditory skills of sound localization, simple and complex temporal ordering, background figure, temporal resolution and binaural interaction. However, women in the hormone therapy group performed better in simple temporal ordering.


Assuntos
Humanos , Feminino , Fadiga Auditiva , Percepção Auditiva , Climatério , Terapia de Reposição Hormonal , Testes Auditivos , Estudos de Casos e Controles , Estudo Observacional
5.
J Acoust Soc Am ; 152(1): 295, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35931542

RESUMO

Application of a kurtosis correction to frequency-weighted sound exposure level (SEL) improved predictions of risk of hearing damage in humans and terrestrial mammals for sound exposures with different degrees of impulsiveness. To assess whether kurtosis corrections may lead to improved predictions for marine mammals, corrections were applied to temporary threshold shift (TTS) growth measurements for harbor porpoises (Phocoena phocoena) exposed to different sounds. Kurtosis-corrected frequency-weighted SEL predicted accurately the growth of low levels of TTS (TTS1-4 < 10 dB) for intermittent sounds with short (1-13 s) silence intervals but was not consistent with frequency-weighted SEL data for continuous sound exposures.


Assuntos
Phocoena , Estimulação Acústica , Animais , Fadiga Auditiva , Limiar Auditivo , Audição , Humanos , Ruído/efeitos adversos
6.
J Acoust Soc Am ; 151(6): 4252, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35778178

RESUMO

Intense sound sources, such as pile driving, airguns, and military sonars, have the potential to inflict hearing loss in marine mammals and are, therefore, regulated in many countries. The most recent criteria for noise induced hearing loss are based on empirical data collected until 2015 and recommend frequency-weighted and species group-specific thresholds to predict the onset of temporary threshold shift (TTS). Here, evidence made available after 2015 in light of the current criteria for two functional hearing groups is reviewed. For impulsive sounds (from pile driving and air guns), there is strong support for the current threshold for very high frequency cetaceans, including harbor porpoises (Phocoena phocoena). Less strong support also exists for the threshold for phocid seals in water, including harbor seals (Phoca vitulina). For non-impulsive sounds, there is good correspondence between exposure functions and empirical thresholds below 10 kHz for porpoises (applicable to assessment and regulation of military sonars) and between 3 and 16 kHz for seals. Above 10 kHz for porpoises and outside of the range 3-16 kHz for seals, there are substantial differences (up to 35 dB) between the predicted thresholds for TTS and empirical results. These discrepancies call for further studies.


Assuntos
Perda Auditiva Provocada por Ruído , Phoca , Phocoena , Estimulação Acústica , Animais , Fadiga Auditiva , Perda Auditiva Provocada por Ruído/diagnóstico , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/veterinária , Ruído/efeitos adversos , Phocoena/fisiologia , Psicoacústica , Espectrografia do Som
7.
J Acoust Soc Am ; 148(5): 2973, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33261408

RESUMO

The auditory effects of single- and multiple-shot impulsive noise exposures were evaluated in a bearded seal (Erignathus barbatus). This study replicated and expanded upon recent work with related species [Reichmuth, Ghoul, Sills, Rouse, and Southall (2016). J. Acoust. Soc. Am. 140, 2646-2658]. Behavioral methods were used to measure hearing sensitivity before and immediately following exposure to underwater noise from a seismic air gun. Hearing was evaluated at 100 Hz-close to the maximum energy in the received pulse, and 400 Hz-the frequency with the highest sensation level. When no evidence of a temporary threshold shift (TTS) was found following single shots at 185 dB re 1 µPa2 s unweighted sound exposure level (SEL) and 207 dB re 1 µPa peak-to-peak sound pressure, the number of exposures was gradually increased from one to ten. Transient shifts in hearing thresholds at 400 Hz were apparent following exposure to four to ten consecutive pulses (cumulative SEL 191-195 dB re 1 µPa2 s; 167-171 dB re 1 µPa2 s with frequency weighting for phocid carnivores in water). Along with these auditory data, the effects of seismic exposures on response time, response bias, and behavior were investigated. This study has implications for predicting TTS onset following impulsive noise exposure in seals.


Assuntos
Fadiga Auditiva , Ruído , Estimulação Acústica , Animais , Limiar Auditivo , Audição , Testes Auditivos , Ruído/efeitos adversos , Som
8.
J Acoust Soc Am ; 148(2): 556, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32872990

RESUMO

Noise-induced temporary hearing threshold shift (TTS) was studied in a harbor porpoise exposed to impulsive sounds of scaled-down airguns while both stationary and free-swimming for up to 90 min. In a previous study, ∼4 dB TTS was elicited in this porpoise, but despite 8 dB higher single-shot and cumulative exposure levels (up to 199 dB re 1 µPa2s) in the present study, the porpoise showed no significant TTS at hearing frequencies 2, 4, or 8 kHz. There were no changes in the study animal's audiogram between the studies or significant differences in the fatiguing sound that could explain the difference, but audible and visual cues in the present study may have allowed the porpoise to predict when the fatiguing sounds would be produced. The discrepancy between the studies may have resulted from self-mitigation by the porpoise. Self-mitigation, resulting in reduced hearing sensitivity, can be achieved via changes in the orientation of the head, or via alteration of the hearing threshold by processes in the ear or central nervous system.


Assuntos
Phocoena , Estimulação Acústica , Animais , Fadiga Auditiva , Limiar Auditivo , Audição , Recuperação de Função Fisiológica , Reprodutibilidade dos Testes , Fatores de Tempo
9.
J Acoust Soc Am ; 147(6): 3948, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32611185

RESUMO

Understanding the potential effects of pile driving sounds on marine wildlife is essential for regulating offshore wind developments. Here, tracking data from 24 harbour seals were used to quantify effects and investigate sensitivity to the methods used to predict these. The Aquarius pile driving model was used to model source characteristics and acoustic propagation loss (16 Hz-20 kHz). Predicted cumulative sound exposure levels (SELcums) experienced by each seal were compared to different auditory weighting functions and damage thresholds to estimate temporary (TTS) and permanent (PTS) threshold shift occurrence. Each approach produced markedly different results; however, the most recent criteria established by Southall et al. [(2019) Aquat. Mamm. 45, 125-232] suggests that TTS occurrence was low (17% of seals). Predictions of seal density during pile driving made by Russell et al. [(2016) J. Appl. Ecol. 53, 1642-1652] were compared to distance from the wind farm and predicted single-strike sound exposure levels (SELss) by multiple approaches. Predicted seal density significantly decreased within 25 km or above SELss (averaged across depths and pile installations) of 145 dB re 1 µPa2⋅s. However, there was substantial variation in SELss with depth and installation, and thus in the predicted relationship with seal density. These results highlight uncertainty in estimated effects, which should be considered in future assessments.


Assuntos
Fadiga Auditiva , Ruído , Estimulação Acústica , Ruído/efeitos adversos , Som , Espectrografia do Som
10.
Hear Res ; 392: 107980, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32447098

RESUMO

Prolonged exposure to low-level noise has often been used scientifically as well as clinically to induce neuroplastic changes within the central auditory pathway in order to reduce central gain, suppress tinnitus and hyperacusis, and modulate different features of central auditory processing. A fundamental assumption underling these studies is that the noise exposure levels are so low that they have no effect on the neural output of the cochlea. Therefore, functional changes occurring in the central auditory pathway must be the results of central rather than peripheral changes. In an attempt to identify long-term noise exposures that did not cause peripheral changes, we measured the compound action potential (CAP) input/output functions from control rats and rats exposed for 6-weeks to 18-24 kHz noise presented at 25, 45, 55, 65, 75 or 85 dB SPL. Exposures >65 dB SPL significantly increased CAP thresholds; the critical intensity (Ct) below which no threshold shift occurred was estimated to be 55 dB SPL. Exposures >55 dB SPL significantly reduced suprathreshold CAP amplitudes; the critical intensity (Ca) below which no amplitude change was predicted to occur was a remarkably low level of 19 dB SPL. These results demonstrate that even extremely low-intensity long duration exposures can disrupt the neural output of the cochlea; these peripheral modifications are likely to contribute to the extensive compensatory changes observed at multiple levels of the central auditory pathway, neural network changes aimed at re-establishing homeostasis.


Assuntos
Fadiga Auditiva , Cóclea/fisiopatologia , Potenciais Microfônicos da Cóclea , Perda Auditiva Provocada por Ruído/fisiopatologia , Audição , Plasticidade Neuronal , Ruído/efeitos adversos , Estimulação Acústica , Animais , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/psicologia , Percepção Sonora , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Fatores de Tempo
11.
Hear Res ; 391: 107952, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32361602

RESUMO

Exposure to continuous moderate noise levels is known to impair the auditory system leading to Noise-Induced Hearing Loss (NIHL) in animals including humans. The mechanism underlying noise-dependent auditory Temporary Threshold Shifts (TTS) is not fully understood. In fact, only limited information is available on vertebrates such as fishes, which share homologous inner ear structures to mammals and have the ability to regenerate hair cells. The zebrafish Danio rerio is a well-established model in hearing research providing an unmatched opportunity to investigate the molecular and physiological mechanisms of NIHL at the sensory receptor level. Here we investigated for the first time the effects of noise exposure on TTS and functional recovery in zebrafish, as well as the associated morphological damage and regeneration of the inner ear saccular hair cells. Adult specimens were exposed for 24h to white noise at various amplitudes (130, 140 and 150 dB re. 1 µPa) and their auditory sensitivity was subsequently measured with the Auditory Evoked Potential (AEP) recording technique. Sensory recovery was tested at different times post-treatment (after 3, 7 and 14 days) and compared to individuals kept under quiet lab conditions. Results revealed noise level-dependent TTS up to 33 dB and increase in response latency. Recovery of hearing function occurred within 7 days for fish exposed to 130 and 140 dB noise levels, while fish subject to 150 dB only returned to baseline thresholds after 14 days. Hearing impairment was accompanied by significant loss of hair cells only at the highest noise treatment. Full regeneration of the sensory tissue (number of hair cell receptors) occurred within 7 days, which was prior to functional recovery. We provide first baseline data of NIHL in zebrafish and validate this species as an effective vertebrate model to investigate the impact of noise exposure on the structure and function of the adult inner ear and its recovery process.


Assuntos
Células Ciliadas Auditivas Internas/patologia , Perda Auditiva Provocada por Ruído/patologia , Audição , Ruído/efeitos adversos , Estimulação Acústica , Animais , Fadiga Auditiva , Modelos Animais de Doenças , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Tempo de Reação , Recuperação de Função Fisiológica , Fatores de Tempo , Peixe-Zebra
12.
Hear Res ; 387: 107878, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31911334

RESUMO

The development of a clinically-relevant rodent model of cisplatin-induced hearing loss presents the challenges of finding the cumulative dose, dosing schedule, and rodent strain to induce a consistent level of threshold shift with low mortality. This study was undertaken to model hearing loss at 16, 32, and 48 mg/kg cumulative doses of cisplatin in the CBA/CaJ, C57BL/6J, and BALB/cJ mouse strains. Mice were exposed to three cycles of 16 mg/kg cisplatin, for a cumulative dose of 48 mg/kg. Equal numbers of male and female mice were used in each strain, and the cisplatin was delivered in three different dosing schedules: a single bolus dose of 16 mg/kg followed by 20 days of recovery, 8 mg/kg doses delivered every ten days, and 4 mg/kg delivered daily for four consecutive days followed by 17 days of recovery. Auditory brainstem response threshold shifts indicated increased hearing loss with increasing cumulative dose in all strains and dosing schedules. The BALB/cJ experienced the largest threshold shifts, and the C57BL/6J the smallest. However, the BALB/cJ mice had the lowest mortality (0%) of the strains. The dosing schedule had minimal effects on threshold shift, but did affect mortality, with the 16 mg/kg single dose inducing more mortality than the other two schedules. In the BALB/cJ mice, the males experienced more threshold shift than the females. The results mirror past work comparing the three strains' susceptibility to kanamycin ototoxicity, with highest pigmentation showing the lowest acute susceptibility to cisplatin-induced hearing loss, and the albino strain showing the highest susceptibility.


Assuntos
Fadiga Auditiva , Perda Auditiva/fisiopatologia , Audição , Estimulação Acústica , Animais , Cisplatino , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Perda Auditiva/induzido quimicamente , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Ototoxicidade , Especificidade da Espécie
13.
J Clin Monit Comput ; 34(4): 787-796, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31456073

RESUMO

Alarm fatigue is an issue for healthcare providers in the intensive care unit, and may result from desensitization of overbearing and under-informing alarms. To directly increase the overall identification of medical alarms and potentially contribute to a downstream decrease in the prevalence of alarm fatigue, we propose advancing alarm sonification by combining auditory and tactile stimuli to create a multisensory alarm. Participants completed four trials-two multisensory (auditory and tactile) and two unisensory (auditory). Analysis compared the unisensory trials to the multisensory trials based on the percentage of correctly identified point of change, direction of change and identity of three physiological parameters (indicated by different instruments): heart rate (drums), blood pressure (piano), blood oxygenation (guitar). A repeated-measures of ANOVA yielded a significant improvement in performance for the multisensory group compared to the unisensory group (p < 0.05). Specifically, the multisensory group had better performance in correctly identifying parameter (p < 0.05) and point of change (p < 0.05) compared to the unisensory group. Participants demonstrated a higher accuracy of identification with the use of multisensory alarms. Therefore, multisensory alarms may relieve the auditory burden of the medical environment and increase the overall quality of care and patient safety.


Assuntos
Alarmes Clínicos , Cuidados Críticos/métodos , Unidades de Terapia Intensiva , Salas Cirúrgicas , Adulto , Fadiga Auditiva , Percepção Auditiva , Condução Óssea , Desenho de Equipamento , Feminino , Humanos , Masculino , Monitorização Intraoperatória/instrumentação , Monitorização Fisiológica/instrumentação , Segurança do Paciente , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Tato , Interface Usuário-Computador , Vibração , Adulto Jovem
14.
Hear Res ; 385: 107845, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760262

RESUMO

The effects of noise-induced hearing loss have yet to be studied for the Dutch-belted strain of rabbits, which is the only strain that has been used in studies of the central auditory system. We measured auditory brainstem responses (ABRs), 2f1-f2 distortion product otoacoustic emissions (DPOAEs), and counts of cochlear inner and outer hair cells (IHCs and OHCs, respectively) from confocal images of Myo7a-stained cochlear whole-mounts in unexposed and noise-overexposed, Dutch-belted, male and female rabbits in order to characterize cochlear function and structure under normal-hearing and hearing-loss conditions. Using an octave-band noise exposure centered at 750 Hz presented under isoflurane anesthesia, we found that a sound level of 133 dB SPL for 60 min was minimally sufficient to produce permanent ABR threshold shifts. Overexposure durations of 60 and 90 min caused median click-evoked ABR threshold shifts of 10 and 50 dB, respectively. Susceptibility to overexposure was highly variable across ears, but less variable across test frequencies within the same ear. ABR and DPOAE threshold shifts were smaller, on average, and more variable in male than female ears. Similarly, post-exposure survival of OHCs was higher, on average, and more variable in male than female ears. We paired post-exposure ABR and DPOAE threshold shift data with hair cell count data measured in the same ear at the same frequency and cochlear frequency location. ABR and DPOAE threshold shifts exhibited critical values of 46 and 18 dB, respectively, below which the majority of OHCs and IHCs survived and above which OHCs were wiped out while IHC survival was variable. Our data may be of use to researchers who wish to use Dutch-belted rabbits as a model for the effects of noise-induced hearing loss on the central auditory system.


Assuntos
Limiar Auditivo , Cóclea/patologia , Cóclea/fisiopatologia , Células Ciliadas Auditivas Externas/patologia , Perda Auditiva Provocada por Ruído/patologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Animais , Fadiga Auditiva , Contagem de Células , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Masculino , Emissões Otoacústicas Espontâneas , Coelhos , Fatores Sexuais
15.
J Acoust Soc Am ; 146(4): 2552, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31671984

RESUMO

In psychophysical studies of noise-induced hearing loss with marine mammals, exposure conditions are often titrated from levels of no effect to those that induce significant but recoverable loss of auditory sensitivity [temporary threshold shift (TTS)]. To examine TTS from mid-frequency noise, a harbor seal was exposed to a 4.1-kHz underwater tone that was incrementally increased in sound pressure level (SPL) and duration. The seal's hearing was evaluated at the exposure frequency and one-half octave higher (5.8 kHz) to identify the noise parameters associated with TTS onset. No reliable TTS was measured with increasing sound exposure level until the second exposure to a 60-s fatiguing tone of 181 dB re 1 µPa SPL (sound exposure level 199 dB re 1 µPa2s), after which an unexpectedly large threshold shift (>47 dB) was observed. While hearing at 4.1 kHz recovered within 48 h, there was a permanent threshold shift of at least 8 dB at 5.8 kHz. This hearing loss was evident for more than ten years. Furthermore, a residual threshold shift of 11 dB was detected one octave above the tonal exposure, at 8.2 kHz. This hearing loss persisted for more than two years prior to full recovery.


Assuntos
Limiar Auditivo/fisiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Phoca/fisiologia , Estimulação Acústica , Animais , Audiometria , Fadiga Auditiva/fisiologia , Masculino , Psicoacústica , Recuperação de Função Fisiológica
18.
Hear Res ; 381: 107780, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31437651

RESUMO

A robust temporary threshold shift (TTS) can create significant primary damage to the auditory synapse, termed cochlear synaptopathy (CS). The common model applied to examination of this pathology is a single noise exposure or extended duration exposures at relatively high noise dosages. It is unclear if a single noise exposure that does not produce physiological changes consistent with CS (such as suppressed suprathreshold responses) can create evidence consistent with the pathology induced by repeated exposures. Here, we exposed 16-week (wk) old Sprague-Dawley rats to repeated noise exposures (4 consecutive days, 8-16 kHz octave-band of noise, 97 dB SPL for 2 h) and examined measures of cochlear function (distortion product otoacoustic emissions) and auditory neural integrity (auditory brainstem response, wave 1 amplitude). Our results demonstrated a mean maximal threshold shift of 16 dB at 24 h post the initial noise exposure. Subsequent daily repeated exposures (4 consecutive days) resulted in diminished threshold shift at 24 h post repeated TTS. In addition to recovered thresholds, no sustained reduction in suprathreshold responses was observed. The findings are consistent with conditioning literature suggesting diminished TTS with repeated exposures. Repeated TTS that was not individually synaptopathic did not produce physiological evidence consistent with acute CS.


Assuntos
Fadiga Auditiva , Vias Auditivas/fisiologia , Cóclea/fisiologia , Audição , Ruído/efeitos adversos , Estimulação Acústica , Animais , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Masculino , Emissões Otoacústicas Espontâneas , Ratos Sprague-Dawley , Fatores de Tempo
19.
Toxicol Lett ; 313: 11-18, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31220555

RESUMO

Previous study reported that either selective GSK-3ß inhibitor or up-regulating autophagy can alleviate cisplatin-induced ototoxicity. Other studies indicate that the activity of GSK-3ß is closely associated with the autophagy level. The purpose of this study is to primarily explore the role of autophagy in the alleviation effect of GSK-3ß inhibition on cisplatin-induced ototoxicity in vivo and in vitro. We observed the autophagy changes induced by GSK-3ß inhibitor in outer hair cells (OHCs) in a cisplatin-induced ototoxicity rat model. In addition, autophagy inhibitor 3-MA was used in vitro experiments to observe the influence of autophagy inhibition on the cell protection effect due to GSK-3ß inactivation. The relationship among autophagy, GSK-3ß and cell damage were inferred. Negative regulation of GSK-3ß significantly enhanced autophagy and alleviated cisplatin-induced hearing loss, OHC death in vivo and apoptosis in vitro. The autophagy inhibitor 3-MA inverted the protective effect of negative regulation of GSK-3ß. These results indicated that enhancing autophagy may be a key downstream effect of GSK-3ß inhibition in the alleviation of cisplatin-induced ototoxicity both in vivo and in vitro.


Assuntos
Autofagia/efeitos dos fármacos , Cisplatino , Otopatias/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Ciliadas Auditivas/efeitos dos fármacos , Cloreto de Lítio/farmacologia , Animais , Fadiga Auditiva/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Otopatias/induzido quimicamente , Otopatias/enzimologia , Otopatias/patologia , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Células Ciliadas Auditivas/enzimologia , Células Ciliadas Auditivas/patologia , Masculino , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
20.
J Acoust Soc Am ; 145(5): 3252, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31153340

RESUMO

Regulators in Europe and in the United States have developed sound exposure criteria. Criteria range from broadband levels to frequency weighted received sound levels. The associated differences in impact assessment results are, however, not yet understood. This uncertainty makes environmental management of transboundary anthropogenic noise challenging and causes confusion for regulators who need to choose appropriate exposure criteria. In the present study, three established exposure criteria frameworks from Germany, Denmark, and the US were used to analyse the effect of impact pile driving at a location in the Baltic Sea on harbor porpoise and harbor seal hearing. The acoustic modeling using MIKE showed that an unmitigated scenario would lead to auditory injury for all three criteria. Despite readily apparent variances in impact ranges among the applied approaches, it was also evident that noise mitigation measures could reduce underwater sound to levels where auditory injuries would be unlikely in most cases. It was concluded that each of the frameworks has its own advantages and disadvantages. Single noise exposure criteria follow the precautionary principle and can be enforced relatively easily, whereas criteria that consider hearing capabilities and animal response movement can improve the accuracy of the assessment if data are available.


Assuntos
Fadiga Auditiva/fisiologia , Audição/fisiologia , Ruído , Phocoena/fisiologia , Estimulação Acústica/métodos , Animais , Condução de Veículo , Testes Auditivos , Som , Espectrografia do Som/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA