Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Nutrients ; 16(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125398

RESUMO

Persimmon fruit processing-derived waste and by-products, such as peels and pomace, are important sources of dietary fiber and phytochemicals. Revalorizing these by-products could help promote circular nutrition and agricultural sustainability while tackling dietary deficiencies and chronic diseases. In this study, fiber-rich fractions were prepared from the by-products of Sharoni and Brilliant Red persimmon varieties. These fractions were quantified for their phenolic composition and assessed for their ability to promote the growth of beneficial human colonic Firmicutes species and for their in vitro anti-inflammatory potential. Gallic and protocatechuic acids, delphinidin, and cyanidin were the main phenolics identified. Faecalibacterium prausnitzii strains showed significantly higher growth rates in the presence of the Brilliant Red fraction, generating more than double butyrate as a proportion of the total short-chain fatty acids (39.5% vs. 17.8%) when compared to glucose. The fiber-rich fractions significantly decreased the inflammatory effect of interleukin-1ß in Caco-2 cells, and the fermented fractions (both from Sharoni and Brilliant Red) significantly decreased the inflammatory effect of interleukin-6 and tumor necrosis factor-α in the RAW 264.7 cells. Therefore, fiber-rich fractions from persimmon by-products could be part of nutritional therapies as they reduce systemic inflammation, promote the growth of beneficial human gut bacteria, and increase the production of beneficial microbial metabolites such as butyrate.


Assuntos
Anti-Inflamatórios , Colo , Fibras na Dieta , Diospyros , Humanos , Fibras na Dieta/farmacologia , Fibras na Dieta/análise , Diospyros/química , Camundongos , Anti-Inflamatórios/farmacologia , Colo/microbiologia , Colo/efeitos dos fármacos , Colo/metabolismo , Animais , Células RAW 264.7 , Células CACO-2 , Microbioma Gastrointestinal/efeitos dos fármacos , Firmicutes , Faecalibacterium prausnitzii , Frutas/química , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Hidroxibenzoatos/farmacologia , Hidroxibenzoatos/análise , Fenóis/farmacologia , Fenóis/análise , Fermentação , Ácido Gálico/farmacologia , Antocianinas/farmacologia , Antocianinas/análise
2.
Microbiologyopen ; 13(4): e1430, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39115291

RESUMO

The gut microbiota significantly contributes to human health and well-being. The aim of this study was to evaluate the stability and resilience of a consortium composed of three next-generation probiotics (NGPs) candidates originally found in the human gut. The growth patterns of Akkermansia muciniphila, Bacteroides thetaiotaomicron, and Faecalibacterium prausnitzii were studied both individually and consortium. The growth kinetics of Akkermansia muciniphila (A. muciniphila), Bacteroides thetaiotaomicron (B. thetaiotaomicron), and Faecalibacterium prausnitzii (F. prausnitzii) were characterized both individually and in consortium using isothermal microcalorimetry and 16S ribosomal RNA next-generation sequencing. The consortium reached stability after three passages and demonstrated resilience to changes in its initial composition. The concentration of butyrate produced was nearly twice as high in the consortium compared to the monoculture of F. prausnitzii. The experimental conditions and methodologies used in this article are a solid foundation for developing further complex consortia.


Assuntos
Calorimetria , Microbioma Gastrointestinal , RNA Ribossômico 16S , Humanos , Microbioma Gastrointestinal/fisiologia , RNA Ribossômico 16S/genética , Faecalibacterium prausnitzii/genética , Akkermansia/crescimento & desenvolvimento , Akkermansia/fisiologia , Consórcios Microbianos/fisiologia , Consórcios Microbianos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Butiratos/metabolismo , Probióticos , Verrucomicrobia/genética , Verrucomicrobia/crescimento & desenvolvimento , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , DNA Bacteriano/genética
3.
BMC Microbiol ; 24(1): 268, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030520

RESUMO

BACKGROUND: Recently, there has been an increase in the number of studies focusing on the association between the gut microbiome and obesity or inflammatory diseases, especially in adults. However, there is a lack of studies investigating the association between gut microbiome and gastrointestinal (GI) diseases in adolescents. METHOD: We obtained 16S rRNA-seq datasets for gut microbiome analysis from 202 adolescents, comprising ulcerative colitis (UC), Crohn's disease (CD), obesity (Ob), and healthy controls (HC). We utilized Quantitative Insights Into Microbial Ecology (QIIME) and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) to acquire Operational Taxonomic Units (OTUs). Subsequently, we analyzed Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) terms and pathway enrichment for the identified OTUs. RESULTS: In this study, we investigated the difference between the gut microbiomes in adolescents with GI diseases and those in healthy adolescents using 202 samples of 16S rRNA sequencing data. The distribution of the six main gut microbiota (i.e., unclassified Dorea, unclassified Lachnospiraceae, unclassified Ruminococcus, Faecalibacterium prausnitzii, Prevotella copri, unclassified Sutterella) was different based on the status of obesity and inflammatory diseases. Dysbiosis was observed within Lachnospiraceae in adolescents with inflammatory diseases (i.e., UC and CD), and in adolescents with obesity within Prevotella and Sutterella. More specifically, our results showed that the relative abundance of Faecalibacterium prausnitzii and unclassified Lachnospiraceae was more than 10% and 8% higher, respectively, in the UC group compared to the CD, Ob, and HC groups. Additionally, the Ob group had over 20% and over 3% higher levels of Prevotella copri and unclassified Sutterella, respectively, compared to the UC, CD, and HC groups. Also, inspecting associations between the six specific microbiota and KO terms, we found that the six microbiota -relating KO terms were associated with NOD-like receptor signaling. These six taxa differences may affect the immune system and inflammatory response by affecting NOD-like receptor signaling in the host during critical adolescence. CONCLUSION: In this study, we discovered that dysbiosis of the microbial community had varying degrees of influence on the inflammatory and immune response pathways in adolescents with inflammatory diseases and obesity.


Assuntos
Bactérias , Microbioma Gastrointestinal , Obesidade , Filogenia , RNA Ribossômico 16S , Humanos , Microbioma Gastrointestinal/genética , Adolescente , RNA Ribossômico 16S/genética , Obesidade/microbiologia , Obesidade/imunologia , Feminino , Masculino , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/imunologia , Doença de Crohn/microbiologia , Doença de Crohn/imunologia , Colite Ulcerativa/microbiologia , Colite Ulcerativa/imunologia , Disbiose/microbiologia , Prevotella/genética , Prevotella/classificação , Prevotella/isolamento & purificação , Faecalibacterium prausnitzii/genética , Fezes/microbiologia
4.
Oncoimmunology ; 13(1): 2374954, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957477

RESUMO

Gut microbiota impacts responses to immune checkpoint inhibitors (ICI). A high level of Faecalibacterium prausnitzii have been associated with a positive response to ICI in multiple cancer types. Here, based on fecal shotgun metagenomics data, we show in two independent cohorts of patients with non-small cell lung cancer and advanced melanoma that a high level of F. prausnitzii at baseline is positively associated with a better clinical response to ICI. In MCA205 tumor-bearing mice, administration of F. prausnitzii strain EXL01, already in clinical development for Inflammatory Bowel Disease, restores the anti-tumor response to ICI in the context of antibiotic-induced microbiota perturbation at clinical and tumor transcriptomics level. In vitro, EXL01 strain enhances T cell activation in the presence of ICI. Interestingly, oral administration of EXL01 strain did not induce any change in fecal microbiota diversity or composition, suggesting a direct effect on immune cells in the small intestine. F. prausnitzii strain EXL01 will be evaluated as an adjuvant to ICI in multiple cancers in the near future.


Assuntos
Faecalibacterium prausnitzii , Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Animais , Humanos , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Faecalibacterium prausnitzii/efeitos dos fármacos , Feminino , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Melanoma/tratamento farmacológico , Melanoma/imunologia , Melanoma/patologia , Fezes/microbiologia , Masculino , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL
5.
Pharmacol Res ; 206: 107277, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945379

RESUMO

Faecalibacterium prausnitzii (F. prausnitzii) has been recognized for its various intestinal and extraintestinal benefits to human. And reduction of F. prausnitzii has been linked to an increased risk of intestinal fibrosis in patients of Crohn's disease (CD). In this study, oral administration of either live F. prausnitzii or its extracellular vesicles (FEVs) can markedly mitigate the severity of fibrosis in mice induced by repetitive administration of DSS. In vitro experiment revealed that FEVs were capable of directing the polarization of peripheral blood mononuclear cells (PBMCs) towards an M2b macrophage phenotype, which has been associated with anti-fibrotic activities. This effect of FEV was found to be stable under various conditions that promote the development of pro-fibrotic M1/M2a/M2c macrophages. Proteomics and RNA sequencing were performed to uncover the molecular modulation of macrophages by FEVs. Notably, we found that FEVs reprogramed every metabolism of macrophages by damaging the mitochondria, and inhibited oxidative phosphorylation and glycolysis. Moreover, FEV-treated macrophages showed a decreased expression of PPARγ and an altered lipid processing phenotype characterized by decreased cholesterol efflux, which may promote energy reprogramming. Taken together, these findings identify FEV as a driver of macrophage reprogramming, suggesting that triggering M2b macrophage polarization by oral admiration of FEV may serve as strategy to alleviate hyperfibrotic intestine conditions in CD.


Assuntos
Colite , Vesículas Extracelulares , Faecalibacterium prausnitzii , Fibrose , Macrófagos , Camundongos Endogâmicos C57BL , Animais , Macrófagos/metabolismo , Vesículas Extracelulares/metabolismo , Faecalibacterium prausnitzii/metabolismo , Camundongos , Colite/metabolismo , Colite/microbiologia , Colite/patologia , Colite/induzido quimicamente , Masculino , Sulfato de Dextrana , Intestinos/patologia , Doença Crônica , Reprogramação Metabólica
6.
Front Cell Infect Microbiol ; 14: 1363276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707511

RESUMO

Introduction: Chronic kidney disease (CKD) is worldwide healthcare burden with growing incidence and death rate. Emerging evidence demonstrated the compositional and functional differences of gut microbiota in patients with CKD. As such, gut microbial features can be developed as diagnostic biomarkers and potential therapeutic target for CKD. Methods: To eliminate the outcome bias arising from factors such as geographical distribution, sequencing platform, and data analysis techniques, we conducted a comprehensive analysis of the microbial differences between patients with CKD and healthy individuals based on multiple samples worldwide. A total of 980 samples from six references across three nations were incorporated from the PubMed, Web of Science, and GMrepo databases. The obtained 16S rRNA microbiome data were subjected to DADA2 processing, QIIME2 and PICRUSt2 analyses. Results: The gut microbiota of patients with CKD differs significantly from that of healthy controls (HC), with a substantial decrease in the microbial diversity among the CKD group. Moreover, a significantly reduced abundance of bacteria Faecalibacterium prausnitzii (F. prausnitzii) was detected in the CKD group through linear discriminant analysis effect size (LEfSe) analysis, which may be associated with the alleviating effects against CKD. Notably, we identified CKD-depleted F. prausnitzii demonstrated a significant negative correlation with three pathways based on predictive functional analysis, suggesting its potential role in regulating systemic acidbase disturbance and pro-oxidant metabolism. Discussion: Our findings demonstrated notable alterations of gut microbiota in CKD patients. Specific gut-beneficial microbiota, especially F. prausnitzii, may be developed as a preventive and therapeutic tool for CKD clinical management.


Assuntos
Microbioma Gastrointestinal , RNA Ribossômico 16S , Insuficiência Renal Crônica , Microbioma Gastrointestinal/genética , Humanos , RNA Ribossômico 16S/genética , Insuficiência Renal Crônica/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fezes/microbiologia , Filogenia , Faecalibacterium prausnitzii/genética , Biodiversidade , Disbiose/microbiologia
7.
Gut Microbes ; 16(1): 2353396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38778483

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that leads to respiratory failure, and eventually death. However, there is a lack of effective treatments for ALS. Here we report the results of fecal microbiota transplantation (FMT) in two patients with late-onset classic ALS with a Japan ALS severity classification of grade 5 who required tracheostomy and mechanical ventilation. In both patients, significant improvements in respiratory function were observed following two rounds of FMT, leading to weaning off mechanical ventilation. Their muscle strength improved, allowing for assisted standing and mobility. Other notable treatment responses included improved swallowing function and reduced muscle fasciculations. Metagenomic and metabolomic analysis revealed an increase in beneficial Bacteroides species (Bacteroides stercoris, Bacteroides uniformis, Bacteroides vulgatus), and Faecalibacterium prausnitzii after FMT, as well as elevated levels of metabolites involved in arginine biosynthesis and decreased levels of metabolites involved in branched-chain amino acid biosynthesis. These findings offer a potential rescue therapy for ALS with respiratory failure and provide new insights into ALS in general.


Assuntos
Esclerose Lateral Amiotrófica , Transplante de Microbiota Fecal , Insuficiência Respiratória , Humanos , Esclerose Lateral Amiotrófica/terapia , Esclerose Lateral Amiotrófica/microbiologia , Bacteroides , Faecalibacterium prausnitzii , Fezes/microbiologia , Microbioma Gastrointestinal , Respiração Artificial , Insuficiência Respiratória/terapia , Insuficiência Respiratória/microbiologia , Resultado do Tratamento
8.
Nutrients ; 16(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38674791

RESUMO

Sleep deprivation (SD) leads to impaired intestinal barrier function and intestinal flora disorder, especially a reduction in the abundance of the next generation of probiotic Faecalibacterium prausnitzii (F. prausnitzii). However, it remains largely unclear whether F. prausnitzii can ameliorate SD-induced intestinal barrier damage. A 72 h SD mouse model was used in this research, with or without the addition of F. prausnitzii. The findings indicated that pre-colonization with F. prausnitzii could protect against tissue damage from SD, enhance goblet cell count and MUC2 levels in the colon, boost tight-junction protein expression, decrease macrophage infiltration, suppress pro-inflammatory cytokine expression, and reduce apoptosis. We found that the presence of F. prausnitzii helped to balance the gut microbiota in SD mice by reducing harmful bacteria like Klebsiella and Staphylococcus, while increasing beneficial bacteria such as Akkermansia. Ion chromatography analysis revealed that F. prausnitzii pretreatment increased the fecal butyrate level in SD mice. Overall, these results suggested that incorporating F. prausnitzii could help reduce gut damage caused by SD, potentially by enhancing the intestinal barrier and balancing gut microflora. This provides a foundation for utilizing probiotics to protect against intestinal illnesses.


Assuntos
Disbiose , Faecalibacterium prausnitzii , Microbioma Gastrointestinal , Mucosa Intestinal , Probióticos , Privação do Sono , Animais , Privação do Sono/complicações , Camundongos , Probióticos/farmacologia , Probióticos/administração & dosagem , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Fezes/microbiologia , Camundongos Endogâmicos C57BL , Suplementos Nutricionais , Modelos Animais de Doenças , Mucina-2/metabolismo , Butiratos/metabolismo , Colo/microbiologia , Colo/metabolismo
9.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G607-G621, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502145

RESUMO

Fecal microbiota transplantation (FMT) is a promising therapy for inflammatory bowel disease (IBD) via rectifying gut microbiota. The aim of this study was to identify a mechanism of how specific bacteria-associated immune response contributes to alleviated colitis. Forty donors were divided into high (donor H) and low (donor L) groups according to the diversity and the abundance of Bacteroides and Faecalibacterium by 16S rRNA sequencing. FMT was performed on dextran sulfate sodium (DSS)-induced colitis in mice. Mice with colitis showed significant improvement in intestinal injury and immune imbalance after FMT with group donor H (P < 0.05). Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii were identified as targeted strains in donor feces by real-time PCR and droplet digital PCR. Mice with colitis were treated with mono- or dual-bacterial gavage therapy. Dual-bacterial therapy significantly ameliorated intestinal injury compared with mono-bacterial therapy (P < 0.05). Dual-bacterial therapy increased the M2/M1 macrophage polarization and improved the Th17/Treg imbalance and elevated IL-10 production by Tregs compared with the DSS group (P < 0.05). Metabolomics showed increased abundance of lecithin in the glycerophospholipid metabolism pathway. In conclusion, B. thetaiotaomicron and F. prausnitzii, as the key bacteria in donor feces, alleviate colitis in mice. The mechanism may involve increasing lecithin and regulating IL-10 production of intestinal Tregs.NEW & NOTEWORTHY We demonstrate that donors with high abundance of Bacteroides and Faecalibacterium ameliorate dextran sulfate sodium (DSS)-induced colitis in mice by fecal microbiota transplantation (FMT). The combination therapy of Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii is superior to mono-bacterial therapy in ameliorating colitis in mice, of which mechanism may involve promoting lecithin and inducing IL-10 production of intestinal Tregs.


Assuntos
Bacteroides thetaiotaomicron , Colite , Faecalibacterium prausnitzii , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Animais , Colite/terapia , Colite/microbiologia , Colite/induzido quimicamente , Colite/imunologia , Camundongos , Masculino , Humanos , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Interleucina-10/metabolismo , Adulto , Feminino , Fezes/microbiologia , Modelos Animais de Doenças , Pessoa de Meia-Idade
10.
NPJ Biofilms Microbiomes ; 10(1): 31, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553449

RESUMO

Crosstalk of microbes with human gut epithelia and immune cells is crucial for gut health. However, there is no existing system for a long-term co-culture of human innate immune cells with epithelium and oxygen-intolerant commensal microbes, hindering the understanding of microbe-immune interactions in a controlled manner. Here, we established a gut epithelium-microbe-immune (GuMI) microphysiological system to maintain the long-term continuous co-culture of Faecalibacterium prausnitzii/Faecalibacterium duncaniae with colonic epithelium, antigen-presenting cells (APCs, herein dendritic cells and macrophages), and CD4+ naive T cells circulating underneath the colonic epithelium. In GuMI-APC condition, multiplex cytokine assays suggested that APCs contribute to the elevated level of cytokines and chemokines secreted into both apical and basolateral compartments compared to GuMI condition that lacks APC. In GuMI-APC with F. prausnitzii (GuMI-APC-FP), F. prausnitzii increased the transcription of pro-inflammatory genes such as toll-like receptor 1 (TLR1) and interferon alpha 1 (IFNA1) in the colonic epithelium, without a significant effect on cytokine secretion, compared to the GuMI-APC without bacteria (GuMI-APC-NB). In contrast, in the presence of CD4+ naive T cells (GuMI-APCT-FP), TLR1, IFNA1, and IDO1 transcription levels decreased with a simultaneous increase in F. prausnitzii-induced secretion of pro-inflammatory cytokines (e.g., IL8) compared to GuMI-APC-FP that lacks T cells. These results highlight the contribution of individual innate immune cells in regulating the immune response triggered by the gut commensal F. prausnitzii. The integration of defined populations of immune cells in the gut microphysiological system demonstrated the usefulness of GuMI physiomimetic platform to study microbe-epithelial-immune interactions in healthy and disease conditions.


Assuntos
Faecalibacterium prausnitzii , Sistemas Microfisiológicos , Humanos , Faecalibacterium prausnitzii/fisiologia , Receptor 1 Toll-Like , Citocinas , Inflamação
11.
Sci Rep ; 14(1): 987, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200051

RESUMO

The promising next-generation probiotic Faecalibacterium prausnitzii is one of the most abundant acetate-consuming, butyrate-producing bacteria in the healthy human gut. Yet, little is known about how acetate availability affects this bacterium's gene expression strategies. Here, we investigated the effect of acetate on temporal changes in the transcriptome of F. duncaniae A2-165 cultures using RNA sequencing. We compared gene expression patterns between two growth phases (early stationary vs. late exponential) and two acetate levels (low: 3 mM vs. high: 23 mM). Only in low-acetate conditions, a general stress response was activated. In high-acetate conditions, there was greater expression of genes related to butyrate synthesis and to the importation of B vitamins and iron. Specifically, expression was strongly activated in the case of the feoAABC operon, which encodes a FeoB ferrous iron transporter, but not in the case of the feoAB gene, which encodes a second putative FeoAB transporter. Moreover, excess ferrous iron repressed feoB expression but not feoAB. Lastly, FeoB but not FeoAB peptides from strain A2-165 were found in abundance in a healthy human fecal metaproteome. In conclusion, we characterized two early-stationary transcriptomes based on acetate consumption and this work highlights the regulation of feoB expression in F. duncaniae A2-165.


Assuntos
Adipogenia , Sobrecarga de Ferro , Humanos , Acetatos , Faecalibacterium prausnitzii , Ferro , Butiratos
12.
Clin Lab ; 70(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38213219

RESUMO

BACKGROUND: Crohn's disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases with uncertain etiology. We aimed to determine the amounts of Akkermansia muciniphila and Faecalibacterium prausnitzii in the intestinal microbiota of these patients and to correlate their amounts with blood IL-8, IL-10, and IL-12 cytokine levels. METHODS: Thirty UC, 30 CDs, and 46 healthy controls were included. IL-8, IL-10, and IL-12 levels of blood samples were analyzed by ELISA. The amounts of Akkermansia muciniphila and Faecalibacterium prausnitzii were determined by the LightCycler 480 qPCR system. RESULTS: F. prausnitzii, A. muciniphila, IL-10, and IL-12 decreased in patient groups, while IL-8 decreased in UC but increased in CD. A significant difference was detected between the patient and control groups in terms of F. prausnitzii, A. muciniphila, and IL-8, but not for others. The amount of F. prausnitzii was correlated with IL-8 and IL-10 in UC and with IL-10 in CD patients. CONCLUSIONS: The decrease in the amount of F. prausnitzii was associated with the increase in UC disease severity. A. muciniphila and F. prausnitzii were detected in lower amounts in both diseases. F. prausnitzii decreased more with the severity of UC, suggesting that these bacteria may have complex roles in their etiopathogenesis.


Assuntos
Colite Ulcerativa , Doença de Crohn , Humanos , Faecalibacterium prausnitzii , Interleucina-10 , Interleucina-8 , Verrucomicrobia , Interleucina-12 , Akkermansia
13.
Cell Commun Signal ; 22(1): 54, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243314

RESUMO

BACKGROUND: The gut microbiota plays a crucial role in coronary artery disease (CAD) development, but limited attention has been given to the role of the microbiota in preventing this disease. This study aimed to identify key biomarkers using metagenomics and untargeted metabolomics and verify their associations with atherosclerosis. METHODS: A total of 371 participants, including individuals with various CAD types and CAD-free controls, were enrolled. Subsequently, significant markers were identified in the stool samples through gut metagenomic sequencing and untargeted metabolomics. In vivo and in vitro experiments were performed to investigate the mechanisms underlying the association between these markers and atherosclerosis. RESULTS: Faecal omics sequencing revealed that individuals with a substantial presence of Faecalibacterium prausnitzii had the lowest incidence of CAD across diverse CAD groups and control subjects. A random forest model confirmed the significant relationship between F. prausnitzii and CAD incidence. Notably, F. prausnitzii emerged as a robust, independent CAD predictor. Furthermore, our findings indicated the potential of the gut microbiota and gut metabolites to predict CAD occurrence and progression, potentially impacting amino acid and vitamin metabolism. F. prausnitzii mitigated inflammation and exhibited an antiatherosclerotic effect on ApoE-/- mice after gavage. This effect was attributed to reduced intestinal LPS synthesis and reinforced mechanical and mucosal barriers, leading to decreased plasma LPS levels and an antiatherosclerotic outcome. CONCLUSIONS: Sequencing of the samples revealed a previously unknown link between specific gut microbiota and atherosclerosis. Treatment with F. prausnitzii may help prevent CAD by inhibiting atherosclerosis.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Faecalibacterium prausnitzii/metabolismo , Lipopolissacarídeos
14.
Nature ; 625(7996): 813-821, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172637

RESUMO

Although the impact of host genetics on gut microbial diversity and the abundance of specific taxa is well established1-6, little is known about how host genetics regulates the genetic diversity of gut microorganisms. Here we conducted a meta-analysis of associations between human genetic variation and gut microbial structural variation in 9,015 individuals from four Dutch cohorts. Strikingly, the presence rate of a structural variation segment in Faecalibacterium prausnitzii that harbours an N-acetylgalactosamine (GalNAc) utilization gene cluster is higher in individuals who secrete the type A oligosaccharide antigen terminating in GalNAc, a feature that is jointly determined by human ABO and FUT2 genotypes, and we could replicate this association in a Tanzanian cohort. In vitro experiments demonstrated that GalNAc can be used as the sole carbohydrate source for F. prausnitzii strains that carry the GalNAc-metabolizing pathway. Further in silico and in vitro studies demonstrated that other ABO-associated species can also utilize GalNAc, particularly Collinsella aerofaciens. The GalNAc utilization genes are also associated with the host's cardiometabolic health, particularly in individuals with mucosal A-antigen. Together, the findings of our study demonstrate that genetic associations across the human genome and bacterial metagenome can provide functional insights into the reciprocal host-microbiome relationship.


Assuntos
Bactérias , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Metagenoma , Humanos , Acetilgalactosamina/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Estudos de Coortes , Simulação por Computador , Faecalibacterium prausnitzii/genética , Microbioma Gastrointestinal/genética , Genoma Humano/genética , Genótipo , Interações entre Hospedeiro e Microrganismos/genética , Técnicas In Vitro , Metagenoma/genética , Família Multigênica , Países Baixos , Tanzânia
15.
Biomed Pharmacother ; 167: 115568, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793274

RESUMO

Ulcerative colitis (UC) is a severe inflammatory bowel disease (IBD) characterized by multifactorial complex disorders triggered by environmental factors, genetic susceptibility, and also gut microbial dysbiosis. Faecalibacterium prausnitzii, Bacteroides faecis, and Roseburia intestinalis are underrepresented species in UC patients, leading to the hypothesis that therapeutic application of those bacteria could ameliorate clinical symptoms and disease severity. Acute colitis was induced in mice by 3.5% DSS, and the commensal bacterial species were administered by oral gavage simultaneously with DSS treatment for up to 7 days. The signs of colonic inflammation, the intestinal barrier integrity, the proportion of regulatory T cells (Tregs), and the expression of pro-inflammatory and anti-inflammatory cytokines were quantified. The concentrations of SCFAs in feces were measured using Gas-liquid chromatography. The gut microbiome was analyzed in all treatment groups at the endpoint of the experiment. Results were benchmarked against a contemporary mesalazine treatment regime. We show that commensal species alone and in combination reduced disease activity index scores, inhibited colon shortening, strengthened the colonic epithelial barrier, and positively modulated tight junction protein expression. The expression level of pro-inflammatory cytokines was significantly reduced. Immune modulation occurred via inhibition of the loss of CD4 +CD25 +Treg cells in the spleen. Our study proofed that therapeutic application of F. prausnitzii, B. faecis, and R. intestinalis significantly ameliorated DSS-induced colitis at the level of clinical symptoms, histological inflammation, and immune status. Our data suggest that these positive effects are mediated by immune-modulatory pathways and influence on Treg/Th17 balance.


Assuntos
Colite Ulcerativa , Colite , Humanos , Camundongos , Animais , Linfócitos T Reguladores , Faecalibacterium prausnitzii/metabolismo , Células Th17 , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/tratamento farmacológico , Colo , Citocinas/metabolismo , Bactérias/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
16.
Front Endocrinol (Lausanne) ; 14: 1220044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711887

RESUMO

Introduction: Obesity and related metabolic issues are a growing global health concern. Recently, the discovery of new probiotics with anti-obesity properties has gained interest. Methods: In this study, four Faecalibacte-rium prausnitzii strains were isolated from healthy human feces and evaluated on a high-fat diet-induced mouse model for 12 weeks. Results: The F. prausnitzii strains reduced body weight gain, liver and fat weights, and calorie intake while improving lipid and glucose metabolism in the liver and adipose tissue, as evidenced by regulating lipid metabolism-associated gene expression, including ACC1, FAS, SREBP1c, leptin, and adiponectin. Moreover, the F. prausnitzii strains inhibited low-grade inflammation, restored gut integrity, and ameliorated hepatic function and insulin resistance. Interestingly, the F. prausnitzii strains modulated gut and neural hormone secretion and reduced appetite by affecting the gut-brain axis. Supplementation with F. prausnitzii strains noticeably changed the gut microbiota composition. Discussion: In summary, the novel isolated F. prausnitzii strains have therapeutic effects on obesity and associated metabolic disorders through modulation of the gut-brain axis. Additionally, the effectiveness of different strains might not be achieved through identical mechanisms. Therefore, the present findings provide a reliable clue for developing novel therapeutic probiotics against obesity and associated metabolic disorders.


Assuntos
Faecalibacterium prausnitzii , Doenças Metabólicas , Humanos , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Doenças Metabólicas/etiologia , Obesidade/etiologia , Preparações Farmacêuticas
17.
Medicine (Baltimore) ; 102(35): e34978, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657059

RESUMO

BACKGROUND: Glucagon-like peptide 1 (GLP-1) receptor agonists are a class of medications used to treat type 2 diabetes, including metformin, which is considered first-line therapy for type 2 diabetes. In recent years, GLP-1 receptor agonists (GLP-1 RAs) have been found to alter the composition and structure of gut flora and also promote the production of gut probiotics. However, there have been few clinical studies regarding the effects of GLP-1 RAs on gut flora. In this study, we investigated changes in the abundance of Lactobacillus delbrueckii (L delbrueckii) and Faecalibacterium prausnitzii (F prausnitzii) 1 week after administration of a GLP-1 RA in the clinical treatment of type 2 diabetes. The association with glycemic and body mass index (BMI) correlations was also explored. METHODS: Twelve newly diagnosed patients with type 2 diabetes were examined for changes in the abundance of L delbrueckii and F prausnitzii by Fluorescence in Situ Hybridization 1 week after administration of GLP-1 RAs. Subjects BMI was measured and fasting glucose changes were detected using the glucose oxidase method, and Spearman correlation analysis was performed to explore their relevance. RESULTS: There was no significant change in the abundance of L delbrueckii in the intestine (P = .695) and no significant correlation with BMI and fasting glucose levels (R = 0.134, P = .534) after the use of GLP-1 RA (R = -0.098, P = .647); F prausnitzii on the other hand had a significantly higher abundance (P = .002) and a significant negative correlation with fasting glucose level (R = -0.689, P < .001), but no significant correlation with BMI (R = -0.056, P = .796). CONCLUSION: F prausnitzii may be one of the pathways through which glucose is regulated in the treatment of type 2 diabetes by GLP-1 RAs.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Faecalibacterium prausnitzii , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hibridização in Situ Fluorescente , Peptídeo 1 Semelhante ao Glucagon , Glucose , Intestinos
18.
Cancer Res ; 83(22): 3710-3725, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37602831

RESUMO

Immune checkpoint inhibitors (ICI) have revolutionized cancer therapy; however, their application is limited by the occurrence of immune-related adverse events. The gut microbiota plays important roles in the response to and toxicity of immunotherapy and Faecalibacterium prausnitzii (F. prausnitzii) has been shown to possess immunomodulatory potential. Here, we found that patients receiving ICIs who developed colitis had a lower abundance of F. prausnitzii. In vivo, immunocompetent mice administered with dextran sodium sulfate and immunodeficient NSG mice with human peripheral blood mononuclear cell transfer were treated with ICIs to study ICI-induced colitis. Dual CTLA4 and PD-1 blockade exacerbated autoimmune colitis, activated an inflammatory response, and promoted myeloid cell infiltration, with higher percentages of macrophages, dendritic cells, monocytes, and neutrophils. F. prausnitzii administration mitigated the exacerbated colitis induced by ICIs. Concomitantly, F. prausnitzii enhanced the antitumor immunity elicited by ICIs in tumor-bearing mice while abrogating colitis. In addition, administration of F. prausnitzii increased gut microbial alpha diversity and modulated the microbial composition, increasing a subset of gut probiotics and decreasing potential gut pathogens. F. prausnitzii abundance was reduced in mice that developed ICI-associated colitis. Together, this study shows that F. prausnitzii administration ameliorates ICI-induced colitis, reshapes the gut microbial composition, and enhances the antitumor activity of immunotherapy. SIGNIFICANCE: F. prausnitzii alleviates colitis while enhancing the tumor-suppressive effects of immune checkpoint blockade, indicating that supplementation with F. prausnitzii could be a treatment strategy to mitigate immunotherapy toxicity in patients with cancer.


Assuntos
Colite , Neoplasias , Humanos , Camundongos , Animais , Faecalibacterium prausnitzii , Receptor de Morte Celular Programada 1 , Leucócitos Mononucleares , Antígeno CTLA-4 , Colite/induzido quimicamente
19.
Nature ; 620(7973): 381-385, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532933

RESUMO

The human gut microbiota has gained interest as an environmental factor that may contribute to health or disease1. The development of next-generation probiotics is a promising strategy to modulate the gut microbiota and improve human health; however, several key candidate next-generation probiotics are strictly anaerobic2 and may require synergy with other bacteria for optimal growth. Faecalibacterium prausnitzii is a highly prevalent and abundant human gut bacterium associated with human health, but it has not yet been developed into probiotic formulations2. Here we describe the co-isolation of F. prausnitzii and Desulfovibrio piger, a sulfate-reducing bacterium, and their cross-feeding for growth and butyrate production. To produce a next-generation probiotic formulation, we adapted F. prausnitzii to tolerate oxygen exposure, and, in proof-of-concept studies, we demonstrate that the symbiotic product is tolerated by mice and humans (ClinicalTrials.gov identifier: NCT03728868 ) and is detected in the human gut in a subset of study participants. Our study describes a technology for the production of next-generation probiotics based on the adaptation of strictly anaerobic bacteria to tolerate oxygen exposures without a reduction in potential beneficial properties. Our technology may be used for the development of other strictly anaerobic strains as next-generation probiotics.


Assuntos
Biotecnologia , Microbioma Gastrointestinal , Probióticos , Animais , Humanos , Camundongos , Butiratos/metabolismo , Oxigênio/metabolismo , Oxigênio/farmacologia , Probióticos/metabolismo , Aerobiose , Faecalibacterium prausnitzii/efeitos dos fármacos , Faecalibacterium prausnitzii/metabolismo , Simbiose , Biotecnologia/métodos
20.
Arthritis Res Ther ; 25(1): 130, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37496081

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease that leads to joint destruction and functional disability due to the targeting of self-antigens present in the synovium, cartilage, and bone. RA is caused by a number of complex factors, including genetics, environment, dietary habits, and altered intestinal microbial flora. Microorganisms in the gut bind to nod-like receptors and Toll-like receptors to regulate the immune system and produce various metabolites, such as short-chain fatty acids (SCFAs) that interact directly with the host. Faecalibacterium prausnitzii is a representative bacterium that produces butyrate, a well-known immunomodulatory agent in the body, and this microbe exerts anti-inflammatory effects in autoimmune diseases. METHODS: In this study, F. prausnitzii was administered in a mouse model of RA, to investigate RA pathology and changes in the intestinal microbial flora. Using collagen-induced arthritic mice, which is a representative animal model of RA, we administered F. prausnitzii orally for 7 weeks. RESULTS: The arthritis score and joint tissue damage were decreased in the mice administered F. prausnitzii compared with the vehicle-treated group. In addition, administration of F. prausnitzii reduced the abundance of systemic immune cells that secrete the pro-inflammatory cytokine IL-17 and induced changes in SCFA concentrations and the intestinal microbial flora composition. It also resulted in decreased lactate and acetate concentrations, an increased butyrate concentration, and altered compositions of bacteria known to exacerbate or improve RA. CONCLUSION: These results suggest that F. prausnitzii exerts a therapeutic effect on RA by regulation of IL-17 producing cells. In addition, F. prausnitzii modify the microbial flora composition and short chain fatty acids in experimental RA mouse model.


Assuntos
Artrite Reumatoide , Faecalibacterium prausnitzii , Camundongos , Animais , Faecalibacterium prausnitzii/metabolismo , Interleucina-17/metabolismo , Ácidos Graxos Voláteis/metabolismo , Modelos Animais de Doenças , Butiratos , Artrite Reumatoide/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA