RESUMO
Aging is the greatest known risk factor for most neurodegenerative diseases. Myelin degeneration is an early pathological indicator of these diseases and a normal part of aging; albeit, to a lesser extent. Despite this, little is known about the contribution of age-related myelin degeneration on neurodegenerative disease. Microglia participate in modulating white matter events from demyelination to remyelination, including regulation of (de)myelination by the microglial innate immune receptor triggering receptor expressed on myeloid cells 2 (TREM2). Here, we demonstrate Trem2-deficiency aggravates and accelerates age-related myelin degeneration in the striatum. We show TREM2 is necessary for remyelination by recruiting reparative glia and mediating signaling that promotes OPC differentiation/maturation. In response to demyelination, TREM2 is required for phagocytosis of large volumes of myelin debris. In addition to lysosomal regulation, we show TREM2 can modify the ER stress response, even prior to overt myelin debris, that prevents lipid accumulation and microglial dysfunction. These data support a role for Trem2-dependent interactions in age-related myelin degeneration and suggest a basis for how early dysfunctional microglia could contribute to disease pathology through insufficent repair, defective phagocytosis, and the ER stress response.
Assuntos
Envelhecimento , Glicoproteínas de Membrana , Microglia , Bainha de Mielina , Receptores Imunológicos , Animais , Camundongos , Envelhecimento/patologia , Envelhecimento/metabolismo , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/genética , Estresse do Retículo Endoplasmático/fisiologia , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/deficiência , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Bainha de Mielina/patologia , Bainha de Mielina/metabolismo , Fagocitose/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/deficiência , Remielinização/fisiologia , Masculino , FemininoRESUMO
BACKGROUND: Increased case reports have shown that patients with NF1 have an increased risk of extensive vascular vasculopathy. Previous studies demonstrated the presence of macrophages and smooth muscle cells in the neoplastic intima of carotid arteries after injury in Nf1+/- mice. However, whether NF1 gene mutations affect macrophage polarization and macrophage-smooth muscle cell interactions remains to be elucidated. METHODS: Scratch assay and transwell assay were utilized to detect cell migration ability. The dye 2',7'dichlorofluorescin diacetate and neutral red stain were used to assess intracellular ROS production and cell phagocytosis function, respectively. Proteins and mRNA expression were determined by western blot, RT-qPCR, and immunofluorescence. Finally, the macrophage (MAC) and vascular smooth muscle cell (VSMC) co-culture system was used to detect cellular crosstalk. RESULTS: Cell function assays confirmed that the Nf1-Q181X point mutation attenuated the phagocytosis of bone marrow-derived macrophages (BMDMs) and promoted the migration and ROS production of BMDMs. Moreover, we found that the Nf1-Q181X point mutation inhibited M1 but promoted M2 macrophage polarization by down-regulating p38, ERK, and JNK and up-regulating the Akt/STAT3 signaling pathway, respectively. Furthermore, in the MAC-VSMC co-culture system, we demonstrated that Nf1-Q181X point mutation-activated M2 BMDMs promoted proliferation and migration of VSMCs and induced the transformation of VSMCs from contractile phenotype to synthetic phenotype. CONCLUSION: The findings suggest that the Nf1-Q181X point mutation can mediate macrophage polarization and promote smooth muscle cell proliferation and migration, providing clinical clues for the treatment of NF1-complicated vasculopathy.
Assuntos
Movimento Celular , Proliferação de Células , Macrófagos , Miócitos de Músculo Liso , Neurofibromina 1 , Mutação Puntual , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Movimento Celular/genética , Animais , Proliferação de Células/genética , Macrófagos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Miócitos de Músculo Liso/metabolismo , Camundongos , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Fagocitose/genética , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Técnicas de CoculturaRESUMO
Alternative transcription start site (TSS) usage regulation has been identified as a major means of gene expression regulation in metazoans. However, in fungi, its impact remains elusive as its study has thus far been restricted to model yeasts. Here, we first re-analyzed TSS-seq data to define genuine TSS clusters in 2 species of pathogenic Cryptococcus. We identified 2 types of TSS clusters associated with specific DNA sequence motifs. Our analysis also revealed that alternative TSS usage regulation in response to environmental cues is widespread in Cryptococcus, altering gene expression and protein targeting. Importantly, we performed a forward genetic screen to identify a unique transcription factor (TF) named Tur1, which regulates alternative TSS (altTSS) usage genome-wide when cells switch from exponential phase to stationary phase. ChiP-Seq and DamID-Seq analyses suggest that at some loci, the role of Tur1 might be direct. Tur1 has been previously shown to be essential for virulence in C. neoformans. We demonstrated here that a tur1Δ mutant strain is more sensitive to superoxide stress and phagocytosed more efficiently by macrophages than the wild-type (WT) strain.
Assuntos
Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Fatores de Transcrição , Sítio de Iniciação de Transcrição , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Cryptococcus/genética , Cryptococcus/patogenicidade , Cryptococcus/metabolismo , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/metabolismo , Macrófagos/microbiologia , Macrófagos/metabolismo , Animais , Camundongos , Virulência/genética , Fagocitose/genéticaRESUMO
DNAX-activating protein of 12 kDa (DAP12) is a transmembrane adapter protein expressed in lymphoid and myeloid lineage cells. It interacts with several immunoreceptors forming functional complexes that trigger intracellular signaling pathways. One of the DAP12 associated receptors is the triggering receptor expressed on myeloid cells 2 (TREM2). Mutations in both DAP12 and TREM2 have been linked to neurodegenerative diseases. However, mechanisms involved in the regulation of subcellular trafficking and turnover of these proteins are not well understood. Here, we demonstrate that proteasomal degradation of DAP12 is increased in the absence of TREM2. Interestingly, unassembled DAP12 is also retained in early secretory compartments, including the endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment (ERGIC), thereby preventing its transport to the plasma membrane. We also show that unassembled DAP12 interacts with the retention in ER sorting receptor 1 (RER1). The deletion of endogenous RER1 decreases expression of functional TREM2-DAP12 complexes and membrane proximal signaling, and resulted in almost complete inhibition of phagocytic activity in THP-1 differentiated macrophage-like cells. These results indicate that RER1 acts as an important regulator of DAP12 containing immunoreceptor complexes and immune cell function.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Retículo Endoplasmático , Glicoproteínas de Membrana , Receptores Imunológicos , Via Secretória , Humanos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Retículo Endoplasmático/metabolismo , Via Secretória/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células HEK293 , Transdução de Sinais , Fagocitose/genética , Macrófagos/metabolismo , Transporte Proteico , Ligação Proteica , Animais , Complexo de Golgi/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Membrana Celular/metabolismoRESUMO
Tumor immune evasion relies on the crosstalk between tumor cells and adaptive/innate immune cells. Immune checkpoints play critical roles in the crosstalk, and immune checkpoint inhibitors have achieved promising clinical effects. The long non-coding RNA taurine-upregulated gene 1 (TUG1) is upregulated in hepatocellular carcinoma (HCC). However, how TUG1 is upregulated and the effects on tumor immune evasion are incompletely understood. Here, METTL3-mediated m6A modification led to TUG1 upregulation is demonstrated. Knockdown of TUG1 inhibited tumor growth and metastasis, increased the infiltration of CD8+ T cells and M1-like macrophages in tumors, promoted the activation of CD8+ T cells through PD-L1, and improved the phagocytosis of macrophages through CD47. Mechanistically, TUG1 regulated PD-L1 and CD47 expressions by acting as a sponge of miR-141 and miR-340, respectively. Meanwhile, TUG1 interacted with YBX1 to facilitate the upregulation of PD-L1 and CD47 transcriptionally, which ultimately regulated tumor immune evasion. Clinically, TUG1 positively correlated with PD-L1 and CD47 in HCC tissues. Moreover, the combination of Tug1-siRNA therapy with a Pdl1 antibody effectively suppressed tumor growth. Therefore, the mechanism of TUG1 in regulating tumor immune evasion is revealed and can inform existing strategies targeting TUG1 for enhancing HCC immune therapy and drug development.
Assuntos
Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Macrófagos , Fagocitose , RNA Longo não Codificante , Regulação para Cima , RNA Longo não Codificante/genética , RNA Longo não Codificante/imunologia , RNA Longo não Codificante/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Regulação para Cima/genética , Camundongos , Animais , Fagocitose/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Antígeno CD47/genética , Antígeno CD47/metabolismo , Antígeno CD47/imunologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genéticaRESUMO
Alveolar macrophages (AMs) act as gatekeepers of the lung's immune responses, serving essential roles in recognizing and eliminating pathogens. The transcription factor (TF) early growth response 2 (EGR2) has been recently described as required for mature AMs in mice; however, its mechanisms of action have not been explored. Here, we identified EGR2 as an epigenomic regulator and likely direct proximal transcriptional activator in AMs using epigenomic approaches (RNA sequencing, ATAC sequencing, and CUT&RUN). The predicted direct proximal targets of EGR2 included a subset of AM identity genes and ones related to pathogen recognition, phagosome maturation, and adhesion, such as Clec7a, Atp6v0d2, Itgb2, Rhoc, and Tmsb10. We provided evidence that EGR2 deficiency led to impaired zymosan internalization and reduced the capacity to respond to Aspergillus fumigatus. Mechanistically, the lack of EGR2 altered the transcriptional response, secreted cytokines (i.e., CXCL11), and inflammation-resolving lipid mediators (i.e., RvE1) of AMs during in vivo zymosan-induced inflammation, which manifested in impaired resolution. Our findings demonstrated that EGR2 is a key proximal transcriptional activator and epigenomic bookmark in AMs responsible for select, distinct components of cell identity and a protective transcriptional and epigenomic program against fungi.
Assuntos
Aspergillus fumigatus , Proteína 2 de Resposta de Crescimento Precoce , Macrófagos Alveolares , Fagocitose , Animais , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/imunologia , Camundongos , Fagocitose/imunologia , Fagocitose/genética , Aspergillus fumigatus/imunologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Epigenômica , Epigênese Genética/imunologia , ZimosanRESUMO
Phagocytosis is an important immune response that protects the host from pathogen invasion. Rit1 GTPase is known to be involved in diverse cellular processes. However, its role in FcγR-mediated phagocytosis remains unclear. Our live-cell imaging analysis revealed that Rit1 was localized to the membranes of F-actin-rich phagocytic cups in RAW264 macrophages. Rit1 knockout and expression of the GDP-locked Rit1 mutant suppressed phagosome formation. We also found that TBC1D10B, a GAP for the Rab family GTPases, colocalizes with Rit1 in the membranes of phagocytic cups. Expression and knockout studies have shown that TBC1D10B decreases phagosome formation in both Rab-GAP activity-dependent and -independent manners. Notably, the expression of the GDP-locked Rit1 mutant or Rit1 knockout inhibited the dissociation of TBC1D10B from phagocytic cups. In addition, the expression of the GTP-locked Rit1 mutant promoted the dissociation of TBC1D10B in phagocytic cups and restored the rate of phagosome formation in TBC1D10B-expressing cells. These data suggest that Rit1-TBC1D10B signaling regulates FcγR-mediated phagosome formation in macrophages.
Assuntos
Proteínas Ativadoras de GTPase , Macrófagos , Fagocitose , Fagossomos , Receptores de IgG , Transdução de Sinais , Animais , Camundongos , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Macrófagos/metabolismo , Fagocitose/genética , Fagossomos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Células RAW 264.7 , Receptores de IgG/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismoRESUMO
Macrophages have important roles in mammary gland development and tissue homeostasis, but the specific mechanisms that regulate macrophage function need further elucidation. We have identified C/EBPß as an important transcription factor expressed by multiple macrophage populations in the normal mammary gland. Mammary glands from mice with C/EBPß-deficient macrophages (Cebpb ΔM) show a significant decrease in alveolar budding during the diestrus stage of the reproductive cycle, whereas branching morphogenesis remains unchanged. Defects in alveolar budding were found to be the result of both systemic hormones and local macrophage-directed signals. RNA sequencing shows significant changes in PR-responsive genes and alterations in the Wnt landscape of mammary epithelial cells of Cebpb ΔM mice, which regulate stem cell expansion during diestrus. Cebpb ΔM macrophages demonstrate a shift from a pro-inflammatory to a tissue-reparative phenotype, and exhibit increased phagocytic capacity as compared to WT. Finally, Cebpb ΔM macrophages down-regulate Notch2 and Notch3, which normally promote stem cell expansion during alveolar budding. These results suggest that C/EBPß is an important macrophage factor that facilitates macrophage-epithelial crosstalk during a key stage of mammary gland tissue homeostasis.
Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Ciclo Estral , Macrófagos , Glândulas Mamárias Animais , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Feminino , Camundongos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Macrófagos/metabolismo , Ciclo Estral/genética , Camundongos Knockout , Receptores Notch/metabolismo , Receptores Notch/genética , Células Epiteliais/metabolismo , Fagocitose/genética , Camundongos Endogâmicos C57BL , Deleção de GenesRESUMO
Septic cardiomyopathy (SCM) is characterized by an abnormal inflammatory response and increased mortality. The role of efferocytosis in SCM is not well understood. We used integrated multi-omics analysis to explore the clinical and genetic roles of efferocytosis in SCM. We identified six module genes (ATP11C, CD36, CEBPB, MAPK3, MAPKAPK2, PECAM1) strongly associated with SCM, leading to an accurate predictive model. Subgroups defined by EFFscore exhibited distinct clinical features and immune infiltration levels. Survival analysis showed that the C1 subtype with a lower EFFscore had better survival outcomes. scRNA-seq analysis of peripheral blood mononuclear cells (PBMCs) from sepsis patients identified four genes (CEBPB, CD36, PECAM1, MAPKAPK2) associated with high EFFscores, highlighting their role in SCM. Molecular docking confirmed interactions between diagnostic genes and tamibarotene. Experimental validation supported our computational results. In conclusion, our study identifies a novel efferocytosis-related SCM subtype and diagnostic biomarkers, offering new insights for clinical diagnosis and therapy.
Assuntos
Biomarcadores , Cardiomiopatias , Aprendizado de Máquina , Fagocitose , Sepse , Humanos , Cardiomiopatias/genética , Cardiomiopatias/diagnóstico , Prognóstico , Masculino , Sepse/genética , Sepse/diagnóstico , Fagocitose/genética , Feminino , Pessoa de Meia-Idade , Leucócitos Mononucleares/metabolismo , Idoso , Simulação de Acoplamento Molecular , Eferocitose , MultiômicaRESUMO
Aim: Despite the significant therapeutic outcomes achieved in systemic treatments for liver hepatocellular carcinoma (LIHC), it is an objective reality that only a low proportion of patients exhibit an improved objective response rate (ORR) to current immunotherapies. Antibody-dependent cellular phagocytosis (ADCP) immunotherapy is considered the new engine for precision immunotherapy. Based on this, we aim to develop an ADCP-based LIHC risk stratification system and screen for relevant targets. Method: Utilizing a combination of single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data, we screened for ADCP modulating factors in LIHC and identified differentially expressed genes along with their involved functional pathways. A risk scoring model was established by identifying ADCP-related genes with prognostic value through LASSO Cox regression analysis. The risk scoring model was then subjected to evaluations of immune infiltration and immunotherapy relevance, with pan-cancer analysis and in vitro experimental studies conducted on key targets. Results: Building on the research by Kamber RA et al., we identified GYPA, CLDN18, and IRX5 as potential key target genes regulating ADCP in LIHC. These genes demonstrated significant correlations with immune infiltration cells, such as M1-type macrophages, and the effectiveness of immunotherapy in LIHC, as well as a close association with clinical pathological staging and patient prognosis. Pan-cancer analysis revealed that CLDN18 was prognostically and immunologically relevant across multiple types of cancer. Validation through tissue and cell samples confirmed that GYPA and CLDN18 were upregulated in liver cancer tissues and cells. Furthermore, in vitro knockdown of CLDN18 inhibited the malignancy capabilities of liver cancer cells. Conclusion: We have identified an ADCP signature in LIHC comprising three genes. Analysis based on a risk scoring model derived from these three genes, coupled with subsequent experimental validation, confirmed the pivotal role of M1-type macrophages in ADCP within LIHC, establishing CLDN18 as a critical ADCP regulatory target in LIHC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA-Seq , Feminino , Humanos , Masculino , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Claudinas/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Imunoterapia/métodos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Fagocitose/genética , Prognóstico , Análise da Expressão Gênica de Célula Única , Microambiente Tumoral/imunologia , Microambiente Tumoral/genéticaRESUMO
CD24 is overexpressed in various tumours and considered a regulator of cell migration, invasion, and proliferation. Recent studies have found that CD24 on ovarian cancer (OC) and triple-negative breast cancer cells interacts with the inhibitory receptor sialic-acid-binding Ig-like lectin 10 (Siglec-10) on tumour-associated macrophages (TAMs) to inhibit phagocytosis by macrophages. Because of its multiple roles in regulating the immune response and tumorigenesis, CD24 is a very promising therapeutic target. However, the regulatory mechanism of CD24 in OC remains unclear. Here, we found that the long noncoding RNA (lncRNA) IL21-AS1, which was upregulated in OC, inhibited macrophage-mediated phagocytosis and promoted OC cell proliferation and apoptosis inhibition. More importantly, after IL21-AS1 knockdown, a significant survival advantage was observed in mice engrafted with tumours. Mechanistically, we identified IL21-AS1 as a hypoxia-induced lncRNA. Moreover, IL21-AS1 increased HIF1α-induced CD24 expression under hypoxic conditions. In parallel, we found that IL21-AS1 acted as a competing endogenous RNA (ceRNA) for miR-561-5p to regulate CD24 expression. Finally, IL21-AS1 increased CD24 expression in OC and facilitated OC progression. Our findings provide a molecular basis for the regulation of CD24, thus highlighting a potential strategy for targeted treatment of OC.
Assuntos
Antígeno CD24 , Carcinogênese , Neoplasias Ovarianas , Fagocitose , RNA Longo não Codificante , Antígeno CD24/metabolismo , Antígeno CD24/genética , Feminino , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Fagocitose/genética , Animais , Camundongos , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Progressão da Doença , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , MicroRNAs/genética , Camundongos Nus , Apoptose/genética , Camundongos Endogâmicos BALB C , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genéticaRESUMO
Tuberculosis (TB) is a major fatal infectious disease globally, exhibiting high morbidity rates and impacting public health and other socio-economic factors. However, some individuals are resistant to TB infection and are referred to as "Resisters". Resisters remain uninfected even after exposure to high load of Mycobacterium tuberculosis (Mtb). To delineate this further, this study aimed to investigate the factors and mechanisms influencing the Mtb resistance phenotype. We assayed the phagocytic capacity of peripheral blood mononuclear cells (PBMCs) collected from Resisters, patients with latent TB infection (LTBI), and patients with active TB (ATB), following infection with fluorescent Mycobacterium bovis Bacillus Calmette-Guérin (BCG). Phagocytosis was stronger in PBMCs from ATB patients, and comparable in LTBI patients and Resisters. Subsequently, phagocytes were isolated and subjected to whole transcriptome sequencing and small RNA sequencing to analyze transcriptional expression profiles and identify potential targets associated with the resistance phenotype. The results revealed that a total of 277 mRNAs, 589 long non-coding RNAs, 523 circular RNAs, and 35 microRNAs were differentially expressed in Resisters and LTBI patients. Further, the endogenous competitive RNA (ceRNA) network was constructed from differentially expressed genes after screening. Bioinformatics, statistical analysis, and quantitative real-time polymerase chain reaction were used for the identification and validation of potential crucial targets in the ceRNA network. As a result, we obtained a ceRNA network that contributes to the resistance phenotype. TCONS_00034796-F3, ENST00000629441-DDX43, hsa-ATAD3A_0003-CYP17A1, and XR_932996.2-CERS1 may be crucial association pairs for resistance to TB infection. Overall, this study demonstrated that the phagocytic capacity of PBMCs was not a determinant of the resistance phenotype and that some non-coding RNAs could be involved in the natural resistance to TB infection through a ceRNA mechanism.
Assuntos
Leucócitos Mononucleares , MicroRNAs , Mycobacterium tuberculosis , Fagócitos , Fagocitose , Tuberculose , Humanos , Fagócitos/metabolismo , Fagócitos/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Tuberculose/genética , Tuberculose/microbiologia , Tuberculose/imunologia , Fagocitose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Masculino , Adulto , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Feminino , Transcriptoma/genética , Tuberculose Latente/genética , Tuberculose Latente/imunologia , Tuberculose Latente/microbiologia , Resistência à Doença/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mycobacterium bovis/imunologia , Pessoa de Meia-Idade , Biologia Computacional/métodos , Adulto Jovem , RNA Endógeno CompetitivoRESUMO
Smad4, a critical mediator of TGF-ß signaling, plays a pivotal role in regulating various cellular functions, including immune responses. In this study, we investigated the impact of Smad4 knockout specifically in macrophages on anti-tumor immunity, focusing on lung metastasis of B16 melanoma cells. Using a mouse model with Smad4 knockout in macrophages established via Lyz2-cre mice and Smad4 flox/flox mice, we demonstrated a significant inhibition of B16 metastasis in the lungs. Interestingly, the inhibition of tumor growth was found to be independent of adaptive immunity, as no significant changes were observed in the numbers or activities of T cells, B cells, or NK cells. Instead, Smad4 knockout led to the emergence of an MCHIIlow CD206high subset of lung interstitial macrophages, characterized by enhanced phagocytosis function. Our findings highlight the crucial role of Smad4 in modulating the innate immune response against tumors and provide insights into potential therapeutic strategies targeting lung interstitial macrophages to enhance anti-tumor immunity.
Assuntos
Neoplasias Pulmonares , Melanoma Experimental , Fagocitose , Proteína Smad4 , Animais , Camundongos , Linhagem Celular Tumoral , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , Melanoma Experimental/patologia , Melanoma Experimental/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose/genética , Proteína Smad4/deficiência , Proteína Smad4/genética , Proteína Smad4/metabolismoRESUMO
Microglia play a pivotal role in the pathology of Alzheimer's Disease (AD), with the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) central to their neuroprotective functions. The R47H variant of TREM2 has emerged as a significant genetic risk factor for AD, leading to a loss-of-function phenotype in mouse AD models. This study elucidates the roles of TREM2 in human microglia-like HMC3 cells and the regulation of these functions by SH2-containing inositol-5'-phosphatase 1 (SHIP1). Using stable cell lines expressing wild-type TREM2, the R47H variant, and TREM2-deficient lines, we found that functional TREM2 is essential for the phagocytosis of Aß, lysosomal capacity, and mitochondrial activity. Notably, the R47H variant displayed increased phagocytic activity towards apoptotic neurons. Introducing SHIP1, known to modulate TREM2 signaling in other cells, revealed its role as a negative regulator of these TREM2-mediated functions. Moreover, pharmacological inhibition of both SHIP1 and its isoform SHIP2 amplified Aß phagocytosis and lysosomal capacity, independently of TREM2 or SHIP1 expression, suggesting a potential regulatory role for SHIP2 in these functions. The absence of TREM2, combined with the presence of both SHIP isoforms, suppressed mitochondrial activity. However, pan-SHIP1/2 inhibition enhanced mitochondrial function in these cells. In summary, our findings offer a deeper understanding of the relationship between TREM2 variants and SHIP1 in microglial functions, and emphasize the therapeutic potential of targeting the TREM2 and SHIP1 pathways in microglia for neurodegenerative diseases.
Assuntos
Glicoproteínas de Membrana , Microglia , Fagocitose , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Receptores Imunológicos , Animais , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Apoptose/genética , Linhagem Celular , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Microglia/metabolismo , Mitocôndrias/metabolismo , Fagocitose/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Transdução de SinaisRESUMO
Macrophages are central innate immune cells whose function declines with age. The molecular mechanisms underlying age-related changes remain poorly understood, particularly in human macrophages. We report a substantial reduction in phagocytosis, migration, and chemotaxis in human monocyte-derived macrophages (MDMs) from older (>50 years old) compared with younger (18-30 years old) donors, alongside downregulation of transcription factors MYC and USF1. In MDMs from young donors, knockdown of MYC or USF1 decreases phagocytosis and chemotaxis and alters the expression of associated genes, alongside adhesion and extracellular matrix remodeling. A concordant dysregulation of MYC and USF1 target genes is also seen in MDMs from older donors. Furthermore, older age and loss of either MYC or USF1 in MDMs leads to an increased cell size, altered morphology, and reduced actin content. Together, these results define MYC and USF1 as key drivers of MDM age-related functional decline and identify downstream targets to improve macrophage function in aging.
Assuntos
Envelhecimento , Macrófagos , Fagocitose , Proteínas Proto-Oncogênicas c-myc , Fatores Estimuladores Upstream , Humanos , Macrófagos/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Adulto , Fatores Estimuladores Upstream/metabolismo , Fatores Estimuladores Upstream/genética , Pessoa de Meia-Idade , Adolescente , Fagocitose/genética , Adulto Jovem , Transcrição Gênica , Idoso , Quimiotaxia/genéticaRESUMO
BACKGROUND: Diabetic foot ulcers (DFUs) pose a serious long-term threat because of elevated mortality and disability risks. Research on its biomarkers is still, however, very limited. In this paper, we have effectively identified biomarkers linked with macrophage excretion in diabetic foot ulcers through the application of bioinformatics and machine learning methodologies. These findings were subsequently validated using external datasets and animal experiments. Such discoveries are anticipated to offer novel insights and approaches for the early diagnosis and treatment of DFU. METHODS: In this work, we used the Gene Expression Omnibus (GEO) database's datasets GSE68183 and GSE80178 as the training dataset to build a gene model using machine learning methods. After that, we used the training and validation sets to validate the model (GSE134431). On the model genes, we performed enrichment analysis using both gene set variant analysis (GSVA) and gene set enrichment analysis (GSEA). Additionally, the model genes were subjected to immunological association and immune function analyses. RESULTS: In this study, PROS1 was identified as a potential key target associated with macrophage efflux in DFU by machine learning and bioinformatics approaches. Subsequently, the key biomarker status of PROS1 in DFU was also confirmed by external datasets. In addition, PROS1 also plays a key role in macrophage exudation in DFU. This gene may be associated with macrophage M1, CD4 memory T cells, naïve B cells, and macrophage M2, and affects IL-17, Rap1, hedgehog, and JAK-STAT signaling pathways. CONCLUSIONS: PROS1 was identified and validated as a biomarker for DFU. This finding has the potential to provide a target for macrophage clearance of DFU.
Assuntos
Pé Diabético , Aprendizado de Máquina , Macrófagos , Proteína S , Humanos , Biomarcadores/metabolismo , Biologia Computacional , Pé Diabético/genética , Pé Diabético/metabolismo , Eferocitose , Macrófagos/metabolismo , Fagocitose/genética , Proteína S/genéticaRESUMO
Macrophage activation syndrome (MAS) is a life-threatening complication of systemic juvenile arthritis, accompanied by cytokine storm and hemophagocytosis. In addition, COVID-19-related hyperinflammation shares clinical features of MAS. Mechanisms that activate macrophages in MAS remain unclear. Here, we identify the role of miRNA in increased phagocytosis and interleukin-12 (IL-12) production by macrophages in a murine model of MAS. MAS significantly increased F4/80+ macrophages and phagocytosis in the mouse liver. Gene expression profile revealed the induction of Fcγ receptor-mediated phagocytosis (FGRP) and IL-12 production in the liver. Phagocytosis pathways such as High-affinity IgE receptor is known as Fc epsilon RI -signaling and pattern recognition receptors involved in the recognition of bacteria and viruses and phagosome formation were also significantly upregulated. In MAS, miR-136-5p and miR-501-3p targeted and caused increased expression of Fcgr3, Fcgr4, and Fcgr1 genes in FGRP pathway and consequent increase in phagocytosis by macrophages, whereas miR-129-1-3p and miR-150-3p targeted and induced Il-12. Transcriptome analysis of patients with MAS revealed the upregulation of FGRP and FCGR gene expression. A target analysis of gene expression data from a patient with MAS discovered that miR-136-5p targets FCGR2A and FCGR3A/3B, the human orthologs of mouse Fcgr3 and Fcgr4, and miR-501-3p targets FCGR1A, the human ortholog of mouse Fcgr1. Together, we demonstrate the novel role of miRNAs during MAS pathogenesis, thereby suggesting miRNA mimic-based therapy to control the hyperactivation of macrophages in patients with MAS as well as use overexpression of FCGR genes as a marker for MAS classification.
Assuntos
Síndrome de Ativação Macrofágica , MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores de IgG/genética , Síndrome de Ativação Macrofágica/genética , Fagocitose/genética , Interleucina-12RESUMO
BACKGROUND: Variants in ABCA7, a member of the ABC transporter superfamily, have been associated with increased risk for developing late onset Alzheimer's disease (LOAD). METHODS: CRISPR-Cas9 was used to generate an Abca7V1613M variant in mice, modeling the homologous human ABCA7V1599M variant, and extensive characterization was performed. RESULTS: Abca7V1613M microglia show differential gene expression profiles upon lipopolysaccharide challenge and increased phagocytic capacity. Homozygous Abca7V1613M mice display elevated circulating cholesterol and altered brain lipid composition. When crossed with 5xFAD mice, homozygous Abca7V1613M mice display fewer Thioflavin S-positive plaques, decreased amyloid beta (Aß) peptides, and altered amyloid precursor protein processing and trafficking. They also exhibit reduced Aß-associated inflammation, gliosis, and neuronal damage. DISCUSSION: Overall, homozygosity for the Abca7V1613M variant influences phagocytosis, response to inflammation, lipid metabolism, Aß pathology, and neuronal damage in mice. This variant may confer a gain of function and offer a protective effect against Alzheimer's disease-related pathology. HIGHLIGHTS: ABCA7 recognized as a top 10 risk gene for developing Alzheimer's disease. Loss of function mutations result in increased risk for LOAD. V1613M variant reduces amyloid beta plaque burden in 5xFAD mice. V1613M variant modulates APP processing and trafficking in 5xFAD mice. V1613M variant reduces amyloid beta-associated damage in 5xFAD mice.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos Transgênicos , Placa Amiloide , Animais , Camundongos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Placa Amiloide/patologia , Placa Amiloide/genética , Placa Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Modelos Animais de Doenças , Humanos , Encéfalo/patologia , Encéfalo/metabolismo , Microglia/metabolismo , Microglia/patologia , Fagocitose/genética , Precursor de Proteína beta-Amiloide/genéticaRESUMO
The retinal pigment epithelium (RPE) maintains photoreceptor viability and function, completes the visual cycle, and forms the outer blood-retinal barrier (oBRB). Loss of RPE function gives rise to several monogenic retinal dystrophies and contributes to age-related macular degeneration. Retinal detachment (RD) causes separation of the neurosensory retina from the underlying RPE, disrupting the functional and metabolic relationships between these layers. Although the retinal response to RD is highly studied, little is known about how the RPE responds to loss of this interaction. RNA sequencing (RNA-Seq) was used to compare normal and detached RPE in the C57BL6/J mouse. The naïve mouse RPE transcriptome was compared to previously published RPE signature gene lists and from the union of these 14 genes (Bmp4, Crim1, Degs1, Gja1, Itgav, Mfap3l, Pdpn, Ptgds, Rbp1, Rnf13, Rpe65, Slc4a2, Sulf1 and Ttr) representing a core signature gene set applicable across rodent and human RPE was derived. Gene ontology enrichment analysis (GOEA) of the mouse RPE transcriptome identified expected RPE features and functions, such as pigmentation, phagocytosis, lysosomal and proteasomal degradation of proteins, and barrier function. Differentially expressed genes (DEG) at 1 and 7 days post retinal detachment (dprd) were defined as mRNA with a significant (padj≤0.05) fold change (FC) of 0.67 ≥ FC ≥ 1.5 in detached versus naïve RPE. The RPE transcriptome exhibited dramatic changes at 1 dprd, with 2297 DEG identified. The KEGG pathways and biological process GO groups related to innate immune responses were significantly enriched. Lipocalin 2 (Lcn2) and several chemokines were upregulated, while numerous genes related to RPE functions, such as pigment synthesis, visual cycle, phagocytosis, and tight junctions were downregulated at 1 dprd. The response was largely transient, with only 18 significant DEG identified at 7 dprd, including upregulation of complement gene C4b. Validation studies confirmed RNA-Seq results. Thus, the RPE quickly downregulates cell-specific functions and mounts an innate immune defense response following RD. Our data demonstrate that the RPE contributes to the inflammatory response to RD and may play a role in attraction of immune cells to the subretinal space.
Assuntos
Degeneração Macular , Descolamento Retiniano , Camundongos , Animais , Humanos , Epitélio Pigmentado da Retina/metabolismo , Descolamento Retiniano/metabolismo , Retina/metabolismo , Degeneração Macular/metabolismo , Fagocitose/genética , Receptores de Proteínas Morfogenéticas Ósseas/metabolismoRESUMO
CD47 is a ligand of SIRPα, an inhibitory receptor expressed by macrophages, dendritic cells, and natural killer (NK) cells, and, therefore, transgenic overexpression of CD47 is considered an effective approach to inhibiting transplant rejection. However, the detrimental effect of CD47 signaling is overlooked when exploring this approach. Here, we construct a mutant CD47 by replacing the transmembrane and intracellular domains with a membrane anchor (CD47-IgV). In both human and mouse cells, CD47-IgV is efficiently expressed on the cell surface and protects against phagocytosis in vitro and in vivo but does not induce cell death or inhibit angiogenesis. Furthermore, hematopoietic stem cells expressing transgenic CD47-IgV show no detectable alterations in engraftment or differentiation. This study provides a potentially effective means of achieving transgenic CD47 expression that may help to produce gene-edited pigs for xenotransplantation and hypoimmunogenic pluripotent stem cells for regenerative medicine.