Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Ethnopharmacol ; 308: 116217, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36758914

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Polygonum multiflorum Radix (PMR) is the dried root tuber of Polygonum multiflorum Thunb., which has been used in the clinic for a variety of pharmacological activities. However, Polygonum multiflorum Radix-induced liver injury (PMR-ILI) has been reported in recent years, which has limited its clinical use to some extent. The occurrence of PMR-ILI is not universal, so finding the different metabolic characteristics between PMR-ILI and Polygonum multiflorum Radix-tolerance group (PMR-T) is very important for the PMR rational clinical application and PMR-ILI early clinical diagnosis. METHODS: In this study, 6 clinical plasma samples of PMR-ILI and 13 PMR-T were collected and analyzed by high-resolution liquid chromatography-mass spectrometry. Firstly, the differential metabolites of the two groups were screened by conventional screening methods such as multivariate statistical analysis. Secondly, the characteristic metabolites with greater contribution, correlation with liver injury and high sensitivity were screened by correlation analysis with clinical liver injury indicators, random forest analysis, and receiver operating characteristic curve (ROC). RESULTS: After multivariate statistical analysis and screening analysis, 29 differential metabolites were identified. Compared with PMR-T group, the metabolism of glycerol and phospholipid, glutamine and glutamate, phenylalanine, sphingolipid and tryptophan in PMR-ILI group were disturbed. After correlation analysis with liver injury indexes and random forest screening, 8 potential biomarkers closely related to clinical liver injury were obtained. Finally, 3 potential biomarkers with high expression in PMR-ILI, hypoxanthine, LysoPC(P-16:0/0:0) and taurochenodesoxycholic acid, were screened out through the analysis of ROC, which can provide a basis for the early clinical diagnosis. CONCLUSION: Based on the analysis of the PMR-ILI and PMR-T plasma samples by LC-MS, three biomarkers of clinical liver injury of Polygonum multiflorum Radix were selected: hypoxanthine, LysoPC(P-16:0/0:0) and taurochenodeoxycholic acid.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Fallopia multiflora , Programas de Rastreamento , Humanos , Biomarcadores/sangue , Doença Hepática Crônica Induzida por Substâncias e Drogas/diagnóstico , Fallopia multiflora/toxicidade , Programas de Rastreamento/métodos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso
2.
J Ethnopharmacol ; 298: 115630, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35987407

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The liver toxicity of Reynoutria multiflora (Thunb.) Moldenke. (Polygonaceae) (Polygonum multiflorum Thunb, PM) has always attracted much attention, but the related toxicity materials and mechanisms have not been elucidated due to multi-component and multi-target characteristics. In previous hepatotoxicity screening, different components of PM were first evaluated and the hepatotoxicity of component D [95% ethanol (EtOH) elution] in a 70% EtOH extract of PM (PM-D) showed the highest hepatotoxicity. Furthermore, the main components of PM-D were identified and their hepatotoxicity was evaluated based on a zebrafish embryo model. However, the hepatotoxicity mechanism of PM-D is unknown. AIM OF THE STUDY: This work is to explore the hepatotoxicity mechanisms of PM-D by integrating network toxicology and spatially resolved metabolomics strategy. MATERIALS AND METHODS: A hepatotoxicity interaction network of PM-D was constructed based on toxicity target prediction for eight key toxic ingredients and a hepatotoxicity target collection. Then the key signaling pathways were enriched, and molecular docking verification was implemented to evaluate the ability of toxic ingredients to bind to the core targets. The pathological changes of liver tissues and serum biochemical assays of mice were used to evaluate the liver injury effect of mice with oral administration of PM-D. Furthermore, spatially resolved metabolomics was used to visualize significant differences in metabolic profiles in mice after drug administration, to screen hepatotoxicity-related biomarkers and analyze metabolic pathways. RESULTS: The contents of four key toxic compounds in PM-D were detected. Network toxicology identified 30 potential targets of liver toxicity of PM-D. GO and KEGG enrichment analyses indicated that the hepatotoxicity of PM-D involved multiple biological activities, including cellular response to endogenous stimulus, organonitrogen compound metabolic process, regulation of the apoptotic process, regulation of kinase, regulation of reactive oxygen species metabolic process and signaling pathways including PI3K-Akt, AMPK, MAPK, mTOR, Ras and HIF-1. The molecular docking confirmed the high binding activity of 8 key toxic ingredients with 10 core targets, including mTOR, PIK3CA, AKT1, and EGFR. The high distribution of metabolites of PM-D in the liver of administrated mice was recognized by mass spectrometry imaging. Spatially resolved metabolomics results revealed significant changes in metabolic profiles after PM-D administration, and metabolites such as taurine, taurocholic acid, adenosine, and acyl-carnitines were associated with PM-D-induced liver injury. Enrichment analyses of metabolic pathways revealed tht linolenic acid and linoleic acid metabolism, carnitine synthesis, oxidation of branched-chain fatty acids, and six other metabolic pathways were significantly changed. Comprehensive analysis revealed that the hepatotoxicity caused by PM-D was closely related to cholestasis, mitochondrial damage, oxidative stress and energy metabolism, and lipid metabolism disorders. CONCLUSIONS: In this study, the hepatotoxicity mechanisms of PM-D were comprehensively identified through an integrated spatially resolved metabolomics and network toxicology strategy, providing a theoretical foundation for the toxicity mechanisms of PM and its safe clinical application.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fallopia multiflora , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fallopia multiflora/química , Fallopia multiflora/toxicidade , Metabolômica , Camundongos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Serina-Treonina Quinases TOR , Peixe-Zebra
3.
Zhonghua Gan Zang Bing Za Zhi ; 29(11): 1106-1108, 2021 Nov 20.
Artigo em Chinês | MEDLINE | ID: mdl-34933431

RESUMO

In order to verify the correlation between Polygonum multiflorum-induced liver injury and HLA-B*35 : 01 alleles, six hospitalized patients diagnosed with Polygonum multiflorum-induced liver injury (PM-DILI) were selected, and their clinicopathological data were collected. Simultaneously, blood HLA-B* 35 : 01 allele detection was performed. Among the six PM-DILI cases, 4 were male, aged 38.83 ± 10.13 years old. The types of liver injury were hepatocellular injury types in all, and the severity of liver injury in five cases was grade 3. The histological presentations were acute hepatitis and acute cholestatic hepatitis. PM-DILI cases were all HLA-B*35:01 carriers, with a carrier rate of 100%. This finding indicates that PM-DILI is significantly correlated with HLA-B*35:01 alleles. Therefore, HLA-B*35 : 01 alleles can be used as an important predictive indicator for PM-DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fallopia multiflora , Antígenos HLA-B , Preparações de Plantas/toxicidade , Adulto , Alelos , Doença Hepática Induzida por Substâncias e Drogas/genética , Fallopia multiflora/toxicidade , Feminino , Antígenos HLA-B/genética , Humanos , Masculino , Pessoa de Meia-Idade
4.
J Ethnopharmacol ; 270: 113845, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33485974

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Polygoni Multiflori Radix, the dried root of Polygonum multiflorum Thunb., and its processed products have been used as restoratives for centuries in China. However, the reports of Polygoni Multiflori Radix-induced liver injury (PMR-ILI) have received wide attention in recent years, and the components and mechanism of PMR-ILI are not completely clear yet. Our previous studies found that the PMR-ILI was related to the down-regulation of some drug metabolism enzymes (DME). AIM OF THE STUDY: To explore the effect of the inhibition of CYP3A4 or UGT1A1 on PMR-ILI, screen the relevant hepatotoxic components and unveil its mechanism. METHODS: RT-qPCR was used to detect the effects of water extract of Polygoni Multiflori Radix (PMR) and its main components on the mRNA expression of CYP3A4 and UGT1A1 in human hepatic parenchyma cell line L02. High-performance liquid chromatography (HPLC) was employed to detect the content of major components in the PMR. And then, the stable CYP3A4 or UGT1A1 knockdown cells were generated using short hairpin RNAs (shRNA) in L02 and HepaRG cells. Hepatotoxic components were identified by cell viability assay when PMR and its four representative components, 2,3,5,4'-tetrahydroxy stilbene glycoside (TSG), emodin (EM), emodin-8-O-ß-D-glucoside (EG), and gallic acid (GA), acted on CYP3A4 or UGT1A1 knockdown cell lines. The PMR-ILI mechanism of oxidative stress injury and apoptosis in L02 and HepaRG cells were detected by flow cytometry. Finally, the network toxicology prediction analysis was employed to excavate the targets of its possible toxic components and the influence on the metabolic pathway. RESULTS: PMR and EM significantly inhibited the mRNA expression of CYP3A4 and UGT1A1 in L02 cells, while TSG and GA activated the mRNA expression of CYP3A4 and UGT1A1, and EG activated CYP3A4 expression while inhibited UGT1A1 expression. The contents of TSG, EG, EM and GA were 34.93 mg/g, 1.39 mg/g, 0.43 mg/g and 0.44 mg/g, respectively. The CYP3A4 or UGT1A1 knockdown cells were successfully constructed in both L02 and HepaRG cells. Low expression of CYP3A4 or UGT1A1 increased PMR cytotoxicity remarkably. Same as PMR, the toxicity of EM and GA increased in shCYP3A4 and shUGT1A1 cells, which suggested EM and GA may be the main components of hepatotoxicity in PMR. Besides, EM not only inhibited the expression of metabolic enzymes but also reduced the cytotoxicity threshold. EM and GA affected the level of ROS, mitochondrial membrane potential, Ca2+ concentration, and dose-dependent induced hepatocyte apoptosis in L02 and HepaRG cells. The network toxicology analysis showed that PMR-ILI was related to drug metabolism-cytochrome P450, glutathione metabolism, and steroid hormone biosynthesis. CONCLUSION: The inhibition of mRNA expression of CYP3A4 or UGT1A1 enhanced hepatotoxicity of PMR. EM and GA, especially EM, may be the main hepatotoxic components in PMR. The mechanism of PMR, EM and GA induced hepatotoxicity was proved to be related to elevated levels of ROS, mitochondrial membrane potential, Ca2+ concentration, and induction of apoptosis in liver cells.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocromo P-450 CYP3A/genética , Medicamentos de Ervas Chinesas/toxicidade , Fallopia multiflora/toxicidade , Glucuronosiltransferase/genética , Raízes de Plantas/toxicidade , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocromo P-450 CYP3A/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Fallopia multiflora/química , Técnicas de Silenciamento de Genes , Glucuronosiltransferase/efeitos dos fármacos , Hepatócitos/enzimologia , Humanos , Metaloproteinases da Matriz/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/química , Mapas de Interação de Proteínas/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo
5.
Acta Pharmacol Sin ; 42(1): 27-35, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32123300

RESUMO

Herbal and dietary supplements (HDS)-induced liver injury has been a great concern all over the world. Polygonum multiflorum Thunb., a well-known Chinese herbal medicine, is recently drawn increasing attention because of its hepatotoxicity. According to the clinical and experimental studies, P. multiflorum-induced liver injury (PM-DILI) is considered to be immune-mediated idiosyncratic liver injury, but the role of immune response and the underlying mechanisms are not completely elucidated. Previous studies focused on the direct toxicity of PM-DILI by using animal models with intrinsic drug-induced liver injury (DILI). However, most epidemiological and clinical evidence demonstrate that PM-DILI is immune-mediated idiosyncratic liver injury. The aim of this review is to assess current epidemiological, clinical and experimental evidence about the possible role of innate and adaptive immunity in the idiosyncratic hepatotoxicity of P. multiflorum. The potential effects of factors associated with immune tolerance, including immune checkpoint molecules and regulatory immune cells on the individual's susceptibility to PM-DILI are also discussed. We conclude by giving our hypothesis of possible immune mechanisms of PM-DILI and providing suggestions for future studies on valuable biomarkers identification and proper immune models establishment.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Medicamentos de Ervas Chinesas/efeitos adversos , Fallopia multiflora/efeitos adversos , Imunidade Inata/efeitos dos fármacos , Fígado/efeitos dos fármacos , Imunidade Adaptativa/genética , Animais , Povo Asiático , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/toxicidade , Fallopia multiflora/toxicidade , Antígeno HLA-B35/genética , Humanos , Tolerância Imunológica/fisiologia , Lipopolissacarídeos/toxicidade
6.
J Ethnopharmacol ; 261: 113121, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32693115

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Polygonum multiflorum (Thunb.) (PMT) is a member of Polygonaceae. Traditional Chinese medicine considers that the processed PMT can tonify liver, nourish blood and blacken hair. In recent years, the processed PMT and its active ingredients have significant therapeutic effects on nonalcoholic fatty liver disease, alcoholic fatty liver disease, viral hepatitis, liver fibrosis and liver cancer. AIM OF THE STUDY: The main purpose of this review is to provide a critical appraisal of the existing knowledge on the clinical application, hepatoprotective pharmacology and hepatotoxicity, it provides a comprehensive evaluation of the liver function of the processed PMT. MATERIALS AND METHODS: A detailed literature search was conducted using various online search engines, such as Pubmed, Google Scholar, Mendeley, Web of Science and China National Knowledge Infrastructure (CNKI) database. The main active components of the processed PMT and the important factors in the occurrence and development of liver diseases are used as key words to carry out detailed literature retrieval. RESULTS: In animal and cell models, the processed PMT and active components can treat various liver diseases, such as fatty liver induced by high-fat diet, liver injury and fibrosis induced by drugs, viral transfected hepatitis, hepatocellular carcinoma, etc. They can protect liver by regulating lipid metabolism related enzymes, resisting insulin resistance, decreasing the expression of inflammatory cytokines, inhibiting the activation of hepatic stellate cells, reducing generation of extracellular matrix, promoting cancer cell apoptosis and controlling the growth of tumor cells, etc. However, improperly using of the processed PMT can cause liver injury, which is associated with the standardization of processing, the constitution of the patients, the characteristics of the disease, and the administration of dosage and time. CONCLUSION: The processed PMT can treat various liver diseases via reasonably using, and the active compounds (2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucoside, emodin, physcion, etc.) are promising candidate drugs for developing new liver protective agents. However, some components have a "toxic-effective" bidirectional effect, which should be used cautiously.


Assuntos
Fallopia multiflora , Hepatopatias/prevenção & controle , Fígado/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Animais , Fallopia multiflora/química , Fallopia multiflora/toxicidade , Humanos , Fígado/metabolismo , Fígado/patologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Substâncias Protetoras/isolamento & purificação , Substâncias Protetoras/toxicidade
7.
J Pharm Biomed Anal ; 172: 149-166, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31048141

RESUMO

Dianthrone derivatives are minor constituents of Polygonum multiflorum Thunb. (PM). These derivatives are potential hepatotoxic components in PM. Fraction D6 contains many dianthrone derivatives and was successfully enriched using an efficient three-step approach. An effective and reliable high-performance liquid chromatography (HPLC) technique coupled with ultraviolet detection (UV) and a linear ion trap FT-ICR hybrid mass spectrometry (HPLC-UV/LTQ-FT-ICR-MS) method were successfully developed to separate and identify the dianthrones of the fraction D6. The characteristic diagnostic fragment ions and characteristic fragmentation pathway of the seven dianthrone standards, namely, Polygonumnolide B1 (S1), Polygonumnolide C3 (S2), Polygonumnolide C2 (S3), Polygonumnolide E (S4), Polygonumnolide A1 (S5), Polygonumnolide A2 (S6) and cis-emodin dianthrones (S7), were compared with unknown compounds in fraction D6, and 45 dianthrone derivatives were characterized or tentatively identified. Of these derivatives, 32 new dianthrone derivatives were tentatively characterized in PM. Therefore, LTQ-FT-ICR-MS combined with a selective enrichment method provided a powerful means for analyzing dianthrone derivatives. This study provides a meaningful basis for correcting some mistakes in previous studies, as well as further quality control and pharmacological and toxicological research.


Assuntos
Antracenos/análise , Medicamentos de Ervas Chinesas/análise , Fallopia multiflora/química , Glicosídeos/análise , Antracenos/toxicidade , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/normas , Medicamentos de Ervas Chinesas/toxicidade , Fallopia multiflora/toxicidade , Cromatografia Gasosa-Espectrometria de Massas , Glicosídeos/toxicidade , Raízes de Plantas/química , Raízes de Plantas/toxicidade , Controle de Qualidade
8.
Hepatology ; 70(1): 346-357, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30985007

RESUMO

Polygonum multiflorum (PM) is a well-known Chinese herbal medicine that has been reported to induce inflammation-associated idiosyncratic liver injury. This study aimed to identify the genetic basis of susceptibility to PM-drug-induced liver injury (PM-DILI) and to develop biological markers for predicting the risk of PM-DILI in humans. The major histocompatibility complex (MHC) regions of 11 patients with PM-DILI were sequenced, and all human leukocyte antigen (HLA)-type frequencies were compared to the Han-MHC database. An independent replication study that included 15 patients with PM-DILI, 33 patients with other DILI, and 99 population controls was performed to validate the candidate allele by HLA-B PCR sequence-based typing. A prospective cohort study that included 72 outpatients receiving PM for 4 weeks was designed to determine the influence of the risk allele on PM-DILI. In the pilot study, the frequency of HLA-B*35:01 was 45.4% in PM-DILI patients compared with 2.7% in the Han Chinese population (odds ratio [OR], 30.4; 95% confidence interval [CI], 11.7-77.8; P = 1.9 × 10-10 ). In the independent replication study and combined analyses, a logistic regression model confirmed that HLA-B*35:01 is a high-risk allele of PM-DILI (PM-DILI versus other DILI, OR, 86.5; 95% CI, 14.2-527.8, P = 1.0 × 10-6 ; and PM-DILI versus population controls, OR, 143.9; 95% CI, 30.1-687.5, P = 4.8 × 10-10 ). In the prospective cohort study, an asymptomatic increase in transaminase levels was diagnosed in 6 patients, representing a significantly higher incidence (relative risk, 8.0; 95% CI, 1.9-33.2; P < 0.02) in the HLA-B*35:01 carriers (37.5%) than in the noncarriers (4.7%). Conclusion: The HLA-B*35:01 allele is a genetic risk factor for PM-DILI and a potential biomarker for predicting PM-DILI in humans.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/genética , Fallopia multiflora/toxicidade , Antígeno HLA-B35/genética , Adulto , Povo Asiático/genética , Biomarcadores , Medicamentos de Ervas Chinesas/toxicidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variantes Farmacogenômicos , Projetos Piloto , Estudos Prospectivos , Adulto Jovem
9.
Zhongguo Zhong Yao Za Zhi ; 43(15): 3205-3210, 2018 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-30200719

RESUMO

In recent years,hepatotoxicity problem of Polygonum multiflorum has caused high attention. Domestic scholars also explored the causes of liver damage caused by it. For example, the establishment of guideline for diagnosis and treatment of herb-induced liver injury, and the theory about relationship between hepatocyte toxicity and chemical composition, solvents, processing, use and pathological basis of patients and so on. To try to combine theory with practice,author analyzed risk factors about the case reports of P. multiflorum causing liver damage, and made some suggestions on P. multiflorum about individualized application, drug selection and requirements for taking. This for providing reference for the safe use of P. multiflorum.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Fallopia multiflora/química , Hepatócitos/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas/toxicidade , Fallopia multiflora/toxicidade , Humanos , Estudos Retrospectivos , Fatores de Risco
10.
Acta Pharmacol Sin ; 38(5): 719-732, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28239160

RESUMO

An increasing number of cases of herb-induced liver injury (HILI) have been reported, presenting new clinical challenges. In this study, taking Polygonum multiflorum Thunb (PmT) as an example, we proposed a computational systems toxicology approach to explore the molecular mechanisms of HILI. First, the chemical components of PmT were extracted from 3 main TCM databases as well as the literature related to natural products. Then, the known targets were collected through data integration, and the potential compound-target interactions (CTIs) were predicted using our substructure-drug-target network-based inference (SDTNBI) method. After screening for hepatotoxicity-related genes by assessing the symptoms of HILI, a compound-target interaction network was constructed. A scoring function, namely, Ascore, was developed to estimate the toxicity of chemicals in the liver. We conducted network analysis to determine the possible mechanisms of the biphasic effects using the analysis tools, including BiNGO, pathway enrichment, organ distribution analysis and predictions of interactions with CYP450 enzymes. Among the chemical components of PmT, 54 components with good intestinal absorption were used for analysis, and 2939 CTIs were obtained. After analyzing the mRNA expression data in the BioGPS database, 1599 CTIs and 125 targets related to liver diseases were identified. In the top 15 compounds, seven with Ascore values >3000 (emodin, quercetin, apigenin, resveratrol, gallic acid, kaempferol and luteolin) were obviously associated with hepatotoxicity. The results from the pathway enrichment analysis suggest that multiple interactions between apoptosis and metabolism may underlie PmT-induced liver injury. Many of the pathways have been verified in specific compounds, such as glutathione metabolism, cytochrome P450 metabolism, and the p53 pathway, among others. Hepatitis symptoms, the perturbation of nine bile acids and yellow or tawny urine also had corresponding pathways, justifying our method. In conclusion, this computational systems toxicology method reveals possible toxic components and could be very helpful for understanding the mechanisms of HILI. In this way, the method might also facilitate the identification of novel hepatotoxic herbs.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fallopia multiflora/toxicidade , Biologia Computacional , Bases de Dados de Compostos Químicos , Fallopia multiflora/química , Modelos Biológicos , Toxicologia
11.
Zhongguo Zhong Yao Za Zhi ; 41(2): 333-339, 2016 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-28861982

RESUMO

In recent years, the rapid growth of reports on fleece-flower root-caused liver damages has drawn wide attention of both at home and abroad, however, there were rare literature on toxicology of fleece-flower root in ancient Chinese medicine. But why there are so many reports on toxicology of fleece-flower root now compared with the ancient literature? As a typical tonic medicine, the clinical utility of fleece-flower root was largely limited by its standardization and reliability of processing methods in ancient Chinese medicine. The ancient processing methods of fleece-flower root emphasized nine times of steaming and nine times of drying, while the modern processes have been simplified into one time of steaming. Whether the differences between ancient and modern processing methods are the potential cause of the increased events of fleece-flower root-caused liver damages. We will make deep analysis and provide new clues and perspectives for the research on its toxicity. This article, therefore, would discuss the affecting factors and key problems in toxicity attenuation of fleece-flower root on the basis of sorting out the processing methods of fleece-flower root in ancient medical books and modern standards, in order to provide the reference for establishing specification for toxicity attenuation of fleece-flower root.


Assuntos
Química Farmacêutica/métodos , Medicamentos de Ervas Chinesas/toxicidade , Fallopia multiflora/química , Química Farmacêutica/história , China , Medicamentos de Ervas Chinesas/química , Fallopia multiflora/toxicidade , Flores/química , História Antiga , Humanos , Medicina na Literatura/história , Medicina Tradicional Chinesa/história , Raízes de Plantas/química
12.
Zhongguo Zhong Yao Za Zhi ; 41(6): 1033-1039, 2016 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-28875666

RESUMO

According to different toxicities of various aqueous extracts of Polygonum multiflorum on hepatocyte, the impacts of chemical composition on the safety of P. multiforum was studied. In this study, 8 main chemical compositions in aqueous extracts of P. multiflorum were determined by the established HPLC method; at the same time, the inhibition ratios of different aqueous extracts of P. multiflorum on L02 cell were determined. Afterwards, the potential compounds related to the toxicity of P. multiforum were tentatively found through a multiple correlation analysis. The results showed that P. multiforum with different chemical compositions exhibited great differences in dissolution. The hepatocyte toxicity of P. multiflorum powder was much greater than P. multiflorum lumps. In addition, three constituents closely related to toxicity of P. multiflorum were found by multiple correlation analysis. The study revealed that chemical composition of P. multiflorum is closely related to the hepatotoxicity, and the hepatotoxicity of P. multiflorum powder is greater than that of other dosage forms. This study indicates that P. multiflorum with different chemical compositions show varying toxicity, which therefore shall be given high attention.


Assuntos
Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/toxicidade , Fallopia multiflora/química , Hepatócitos/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Fallopia multiflora/toxicidade , Humanos , Solubilidade
13.
Zhongguo Zhong Yao Za Zhi ; 41(7): 1289-1296, 2016 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-28879745

RESUMO

By observing the cytotoxic effects of anthraquinones on HepG2 cell and using the precision-cut liver slices technique to authenticate the cytotoxic constituents, the paper aims to explore the material basis of Polygonum multiflorum root to cause liver toxicity. Firstly, MTT method was used to detect the effect of 11 anthraquinone derivatives on HepG2 cell. Then, the clear cytotoxic ingredients were co-cultured with rat liver slices for 6h respectively, and the liver tissue homogenate was prepared. BCA method was used to determine the content of protein in the homogenate and continuous monitoring method was used to monitor the leakage of alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamine amino transpeptidase (GGT) and lactate dehydrogenase (LDH). The toxic effect of these ingredients on liver tissue was tested by calculating the leakage rate of the monitored enzymes. As a result, rhein, emodin, physcion-8-O-ß-D-glucopyranoside and physcion-8-O-(6'-O-acetyl)-ß-D-glucopyranoside showed cytotoxic effects on HepG2 cell and their IC50 values were 71.07, 125.62, 242.27, 402.32 µmol•L⁻¹ respectively, but the other 7 compounds are less toxic and their IC50 values can not be calculated. The precision-cut liver slices tests showed that rhein group of 400 µmol•L⁻¹ concentration significantly increased the leakage rate of ALT, AST and LDH (P<0.01), and the rhein group of 100 µmol•L⁻¹ concentration only increased the leakage rate of LDH (P<0.05). With the increase of rhein concentration, the protein content in liver slices decreased significantly (P<0.05) with a certain range of does. Emodin group of 400 µmol•L⁻¹ concentration significantly increased the leakage rate of ALT, GGT and LDH (P<0.01). Physcion-8-O-ß-D-glucopyranoside group of 800 µmol•L⁻¹ concentration also significantly increased the leakage rate of ALT, AST and LDH (P<0.01 or P<0.05), but the group of 200 µmol•L⁻¹ concentration only significantly increased the LDH leakage (P<0.05). Along with the increase of the concentration of physcion-8-O-ß-D-glucopyranoside, the leakage rate of ALT, AST and LDH showed a trend of increase, but the protein content in liver slices was in decline. Furthermore, MTT reduction ability of liver slices significantly decreased (P<0.01) in the physcion-8-O-ß-D-glucopyranoside group of 800 µmol•L⁻¹ concentration. The results suggested that rhein, emodin and physcion-8-O-ß-D-glucopyranoside at high concentrations (≥400 µmol•L⁻¹) can produce some damage to the liver tissue. However, the exposure levels of these constituents are very low, so to reach the toxic concentration (400 µmol•L⁻¹ or 800 µmol•L⁻¹) an adult of 65 kg body weight will need at least a single oral 4 898 g, 339 g and 5 581 g of P.multiflorum root respectively, which is far from the statutory dose of crude P. multiflorum root (3-6 g) or its processed product (6-12 g). Therefore, the conclusion that anthraquinones are the prime constituents of the hepatotoxicity of P. multiflorum root are still not be proved.


Assuntos
Fallopia multiflora/toxicidade , Fígado/efeitos dos fármacos , Raízes de Plantas/toxicidade , Animais , Antraquinonas/toxicidade , Células Hep G2 , Humanos
14.
Zhongguo Zhong Yao Za Zhi ; 40(12): 2325-9, 2015 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-26591518

RESUMO

Toxicity of different processed was evaluated Polygoni Multiflori Radix by determining the hepatotoxic potency for selecting processing technology. Process Polygoni Multiflori Radix using high pressure steamed, Black Bean high pressure steamed, atmospheric steamed for different time. Using normal human hepatocytes (L02) as evaluation model, hepatotoxic potency as index to evaluate hepatotoxic potency of different processed Polygoni Multiflori Radix. Analysis chemical composition of some processed products by UPLC-MS. Hepatotoxic bioassay method cloud evaluate the toxicity of different Polygoni Multiflori Radix samples. Different processing methods can reduce the toxicity of Polygoni Multiflori Radix, high pressure steamed three hours attenuated was better. Different processing methods have different effects on chemical constituents of Polygoni Multiflori Radix. Comparing with crude sample, the contents of gallic acid, 2,3,5,4-tetrahydroxyl diphenylethylene-2-O-glucoside, emodin-8-O-beta glucoside and emodin were decreased in processed products with 3 kinds of different methods. The change trend of 2,3,5,4-tetrahydroxyl diphenylethylene-2-O-glucoside content was similar with hepatotoxic potency. Different processing methods can reduce the toxicity of Polygoni Multiflori Radix. Processing methods and time attenuated obvious impact on toxicity. Recommended further research on the attehuated standard control of Polygoni Multiflori Radix concocted.


Assuntos
Química Farmacêutica/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/toxicidade , Fallopia multiflora/química , Hepatócitos/efeitos dos fármacos , Raízes de Plantas/química , Bioensaio , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Fallopia multiflora/toxicidade , Humanos , Raízes de Plantas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA