Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Biomolecules ; 11(12)2021 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-34944511

RESUMO

BACKGROUND: Vitamin D is a fat-soluble cholesterol derivative found in two forms, vitamin D2, and vitamin D3. Cytochrome P450 2R1 (CYP2R1) encoded by the CYP2R1 gene is the major hydroxylase that activates vitamin D by catalyzing the formation of 25-hydroxyvitamin D (25(OH)D). METHODS: We collected 89 (100%) subjects, 46 of which (51.69%) had a documented severe deficiency of 25(OH)D (<10 ng/mL) and 43 (48.31%) in the control group with documented optimum levels of 25(OH)D (>30 ng/mL). We performed Sanger sequencing of three selected fragments of the CYP2R1 gene (Ch11: 14878000-14878499; Ch11: 14880058-14880883 and Ch11: 14885321-14886113) that affect the binding of substrates to this enzyme and analyzed the possible involvement of genetic variation in these regions with an increased risk of vitamin D deficiency in healthy Polish individuals. RESULTS: Two substitutions were found within the three fragments. Bioinformatic analysis suggested that one of these (NC_000011.10: g.14878291G>A) may influence the structure and function of CYP2R1. CONCLUSIONS: Variant NC_000011.10: g.14878291G>A may have a perturbing effect on heme binding in the active site of CYP2R1 and on the function of 25-hydroxylase and probably affects the concentration of 25(OH)D in vivo. We intend to perform functional verification in a larger patient population to confirm and extend these results.


Assuntos
Substituição de Aminoácidos , Colestanotriol 26-Mono-Oxigenase/genética , Família 2 do Citocromo P450/genética , Análise de Sequência de DNA/métodos , Deficiência de Vitamina D/genética , Adulto , Sítios de Ligação , Estudos de Casos e Controles , Colestanotriol 26-Mono-Oxigenase/química , Colestanotriol 26-Mono-Oxigenase/metabolismo , Família 2 do Citocromo P450/química , Família 2 do Citocromo P450/metabolismo , Feminino , Humanos , Masculino , Vitamina D/análogos & derivados , Vitamina D/sangue , Deficiência de Vitamina D/sangue , Adulto Jovem
2.
Sci Rep ; 11(1): 18764, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548575

RESUMO

Cytochrome P450 (CYP) signalling pathway has been shown to play a vital role in the vasoreactivity of wild type mouse ophthalmic artery. In this study, we determined the expression, vascular responses and potential mechanisms of the CYP-derived arachidonic acid metabolites. The expression of murine CYP (Cyp2c44) and soluble epoxide hydrolase (sEH) in the wild type ophthalmic artery was determined with immunofluorescence, which showed predominant expression of Cyp2c44 in the vascular smooth muscle cells (VSMC), while sEH was found mainly in the endothelium of the wild type ophthalmic artery. Artery of Cyp2c44-/- and sEH-/- mice were used as negative controls. Targeted mass spectrometry-based lipidomics analysis of endogenous epoxide and diols of the wild type artery detected only 14, 15-EET. Vasorelaxant responses of isolated vessels in response to selective pharmacological blockers and agonist were analysed ex vivo. Direct antagonism of epoxyeicosatrienoic acids (EETs) with a selective inhibitor caused partial vasodilation, suggesting that EETs may behave as vasoconstrictors. Exogenous administration of synthetic EET regioisomers significantly constricted the vessels in a concentration-dependent manner, with the strongest responses elicited by 11, 12- and 14, 15-EETs. Our results provide the first experimental evidence that Cyp2c44-derived EETs in the VSMC mediate vasoconstriction of the ophthalmic artery.


Assuntos
Família 2 do Citocromo P450/química , Ácidos Graxos Monoinsaturados/farmacologia , Artéria Oftálmica/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Animais , Família 2 do Citocromo P450/metabolismo , Epóxido Hidrolases/metabolismo , Ácidos Graxos Monoinsaturados/química , Camundongos , Artéria Oftálmica/enzimologia , Artéria Oftálmica/fisiologia
3.
J Biol Chem ; 296: 100645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839156

RESUMO

Interactions of membrane-bound mammalian cytochromes P450 (CYPs) with NADPH-cytochrome P450 oxidoreductase (POR), which are required for metabolism of xenobiotics, are facilitated by membrane lipids. A variety of membrane mimetics, such as phospholipid liposomes and nanodiscs, have been used to simulate the membrane to form catalytically active CYP:POR complexes. However, the exact mechanism(s) of these interactions are unclear because of the absence of structural information of full-length mammalian CYP:POR complexes in membranes. Herein, we report the use of amphipols (APols) to form a fully functional, soluble, homogeneous preparation of full-length CYP:POR complexes amenable to biochemical and structural study. Incorporation of CYP2B4 and POR into APols resulted in a CYP2B4:POR complex with a stoichiometry of 1:1, which was fully functional in demethylating benzphetamine at a turnover rate of 37.7 ± 2.2 min-1, with a coupling efficiency of 40%. Interestingly, the stable complex had a molecular weight (Mw) of 338 ± 22 kDa determined by multiangle light scattering, suggestive of a tetrameric complex of 2CYP2B4:2POR embedded in one APol nanoparticle. Moreover, negative stain electron microscopy (EM) validated the homogeneity of the complex and allowed us to generate a three-dimensional EM map and model consistent with the tetramer observed in solution. This first report of the full-length mammalian CYP:POR complex by transmission EM not only reveals the architecture that facilitates electron transfer but also highlights a potential use of APols in biochemical and structural studies of functional CYP complexes with redox partners.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Polímeros/metabolismo , Propilaminas/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/química , Catálise , Família 2 do Citocromo P450/química , Família 2 do Citocromo P450/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Coelhos
4.
J Pharm Pharm Sci ; 24: 94-112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33626316

RESUMO

Since the discovery of its role in vitamin D metabolism, significant progress has been made in the understanding of gene organisation, protein structure, catalytic function, and genetic polymorphism of cytochrome P450 2R1 (CYP2R1). Located on chromosome 11p15.2, CYP2R1 possesses five exons, unlike most other CYP isoforms that carry nine exons. CYP2R1 crystal structure displays a fold pattern typical of a CYP protein, with 12 a-helices as its structural core, and b-sheets mostly arranged on one side, and the heme buried in the interior part of the protein. Overall, CYP2R1 structure adopts a closed conformation with the B' helix serving as a gate covering the substrate access channel, with the substrate vitamin D3 occupying a position with the side chain pointing toward the heme group. In liver, CYP2R1 25-hydroxylates vitamin D and serves as an important determinant of 25(OH)D level in the tissue and in circulation. While substrate profile has been well studied, inhibitor specificity for CYP2R1 requires further investigation. Both exonic and non-exonic single nucleotide polymorphisms (SNPs) have been reported in CYP2R1, including the CYP2R1*2 carrying Leu99Pro exchange, and a number of non-exonic SNPs with variable functional consequences in gene regulation. A non-exonic SNP, rs10741657, has its causal relationship with diseases established, including that of rickets, ovarian cancer, and multiple sclerosis. The role of other CYP2R1 SNPs in vitamin D deficiency and their causal link to other traits however remain uncertain currently and more studies are warranted to help identify possible physiological mechanisms underlying those complex traits.


Assuntos
Colestanotriol 26-Mono-Oxigenase , Família 2 do Citocromo P450 , Polimorfismo Genético/genética , Colestanotriol 26-Mono-Oxigenase/química , Colestanotriol 26-Mono-Oxigenase/genética , Colestanotriol 26-Mono-Oxigenase/metabolismo , Família 2 do Citocromo P450/química , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo , Humanos , Conformação Proteica
5.
Int J Mol Sci ; 22(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375250

RESUMO

Prenatal smoke exposure (PreSE) is a risk factor for nicotine dependence, which is further enhanced by postnatal smoke exposure (PostSE). One susceptibility gene to nicotine dependence is Cytochrome P450 (CYP) 2A6, an enzyme responsible for the conversion of nicotine to cotinine in the liver. Higher CYP2A6 activity is associated with nicotine dependence and could be regulated through DNA methylation. In this study we investigated whether PostSE further impaired PreSE-induced effects on nicotine metabolism, along with Cyp2a5, orthologue of CYP2A6, mRNA expression and DNA methylation. Using a mouse model where prenatally smoke-exposed adult offspring were exposed to cigarette smoke for 3 months, enzyme activity, mRNA levels, and promoter methylation of hepatic Cyp2a5 were evaluated. We found that in male offspring, PostSE increased PreSE-induced cotinine levels and Cyp2a5 mRNA expression. In addition, both PostSE and PreSE changed Cyp2a5 DNA methylation in male groups. PreSE however decreased cotinine levels whereas it had no effect on Cyp2a5 mRNA expression or methylation. These adverse outcomes of PreSE and PostSE were most prominent in males. When considered in the context of the human health aspects, the combined effect of prenatal and adolescent smoke exposure could lead to an accelerated risk for nicotine dependence later in life.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Família 2 do Citocromo P450/metabolismo , Metilação de DNA , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Metabólica , Nicotina/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Fumaça/efeitos adversos , Animais , Animais Recém-Nascidos , Hidrocarboneto de Aril Hidroxilases/química , Hidrocarboneto de Aril Hidroxilases/genética , Família 2 do Citocromo P450/química , Família 2 do Citocromo P450/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Regiões Promotoras Genéticas
6.
Int J Vitam Nutr Res ; 90(3-4): 339-345, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32517587

RESUMO

Background: Genome Wide Association Studies (GWAS) have evaluated several genes related to vitamin D synthesis, metabolism and transport. They have proposed a genetic basis for low levels of vitamin D in the blood. The current study aims to investigate the relationship between certain vitamin D-associated gene variants and vitamin D deficiency in Iranian adolescents. Methods: In this case-control study, the genomic DNA was extracted by Real Time PCR High Resolution Melt (HRM). All measurements were carried out with triple repetition. The following factors were assessed: single nucleotide polymorphisms (SNPs) in Vitamin D binding protein (DBP, rs2282679), 7-Dehydrocholesterol reductase (DHCR7, rs12785878) and Cytochrome P450 2R1 (CYP2R1, rs10741657). Results: the genomic DNA of blood samples obtained from 481 adolescents. Participants with hypovitaminosis D were compared with a control group. The average vitamin D level of sufficient subjects (controls) was 44.88±14.01 ng/mL, while subjects who were insufficient (cases) had an average vitamin D level of 7.03±1.24 ng/mL. No statistically significant differences were found in the allelic and genotypic distributions between genders. The SNP frequency in CYP2R1 (rs10741657) and DBP (rs2282679) in the vitamin D deficient group was significantly higher than in the control group (p-values < 0.001 and 0.01 respectively). There were no statistically significant differences in the DHCR7 SNP (rs12785878) distributions between the Vitamin D deficient group and control group. Conclusion: The present study demonstrated evidence of the ability of the SNPs under investigation to predict circulating vitamin D concentration. Further study is needed to better understand if and how genetic factors contribute to vitamin D levels, and certain skeletal-associated disorders in adolescents.


Assuntos
Colestanotriol 26-Mono-Oxigenase/genética , Sistema Enzimático do Citocromo P-450/genética , Família 2 do Citocromo P450/genética , Deficiência de Vitamina D , Proteína de Ligação a Vitamina D , Vitamina D/metabolismo , Adolescente , Estudos de Casos e Controles , Colestanotriol 26-Mono-Oxigenase/química , Colestanotriol 26-Mono-Oxigenase/metabolismo , Família 2 do Citocromo P450/química , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Irã (Geográfico) , Masculino , Polimorfismo de Nucleotídeo Único/genética , Proteína de Ligação a Vitamina D/genética
7.
Molecules ; 24(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775347

RESUMO

The inhibitory effect of new chemical entities on rat liver P450 marker activities was investigated in a functional approach towards drug development. Treatment of colorectal cancer (CRC) and chemoprevention using salicylic acid has gained a lot of attention, mainly in the prevention of the onset of colon cancer. Thus, an in vitro inhibitory effect of salicylic acid on rat CYP2C11 activity was examined by using high performance liquid chromatography (HPLC). High performance liquid chromatography analysis of a CYP2C11 assay was developed on a reversed phase C18 column (SUPELCO 25 cm × 4.6 mm × 5 µm) at 243 nm using 32% phosphate buffer (pH 3.36) and 68% methanol as a mobile phase. The CYP2C11 assay showed good linearity for all components (R2 > 0.999). Substrates and metabolites were found to be stable for up to 72 hours. Additionally, the method demonstrated good reproducibility, intra- and inter-day precision (<15%), acceptable recovery and accuracy (80%-120%), and low detection (1.3501 µM and 3.2757 µM) and quantitation limit values (4.914 µM and 9.927 µM) for 16α-hydroxytestosterone and testosterone, respectively. Salicylic acid acts reversibly as a noncompetitive (weak) inhibitor with Ki = 84.582 ± 2.67 µM (concentration of inhibitor to cause 50% inhibition of original enzyme activity (IC50) = 82.70 ± 2.67 µM) for CYP2C11 enzyme activity. This indicates a low potential to cause toxicity and drug-drug interactions.


Assuntos
Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Inibidores das Enzimas do Citocromo P-450/farmacologia , Família 2 do Citocromo P450/antagonistas & inibidores , Fígado/efeitos dos fármacos , Ácido Salicílico/farmacologia , Esteroide 16-alfa-Hidroxilase/antagonistas & inibidores , Animais , Hidrocarboneto de Aril Hidroxilases/química , Catálise , Cromatografia Líquida de Alta Pressão , Inibidores das Enzimas do Citocromo P-450/química , Família 2 do Citocromo P450/química , Desenvolvimento de Medicamentos , Humanos , Fígado/enzimologia , Ratos , Ácido Salicílico/química , Esteroide 16-alfa-Hidroxilase/química
8.
Xenobiotica ; 49(6): 627-635, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29848168

RESUMO

1. Compared to information for herbivores and omnivores, knowledge on xenobiotic metabolism in carnivores is limited. The cytochrome P450 2C (CYP2C) subfamily is recognized as one of the most important CYP groups in human and dog. We identified and characterized CYP2C isoforms and variants in cat, which is an obligate carnivore. 2. Quantitative RT-PCR and immunoblot analyses were carried out to evaluate the expression of CYP2C in the liver and small intestine. A functional CYP2C isoform was heterologously expressed in yeast microsomes to determine the enzymatic activity. 3. Cat had two CYP2C genes, 21 and 41, in the genome; however, CYP2C21P was a pseudogene that had many stop codons. Three splicing variants of CYP2C41 were identified (v1-v3), but only one of them (v1) showed a complete deduced amino acid sequence as CYP2C protein. Transcripts of feline CYP2C41v1 were detected but the amounts were negligible or very small in the liver and small intestine. Immunoreactivity to an antihuman CYP2C antibody was confirmed in the recombinant feline CYP2C41v1 but not in the feline liver. 4. Recombinant feline CYP2C41v1 metabolized several substrates, including dibenzylfluorescein that is specific to human CYP2C. 5. The results suggest a limited role of functional CYP2C isoforms in xenobiotic metabolism in cat.


Assuntos
Gatos/metabolismo , Família 2 do Citocromo P450/metabolismo , Intestino Delgado/metabolismo , Fígado/metabolismo , Xenobióticos/metabolismo , Processamento Alternativo , Animais , Família 2 do Citocromo P450/química , Immunoblotting , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de Proteína
9.
Xenobiotica ; 49(10): 1133-1142, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30392427

RESUMO

The purpose of this study was to compare the enzymatic kinetics and distribution of cytochrome P450 2D (CYP2D) among different rat brain subcellular fractions. Rat brains were used to prepare total membrane, crude mitochondrial, purified mitochondrial, and microsomal fractions, in addition to total homogenate. Michaelis-Menten kinetics of the brain CYP2D activity was estimated based on the conversion of dextromethorphan (DXM) to dextrorphan using UPLC-MS/MS. Protein levels of CYP2D and subcellular markers were determined by Western blot. Microsomal CYP2D exhibited high affinity and low capacity, compared with the mitochondrial CYP2D that had a much lower (∼50-fold) affinity but a higher (∼six-fold) capacity. The apparent CYP2D affinity and capacity of the crude mitochondria were in between those of the microsomes and purified mitochondria. Additionally, the CYP2D activity in the whole homogenate was much higher than that in the total membranes at higher DXM concentrations. A CYP2D immune-reactive band in the brain mitochondria appeared at a lower MW but had a much higher intensity than that in the microsomes. Mitochondrial brain CYP2D has a much higher capacity than its microsomal counterpart. Additionally, brain homogenate is more representative of the overall CYP2D activity than the widely-used total membrane fraction.


Assuntos
Encéfalo/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Família 2 do Citocromo P450/metabolismo , Microssomos/enzimologia , Mitocôndrias/enzimologia , Oxirredutases O-Desmetilantes/metabolismo , Animais , Química Encefálica , Sistema Enzimático do Citocromo P-450/química , Família 2 do Citocromo P450/química , Cinética , Masculino , Oxirredutases O-Desmetilantes/química , Ratos , Ratos Sprague-Dawley
12.
Biopolymers ; 109(4): e23108, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29484634

RESUMO

The majority of cytochromes P450 play a critical role in metabolism of endogenous and exogenous substrates, some of its products are carcinogens. Therefore, inhibition of P450 enzymes activity can promote the detoxification and elimination of chemical carcinogens. In this study, molecular dynamics (MD) simulations and adaptive steered molecular dynamics (ASMD) simulations were performed to explore the structure features and channel dynamics of three P450 isoforms 2A6, 2A13, and 2E1 bound with the common inhibitor pilocarpine. The binding free energy results combined with the PMF calculations give a reasonable ranking of binding affinity, which are consistent with the experimental data. Our results uncover how a sequence divergence of different CYP2 enzymes causes individual variations in major channel selections. On the basis of channel bottleneck and energy decomposition analysis, we propose a gating mechanism of their respective major channels in three enzymes, which may be attributed to a reversal of Phe209 in CYP2A6/2A13, as well as the rotation of Phe116 and Phe298 in CYP2E1. The hydrophobic residues not only make strong hydrophobic interactions with inhibitor, but also act as gatekeeper to regulate the opening of channel. The present study provides important insights into the structure-function relationships of three cytochrome P450s and the molecular basis for development of potent inhibitors.


Assuntos
Citocromo P-450 CYP2A6/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Família 2 do Citocromo P450/metabolismo , Pilocarpina/química , Citocromo P-450 CYP2A6/química , Citocromo P-450 CYP2E1/química , Família 2 do Citocromo P450/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Oxirredução
13.
J Mol Model ; 24(3): 67, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29476269

RESUMO

The interactions of the drugs amlodipine and paroxetine, which are prescribed respectively for treatment of hypertension and depression, with the metabolizing enzyme cytochrome CYP2B4 as the drug target, have been studied by molecular dynamics (MD) simulation. Poly ethylene glycol was used to control the drugs' interactions with each other and with the target CYP2B4. Thirteen simulation systems were carefully designed, and the results obtained from MD simulations indicated that amlodipine in the PEGylated form prescribed with paroxetine in the nonPEGylated form promotes higher cytochrome stability and causes fewer fluctuations as the drugs approach the target CYP2B4 and interact with it. The simulation results led us to hypothesize that the combination of the drugs with a specific drug ratio, as proposed in this work, manifests more effective diffusivity and less instability while metabolizing with enzyme CYP2B4. Also, the active residues in the CYP2B4 enzyme that interact with the drugs were determined by MD simulation, which were consistent with the reported experimental results. Graphical Abstract Efficient drug-enzyme interactions, as a result of PEGylation.


Assuntos
Anlodipino/química , Antidepressivos de Segunda Geração/química , Anti-Hipertensivos/química , Hidrocarboneto de Aril Hidroxilases/química , Paroxetina/química , Anlodipino/metabolismo , Antidepressivos de Segunda Geração/metabolismo , Anti-Hipertensivos/metabolismo , Hidrocarboneto de Aril Hidroxilases/metabolismo , Família 2 do Citocromo P450/química , Família 2 do Citocromo P450/metabolismo , Difusão , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Paroxetina/metabolismo
14.
Biochemistry ; 57(5): 817-826, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29215266

RESUMO

Human hepatic cytochromes P450 (CYP) are integral to xenobiotic metabolism. CYP2B6 is a major catalyst of biotransformation of environmental toxicants, including polybrominated diphenyl ethers (PBDEs). CYP2B substrates tend to contain halogen atoms, but the biochemical basis for this selectivity and for species specific determinants of metabolism has not been identified. Spectral binding titrations and inhibition studies were performed to investigate interactions of rat CYP2B1, rabbit CYP2B4, and CYP2B6 with a series of phenoxyaniline (POA) congeners that are analogues of PBDEs. For most congeners, there was a <3-fold difference between the spectral binding constants (KS) and IC50 values. In contrast, large discrepancies between these values were observed for POA and 3-chloro-4-phenoxyaniline. CYP2B1 was the enzyme most sensitive to POA congeners, so the Val-363 residue from that enzyme was introduced into CYP2B4 or CYP2B6. This substitution partially altered the protein-ligand interaction profiles to make them more similar to that of CYP2B1. Addition of cytochrome P450 oxidoreductase (POR) to titrations of CYP2B6 with POA or 2'4'5'TCPOA decreased the affinity of both ligands for the enzyme. Addition of cytochrome b5 to a recombinant enzyme system containing POR and CYP2B6 increased the POA IC50 value and decreased the 2'4'5'TCPOA IC50 value. Overall, the inconsistency between KS and IC50 values for POA versus 2'4'5'TCPOA is largely due to the effects of redox partner binding. These results provide insight into the biochemical basis of binding of diphenyl ethers to human CYP2B6 and changes in CYP2B6-mediated metabolism that are dependent on POA congener and redox partner identity.


Assuntos
Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Citocromo P-450 CYP2B1/antagonistas & inibidores , Citocromo P-450 CYP2B6/efeitos dos fármacos , Inibidores das Enzimas do Citocromo P-450/farmacologia , Éteres Difenil Halogenados/farmacologia , Alquilação/efeitos dos fármacos , Substituição de Aminoácidos , Compostos de Anilina , Animais , Hidrocarboneto de Aril Hidroxilases/química , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Derivados de Benzeno/farmacologia , Citocromo P-450 CYP2B1/química , Citocromo P-450 CYP2B1/genética , Citocromo P-450 CYP2B1/metabolismo , Citocromo P-450 CYP2B6/química , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Inibidores do Citocromo P-450 CYP2B6/metabolismo , Inibidores do Citocromo P-450 CYP2B6/farmacologia , Inibidores das Enzimas do Citocromo P-450/metabolismo , Família 2 do Citocromo P450/antagonistas & inibidores , Família 2 do Citocromo P450/química , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo , Citocromos b5/metabolismo , Poluentes Ambientais/metabolismo , Éteres Difenil Halogenados/metabolismo , Humanos , Hidrocarbonetos Halogenados/metabolismo , Concentração Inibidora 50 , Estrutura Molecular , Mutagênese Sítio-Dirigida , NADPH Oxidases/metabolismo , Oxirredução , Coelhos , Ratos , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
15.
Hum Mutat ; 39(1): 140-151, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29034544

RESUMO

Hereditary spastic paraplegia (HSP) is an inherited disorder of the central nervous system mainly characterized by gradual spasticity and weakness of the lower limbs. SPG56 is a rare autosomal recessive early onset complicated form of HSP caused by mutations in CYP2U1. The CYP2U1 enzyme was shown to catalyze the hydroxylation of arachidonic acid. Here, we report two further SPG56 families carrying three novel CYP2U1 missense variants and the development of an in vitro biochemical assay to determine the pathogenicity of missense variants of uncertain clinical significance. We compared spectroscopic, enzymatic, and structural (from a 3D model) characteristics of the over expressed wild-type or mutated CYP2U1 in HEK293T cells. Our findings demonstrated that most of the tested missense variants in CYP2U1 were functionally inactive because of a loss of proper heme binding or destabilization of the protein structure. We also showed that functional data do not necessarily correlate with in silico predictions of variants pathogenicity, using different bioinformatic phenotype prediction tools. Our results therefore highlight the importance to use biological tools, such as the enzymatic test set up in this study, to evaluate the effects of newly identified variants in clinical settings.


Assuntos
Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo , Mutação de Sentido Incorreto , Paraplegia Espástica Hereditária/enzimologia , Paraplegia Espástica Hereditária/genética , Alelos , Substituição de Aminoácidos , Família 2 do Citocromo P450/química , Análise Mutacional de DNA , Ativação Enzimática , Expressão Gênica , Estudos de Associação Genética , Células HEK293 , Humanos , Modelos Moleculares , Oxirredução , Fenótipo , Conformação Proteica , Paraplegia Espástica Hereditária/diagnóstico
16.
Biochimie ; 140: 166-175, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28743672

RESUMO

BACKGROUND: Human cytochrome P450 2U1 (CYP2U1) is an orphan CYP that exhibits several distinctive characteristics among the 57 human CYPs with a highly conserved sequence in almost all living organisms. METHODS: We compared its protein sequence with those of the 57 human CYPs and constructed a 3D structure of a full-length CYP2U1 model bound to a POPC membrane. We also performed docking experiments of arachidonic acid (AA) and N-arachidonoylserotonin (AS) in this model. RESULTS: The protein sequence of CYP2U1 displayed two unique characteristics when compared to those of the human CYPs, the presence of a longer N-terminal region upstream of the putative trans-membrane helix (TMH) containing 8 proline residues, and of an insert of about 20 amino acids containing 5 arginine residues between helices A' and A. Its N-terminal part upstream of TMH involved an additional short terminal helix, in a manner similar to what was reported in the crystal structure of Saccharomyces cerevisiae CYP51. Our model also showed a specific interaction between the charged residues of insert AA' and phosphate groups of lipid polar heads, suggesting a possible role of this insert in substrate recruitment. Docking of AA and AS in this model showed these substrates in channel 2ac, with the terminal alkyl chain of AA or the indole ring of AS close to the heme, in agreement with the reported CYP2U1-catalyzed AA and AS hydroxylation regioselectivities. MAJOR CONCLUSION AND GENERAL SIGNIFICANCE: This model should be useful to find new endogenous or exogenous CYP2U1 substrates and to interpret the regioselectivity of their hydroxylation.


Assuntos
Ácido Araquidônico/química , Família 2 do Citocromo P450/química , Membranas Artificiais , Simulação de Acoplamento Molecular , Fosfatidilcolinas/química , Sistema Enzimático do Citocromo P-450/química , Humanos , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
17.
Mol Cell Endocrinol ; 453: 22-35, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28257826

RESUMO

1α,25-Dihydroxvitamin D3 (1,25(OH)2D3) is the hormonally active form of vitamin D3. Its synthesis and its metabolites, their transport and elimination as well as action on transcriptional regulation involves the harmonic cooperation of diverse proteins with vitamin D binding capacities such as vitamin D binding protein (DBP), cytochrome P450 enzymes or the nuclear vitamin receptor (VDR). The genomic mechanism of 1,25(OH)2D3 action involves its binding to VDR that functionally acts as a heterodimer with retinoid X receptor. The crystal structures of the most important proteins for vitamin D3, VDR, DBP, CYP2R1 and CYP24A1, have provided identification of mechanisms of actions of these proteins and those mediating VDR-regulated transcription. This review will present the structural information on recognition of the vitamin D3 and metabolites by CYP proteins and DBP as well as the structural basis of VDR activation by 1,25(OH)2D3 and metabolites. Additionally, we will describe, the implications of the VDR mutants associated with hereditary vitamin D-resistant rickets (HVDRR) that display impaired function.


Assuntos
Colecalciferol/química , Colecalciferol/metabolismo , Receptores de Calcitriol/metabolismo , Proteína de Ligação a Vitamina D/química , Regulação Alostérica , Colecalciferol/genética , Colestanotriol 26-Mono-Oxigenase/química , Colestanotriol 26-Mono-Oxigenase/metabolismo , Família 2 do Citocromo P450/química , Família 2 do Citocromo P450/metabolismo , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Mutação , Receptores de Calcitriol/química , Receptores de Calcitriol/genética , Raquitismo Hipofosfatêmico/genética , Proteína de Ligação a Vitamina D/metabolismo , Vitamina D3 24-Hidroxilase/química , Vitamina D3 24-Hidroxilase/metabolismo
18.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3144-3153, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27456766

RESUMO

BACKGROUND: Cytochrome P450 2U1 (CYP2U1) has been identified from the human genome and is highly conserved in the living kingdom. It is considered as an "orphan" protein as few data are available on its physiological function(s) and spectral characteristics. Its only known substrates reported so far are unsaturated fatty acids such as arachidonic acid (AA), and, more recently, N-arachidonoylserotonin (AS) and some xenobiotics related to debrisoquine (Deb) and terfenadine. METHODS: We have expressed CYP2U1 in E. coli and performed UV-vis and EPR spectroscopy experiments with purified CYP2U1 alone and in the presence of substrates and imidazole and pyridine derivatives. Docking experiments using a 3D homology model of CYP2U1 were done to explain the observed spectroscopic data and the different regioselectivities of the oxidations of AA and AS. RESULTS: The UV-vis and EPR spectra of native recombinant human CYP2U1 revealed a predominant low-spin hexacoordinate FeIII state. Imidazole (Im) derivatives, such as miconazole, acted as FeIII ligands, contrary to ketoconazole, whereas the previously described substrates AS and Deb led to "reverse type I" difference UV-vis spectra. These data, as well as the different regioselectivities of AA and AS oxidations, were supported by docking experiments performed on our previously reported CYP2U1 3D model. MAJOR CONCLUSION AND GENERAL SIGNIFICANCE: Our study describes for the first time the mode of interaction of several FeIII-heme ligands and substrates with the active site of CYP2U1 on the basis of spectroscopic and molecular docking data. The good agreement between these data validates the used CYP2U1 3D model which should help the design of new substrates or inhibitors of this orphan CYP.


Assuntos
Família 2 do Citocromo P450/química , Família 2 do Citocromo P450/metabolismo , Modelos Moleculares , Ácido Araquidônico/química , Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Biocatálise , Debrisoquina/química , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli , Humanos , Imidazóis/química , Ácidos Láuricos/química , Ligantes , Simulação de Acoplamento Molecular , Oxirredução , Ligação Proteica , Piridinas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serotonina/análogos & derivados , Serotonina/química , Serotonina/metabolismo , Espectrofotometria Ultravioleta , Especificidade por Substrato
19.
Biophys Chem ; 216: 1-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27280734

RESUMO

Multiple crystal structures of CYP2B4 have demonstrated the binding of the detergent 5-cyclohexyl-1-pentyl-ß-D-maltoside (CYMAL-5) in a peripheral pocket located adjacent to the active site. To explore the consequences of detergent binding, X-ray crystal structures of the peripheral pocket mutant CYP2B4 F202W were solved in the presence of hexaethylene glycol monooctyl ether (C8E6) and CYMAL-5. The structure in the presence of CYMAL-5 illustrated a closed conformation indistinguishable from the previously solved wild-type. In contrast, the F202W structure in the presence of C8E6 revealed a detergent molecule that coordinated the heme-iron and extended to the protein surface through the substrate access channel 2f. Despite the overall structural similarity of these detergent complexes, remarkable differences were observed in the A, A', and H helices, the F-G cassette, the C-D and ß4 loop region. Hydrogen-deuterium exchange mass spectrometry (DXMS) was employed to probe these differences and to test the effect of detergents in solution. The presence of either detergent increased the H/D exchange rate across the plastic regions, and the results obtained by DXMS in solution were consistent in general with the relevant structural snapshots. The study provides insight into effect of detergent binding and the interpretation of associated conformational dynamics of CYP2B4.


Assuntos
Hidrocarboneto de Aril Hidroxilases/química , Cristalografia por Raios X , Detergentes/química , Medição da Troca de Deutério , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Domínio Catalítico , Família 2 do Citocromo P450/química , Família 2 do Citocromo P450/genética , Detergentes/farmacologia , Glucosídeos/química , Glucosídeos/farmacologia , Humanos , Espectrometria de Massas , Modelos Moleculares , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
20.
Curr Drug Metab ; 17(6): 520-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26892731

RESUMO

BACKGROUND: Non-human primates are valuable animal models in drug discovery and biomedical research. Human CYP2D6 accounts for 1.3-4.3% of total hepatic CYP content in the liver, but is involved in the metabolism of more than 150 drugs. With the advancement of genomic sequencing and annotation, a panel of CYP2D genes have been cloned from non-human primates. This review highlights the similarities and differences of these CYP2D genes non-human primates. METHODS: We conducted a structured PubMed search using a focused review question and proper inclusion/exclusion criteria. The quality of retrieved papers was assessed and briefed using standard tools and expert knowledge. RESULTS: Most studies on CYP expression in non-human primates have been carried out in the cynomolgus and Rhesus monkeys. Deduced amino acid sequences of primate CYP2D cDNAs share high sequence identity (93-96%) with human CYP2D6. The chimpanzee genome has CYP2D6 and 2D7 but bonobos only contain CYP2D6. The CYP2D6 gene is located on chromosome 22 in the chimpanzee genome (human CYP2D6 maps to chromosome 22q13.1), and on chromosome 10 in the genome of the Rhesus monkey. Cynomolgus monkey CYP2D17 and Japanese monkey 2D29 metabolize bufuralol and dextromethorphan. CYP2D17 metabolizes bufuralol and dextromethorphan, whereas CYP2D29 metabolizes bufuralol and debrisoquine. In addition, quinidine inhibits both cynomolgus monkey CYP2D17 and Japanese monkey 2D29. CONCLUSION: The CYP2D members from non-human primates show differential genomic contexts, catalytic activities toward substrates and inhibitory profiles. Further studies are warranted to elucidate the structural and functional features of CYP2D members in non-human primates and thus offer a solid base for the application of these animals in drug discovery.


Assuntos
Família 2 do Citocromo P450/metabolismo , Descoberta de Drogas/métodos , Fígado/enzimologia , Primatas/metabolismo , Xenobióticos/metabolismo , Animais , Família 2 do Citocromo P450/química , Família 2 do Citocromo P450/genética , Isoenzimas , Modelos Animais , Primatas/genética , Conformação Proteica , Especificidade da Espécie , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA