Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 579: 191-226, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27572728

RESUMO

Frealign is a software tool designed to process electron microscope images of single molecules and complexes to obtain reconstructions at the highest possible resolution. It provides a number of refinement parameters and options that allow users to tune their refinement to achieve specific goals, such as masking to classify selected regions within a particle, control over the refinement of specific alignment parameters to accommodate various data collection schemes, refinement of pseudosymmetric particles, and generation of initial maps. This chapter provides a general overview of Frealign functions and a more detailed guide to using Frealign in typical scenarios.


Assuntos
Algoritmos , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imagem Individual de Molécula/métodos , Software , Microscopia Crioeletrônica/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Modelos Moleculares , Fator 2 de Elongação de Peptídeos/ultraestrutura , Ribossomos/ultraestrutura , Imagem Individual de Molécula/estatística & dados numéricos
2.
Elife ; 52016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27159452

RESUMO

Internal ribosome entry sites (IRESs) mediate cap-independent translation of viral mRNAs. Using electron cryo-microscopy of a single specimen, we present five ribosome structures formed with the Taura syndrome virus IRES and translocase eEF2•GTP bound with sordarin. The structures suggest a trajectory of IRES translocation, required for translation initiation, and provide an unprecedented view of eEF2 dynamics. The IRES rearranges from extended to bent to extended conformations. This inchworm-like movement is coupled with ribosomal inter-subunit rotation and 40S head swivel. eEF2, attached to the 60S subunit, slides along the rotating 40S subunit to enter the A site. Its diphthamide-bearing tip at domain IV separates the tRNA-mRNA-like pseudoknot I (PKI) of the IRES from the decoding center. This unlocks 40S domains, facilitating head swivel and biasing IRES translocation via hitherto-elusive intermediates with PKI captured between the A and P sites. The structures suggest missing links in our understanding of tRNA translocation.


Assuntos
Sítios Internos de Entrada Ribossomal , Fator 2 de Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Microscopia Crioeletrônica/métodos , Dicistroviridae/genética , Guanosina Trifosfato/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/ultraestrutura , Conformação de Ácido Nucleico , Fator 2 de Elongação de Peptídeos/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/ultraestrutura , RNA Viral/genética , RNA Viral/ultraestrutura , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/genética
3.
Elife ; 52016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27159451

RESUMO

Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts tvhe otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation.


Assuntos
Sítios Internos de Entrada Ribossomal , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Microscopia Crioeletrônica , Dicistroviridae/química , Kluyveromyces/química , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/ultraestrutura , Fator 2 de Elongação de Peptídeos/metabolismo , Fator 2 de Elongação de Peptídeos/ultraestrutura , RNA Mensageiro/ultraestrutura , RNA Viral/ultraestrutura , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura
4.
J Mol Biol ; 382(1): 179-87, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18644383

RESUMO

In an attempt to understand ribosome-induced GTP hydrolysis on eEF2, we determined a 12.6-A cryo-electron microscopy reconstruction of the eEF2-bound 80S ribosome in the presence of aluminum tetrafluoride and GDP, with aluminum tetrafluoride mimicking the gamma-phosphate during hydrolysis. This is the first visualization of a structure representing a transition-state complex on the ribosome. Tight interactions are observed between the factor's G domain and the large ribosomal subunit, as well as between domain IV and an intersubunit bridge. In contrast, some of the domains of eEF2 implicated in small subunit binding display a large degree of flexibility. Furthermore, we find support for a transition-state model conformation of the switch I region in this complex where the reoriented switch I region interacts with a conserved rRNA region of the 40S subunit formed by loops of the 18S RNA helices 8 and 14. This complex is structurally distinct from the eEF2-bound 80S ribosome complexes previously reported, and analysis of this map sheds light on the GTPase-coupled translocation mechanism.


Assuntos
Microscopia Crioeletrônica , Fator 2 de Elongação de Peptídeos/metabolismo , Fator 2 de Elongação de Peptídeos/ultraestrutura , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Compostos de Alumínio/farmacologia , Fluoretos/farmacologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestrutura , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise/efeitos dos fármacos , Modelos Moleculares , Fator 2 de Elongação de Peptídeos/química , Estrutura Terciária de Proteína , Ribossomos/efeitos dos fármacos
5.
EMBO J ; 23(5): 1008-19, 2004 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-14976550

RESUMO

An 11.7-A-resolution cryo-EM map of the yeast 80S.eEF2 complex in the presence of the antibiotic sordarin was interpreted in molecular terms, revealing large conformational changes within eEF2 and the 80S ribosome, including a rearrangement of the functionally important ribosomal intersubunit bridges. Sordarin positions domain III of eEF2 so that it can interact with the sarcin-ricin loop of 25S rRNA and protein rpS23 (S12p). This particular conformation explains the inhibitory action of sordarin and suggests that eEF2 is stalled on the 80S ribosome in a conformation that has similarities with the GTPase activation state. A ratchet-like subunit rearrangement (RSR) occurs in the 80S.eEF2.sordarin complex that, in contrast to Escherichia coli 70S ribosomes, is also present in vacant 80S ribosomes. A model is suggested, according to which the RSR is part of a mechanism for moving the tRNAs during the translocation reaction.


Assuntos
Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/metabolismo , RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Antifúngicos/farmacologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Indenos , Modelos Moleculares , Movimento , Conformação de Ácido Nucleico , Fator 2 de Elongação de Peptídeos/ultraestrutura , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte de RNA , RNA de Transferência/química , RNA de Transferência/genética , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura
6.
Nat Struct Biol ; 10(5): 379-85, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12692531

RESUMO

Two crystal structures of yeast translation elongation factor 2 (eEF2) were determined: the apo form at 2.9 A resolution and eEF2 in the presence of the translocation inhibitor sordarin at 2.1 A resolution. The overall conformation of apo eEF2 is similar to that of its prokaryotic homolog elongation factor G (EF-G) in complex with GDP. Upon sordarin binding, the three tRNA-mimicking C-terminal domains undergo substantial conformational changes, while the three N-terminal domains containing the nucleotide-binding site form an almost rigid unit. The conformation of eEF2 in complex with sordarin is entirely different from known conformations observed in crystal structures of EF-G or from cryo-EM studies of EF-G-70S complexes. The domain rearrangements induced by sordarin binding and the highly ordered drug-binding site observed in the eEF2-sordarin structure provide a high-resolution structural basis for the mechanism of sordarin inhibition. The two structures also emphasize the dynamic nature of the ribosomal translocase.


Assuntos
Fator 2 de Elongação de Peptídeos/química , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Sequência de Aminoácidos , Apoproteínas/química , Apoproteínas/ultraestrutura , Sítios de Ligação , Cristalografia por Raios X , Dados de Sequência Molecular , Fator 2 de Elongação de Peptídeos/genética , Fator 2 de Elongação de Peptídeos/ultraestrutura , Conformação Proteica , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura
7.
EMBO J ; 19(11): 2710-8, 2000 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-10835368

RESUMO

Using a sordarin derivative, an antifungal drug, it was possible to determine the structure of a eukaryotic ribosome small middle dotEF2 complex at 17.5 A resolution by three-dimensional (3D) cryo-electron microscopy. EF2 is directly visible in the 3D map and the overall arrangement of the complex from Saccharomyces cerevisiae corresponds to that previously seen in Escherichia coli. However, pronounced differences were found in two prominent regions. First, in the yeast system the interaction between the elongation factor and the stalk region of the large subunit is much more extensive. Secondly, domain IV of EF2 contains additional mass that appears to interact with the head of the 40S subunit and the region of the main bridge of the 60S subunit. The shape and position of domain IV of EF2 suggest that it might interact directly with P-site-bound tRNA.


Assuntos
Microscopia Crioeletrônica , Proteínas Fúngicas/ultraestrutura , Fator 2 de Elongação de Peptídeos/ultraestrutura , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Proteínas Fúngicas/análise , Proteínas Fúngicas/química , Substâncias Macromoleculares , Modelos Moleculares , Conformação de Ácido Nucleico , Fator 2 de Elongação de Peptídeos/análise , Fator 2 de Elongação de Peptídeos/química , Conformação Proteica , Estrutura Terciária de Proteína , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Fúngico/ultraestrutura , RNA de Transferência/química , RNA de Transferência/metabolismo , RNA de Transferência/ultraestrutura , Ribossomos/química , Saccharomyces cerevisiae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA