Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Circulation ; 147(6): 498-511, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36484260

RESUMO

BACKGROUND: Myocardial infarction (MI) induces a repair response that ultimately generates a stable fibrotic scar. Although the scar prevents cardiac rupture, an excessive profibrotic response impairs optimal recovery by promoting the development of noncontractile fibrotic areas. The mechanisms that lead to cardiac fibrosis are diverse and incompletely characterized. We explored whether the expansion of cardiac fibroblasts after MI can be regulated through a paracrine action of cardiac stromal cells. METHODS: We performed a bioinformatic secretome analysis of cardiac stromal PW1+ cells isolated from normal and post-MI mouse hearts to identify novel secreted proteins. Functional assays were used to screen secreted proteins that promote fibroblast proliferation. The expressions of candidates were subsequently analyzed in mouse and human hearts and plasmas. The relationship between levels of circulating protein candidates and adverse post-MI cardiac remodeling was examined in a cohort of 80 patients with a first ST-segment-elevation MI and serial cardiac magnetic resonance imaging evaluations. RESULTS: Cardiac stromal PW1+ cells undergo a change in paracrine behavior after MI, and the conditioned media from these cells induced a significant increase in the proliferation of fibroblasts. We identified a total of 12 candidates as secreted proteins overexpressed by cardiac PW1+ cells after MI. Among these factors, GDF3 (growth differentiation factor 3), a member of the TGF-ß (transforming growth factor-ß) family, was markedly upregulated in the ischemic hearts. Conditioned media specifically enriched with GDF3 induced fibroblast proliferation at a high level by stimulation of activin-receptor-like kinases. In line with the secretory nature of this protein, we next found that GDF3 can be detected in mice and human plasma samples, with a significant increase in the days after MI. In humans, higher GDF3 circulating levels (measured in the plasma at day 4 after MI) were significantly associated with an increased risk of adverse remodeling 6 months after MI (adjusted odds ratio, 1.76 [1.03-3.00]; P=0.037), including lower left ventricular ejection fraction and a higher proportion of akinetic segments. CONCLUSIONS: Our findings define a mechanism for the profibrotic action of cardiac stromal cells through secreted cardiokines, such as GDF3, a candidate marker of adverse fibrotic remodeling after MI. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT01113268.


Assuntos
Infarto do Miocárdio , Miocárdio , Animais , Humanos , Camundongos , Cicatriz/patologia , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Modelos Animais de Doenças , Fibrose , Fator 3 de Diferenciação de Crescimento/metabolismo , Miocárdio/metabolismo , Volume Sistólico , Fator de Crescimento Transformador beta/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular
2.
Zhonghua Nan Ke Xue ; 29(12): 980-985, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38639949

RESUMO

OBJECTIVE: To investigate the expression and significance of GDF3 in testicular cancer through bioinformatics analysis. METHODS: Using the TCGA and GTEx databases, differential expression analysis and pan-cancer analysis were performed to identify the target gene GDF3, and the clinical relevance of GDF3 in testicular cancer was analyzed using the UALCAN database. Based on the R packages "org.Hs.eg.db" and "clusterProfiler," gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to explore the potential functions of GDF3 in testicular cancer. The correlation of GDF3 with immune chemokines and immune inhibitors in testicular cancer was investigated using the TISIDB database. RESULTS: The GDF3 was significantly upregulated in testicular cancer (P<0.001) and closely associated with clinical staging (P<0.05) and tumor subtypes (P<0.001). The immune-related analysis revealed that GDF3 was strongly correlated with immune chemokines CCL26 (rho=0.599, P<0.001), CCL7 (rho=0.525, P<0.001), immune inhibitor ADORA2A (rho=0.723, P<0.001), and PVRL2 (rho=0.585, P<0.001). CONCLUSION: The GDF3 is closely related to the occurrence, development, and immune microenvironment of testicular cancer.


Assuntos
Fator 3 de Diferenciação de Crescimento , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Humanos , Masculino , Quimiocinas , Biologia Computacional , Neoplasias Testiculares/genética , Microambiente Tumoral , Fator 3 de Diferenciação de Crescimento/genética
3.
Viruses ; 14(5)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35632746

RESUMO

The systemic inflammatory response elicited by acute Zika virus (ZIKV) infection during pregnancy plays a key role in the clinical outcomes in mothers and congenitally infected offspring. The present study aimed to evaluate the serum levels of GDF-3 and inflammasome-related markers in pregnant women during acute ZIKV infection. Serum samples from pregnant (n = 18) and non-pregnant (n = 22) women with acute ZIKV infection were assessed for NLRP3, IL-1ß, IL-18, and GDF3 markers through an enzyme-linked immunosorbent assay. ZIKV-negative pregnant (n = 18) and non-pregnant women (n = 15) were used as control groups. All serum markers were highly elevated in the ZIKV-infected groups in comparison with control groups (p < 0.0001). Among the ZIKV-infected groups, the serum markers were significantly augmented in the pregnant women in comparison with non-pregnant women (NLRP3 p < 0.001; IL-1ß, IL-18, and GDF3 p < 0.0001). The IL-18 marker was found at significantly higher levels (p < 0.05) in the third trimester of pregnancy. Bivariate and multivariate analyses showed a strong positive correlation between GDF3 and NLRP3 markers among ZIKV-infected pregnant women (r = 0.91, p < 0.0001). The findings indicated that acute ZIKV infection during pregnancy induces the overexpression of GDF-3 and inflammasome-related markers, which may contribute to congenital disorders and harmful pregnancy outcomes.


Assuntos
Fator 3 de Diferenciação de Crescimento , Inflamassomos , Infecção por Zika virus , Biomarcadores , Feminino , Fator 3 de Diferenciação de Crescimento/sangue , Humanos , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Gravidez , Resultado da Gravidez , Gestantes , Infecção por Zika virus/imunologia
4.
Nanoscale ; 13(45): 19023-19037, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34755752

RESUMO

Multimodal gadolinium fluoride nanoparticles belong to potential contrast agents useful for bimodal optical fluorescence and magnetic resonance imaging. However, the metallic nature of the nanoparticles, similarly to some paramagnetic iron oxides, might induce allergic and anaphylactic reactions in patients after administration. A reduction of these adverse side effects is a priority for the safe application of the nanoparticles. Herein, we prepared paramagnetic poly(4-styrenesulfonic acid-co-maleic acid) (PSSMA)-stabilized GdF3 nanoparticles with surface modified by Atto 488-labeled poly(styrene-grad-2-dimethylaminoethyl acrylate)-block-poly(2-dimethylaminoethyl acrylate) (PSDA-A488) with reactive amino groups for introduction of an additional imaging (luminescence) modality and possible targeting of anticancer drugs. The saturation magnetization of GdF3@PSSMA particles according to SQUID magnetometry reached 157 Am2 kg-1 at 2 K and magnetic field of 7 T. GdF3@PSSMA-PSDA-A488 nanoparticles were well tolerated by human cervical adenocarcinoma (HeLa), mouse bone marrow-derived mast cells (BMMC), and rat basophilic mast cells (RBL-2H3); the particles also affected cell morphology and protein tyrosine phosphorylation in mast cells. Moreover, the nanoparticles interfered with the activation of mast cells by multivalent antigens and inhibited calcium mobilization and cell degranulation. These findings show that the new multimodal GdF3-based nanoparticles possess properties useful for various imaging methods and might minimize mast cell degranulation incurred after future nanoparticle diagnostic administration.


Assuntos
Mastócitos , Nanopartículas , Animais , Degranulação Celular , Fator 3 de Diferenciação de Crescimento , Humanos , Camundongos , Polímeros , Ratos
5.
JCI Insight ; 6(7)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33830083

RESUMO

Macrophage-mediated inflammatory response has been implicated in the pathogenesis of obesity and insulin resistance. Brd4 has emerged as a key regulator in the innate immune response. However, the role of Brd4 in obesity-associated inflammation and insulin resistance remains uncharacterized. Here, we demonstrated that myeloid lineage-specific Brd4 knockout (Brd4-CKO) mice were protected from high-fat diet-induced (HFD-induced) obesity with less fat accumulation, higher energy expenditure, and increased lipolysis in adipose tissue. Brd4-CKO mice fed a HFD also displayed reduced local and systemic inflammation with improved insulin sensitivity. RNA-Seq of adipose tissue macrophages (ATMs) from HFD-fed WT and Brd4-CKO mice revealed that expression of antilipolytic factor Gdf3 was significantly decreased in ATMs of Brd4-CKO mice. We also found that Brd4 bound to the promoter and enhancers of Gdf3 to facilitate PPARγ-dependent Gdf3 expression in macrophages. Furthermore, Brd4-mediated expression of Gdf3 acted as a paracrine signal targeting adipocytes to suppress the expression of lipases and the associated lipolysis in cultured cells and mice. Controlling the expression of Gdf3 in ATMs could be one of the mechanisms by which Brd4 modulates lipid metabolism and diet-induced obesity. This study suggests that Brd4 could be a potential therapeutic target for obesity and insulin resistance.


Assuntos
Tecido Adiposo/citologia , Fator 3 de Diferenciação de Crescimento/genética , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Obesidade/etiologia , Fatores de Transcrição/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Regulação da Expressão Gênica , Fator 3 de Diferenciação de Crescimento/metabolismo , Resistência à Insulina/genética , Lipase/genética , Lipase/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipólise/genética , Masculino , Camundongos Knockout , Proteínas Nucleares/genética , PPAR gama/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
6.
Front Immunol ; 12: 647070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679812

RESUMO

The defective eradication of invading pathogens is a major cause of death in sepsis. As professional phagocytic cells, macrophages actively engulf/kill microorganisms and play essential roles in innate immune response against pathogens. Growth differentiation factor 3 (GDF3) was previously implicated as an important modulator of inflammatory response upon acute sterile injury. In this study, administration of recombinant GDF3 protein (rGDF3) either before or after CLP surgery remarkably improved mouse survival, along with significant reductions in bacterial load, plasma pro-inflammatory cytokine levels, and organ damage. Notably, our in vitro experiments revealed that rGDF3 treatment substantially promoted macrophage phagocytosis and intracellular killing of bacteria in a dose-dependent manner. Mechanistically, RNA-seq analysis results showed that CD5L, known to be regulated by liver X receptor α (LXRα), was the most significantly upregulated gene in rGDF3-treated macrophages. Furthermore, we observed that rGDF3 could promote LXRα nuclear translocation and thereby, augmented phagocytosis activity in macrophages, which was similar as LXRα agonist GW3965 did. By contrast, pre-treating macrophages with LXRα antagonist GSK2033 abolished beneficial effects of rGDF3 in macrophages. In addition, rGDF3 treatment failed to enhance bacteria uptake and killing in LXRα-knockout (KO) macrophages. Taken together, these results uncover that GDF3 may represent a novel mediator for controlling bacterial infection.


Assuntos
Fator 3 de Diferenciação de Crescimento/farmacologia , Receptores X do Fígado/imunologia , Macrófagos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Sepse/prevenção & controle , Animais , Benzoatos/farmacologia , Benzilaminas/farmacologia , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Perfilação da Expressão Gênica/métodos , Fator 3 de Diferenciação de Crescimento/administração & dosagem , Fator 3 de Diferenciação de Crescimento/genética , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/microbiologia , Receptores X do Fígado/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/imunologia , Células RAW 264.7 , Proteínas Recombinantes/administração & dosagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sepse/imunologia , Sepse/microbiologia
7.
Cell Metab ; 32(4): 665-675.e6, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32941798

RESUMO

The thiazolidinediones (TZDs) are ligands of PPARγ that improve insulin sensitivity, but their use is limited by significant side effects. Recently, we demonstrated a mechanism wherein TZDs improve insulin sensitivity distinct from receptor agonism and adipogenesis: reversal of obesity-linked phosphorylation of PPARγ at serine 273. However, the role of this modification hasn't been tested genetically. Here we demonstrate that mice encoding an allele of PPARγ that cannot be phosphorylated at S273 are protected from insulin resistance, without exhibiting differences in body weight or TZD-associated side effects. Indeed, hyperinsulinemic-euglycemic clamp experiments confirm insulin sensitivity. RNA-seq in these mice reveals reduced expression of Gdf3, a BMP family member. Ectopic expression of Gdf3 is sufficient to induce insulin resistance in lean, healthy mice. We find Gdf3 inhibits BMP signaling and insulin signaling in vitro. Together, these results highlight the diabetogenic role of PPARγ S273 phosphorylation and focus attention on a putative target, Gdf3.


Assuntos
Fator 3 de Diferenciação de Crescimento/metabolismo , Obesidade/tratamento farmacológico , PPAR gama/metabolismo , Tiazolidinedionas/farmacologia , Alelos , Animais , Células Cultivadas , Fator 3 de Diferenciação de Crescimento/genética , Humanos , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , PPAR gama/genética , Fosforilação/efeitos dos fármacos
8.
Cells ; 9(1)2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947892

RESUMO

Macrophages are critical for regulation of inflammatory response during endotoxemia and septic shock. However, the mediators underlying their regulatory function remain obscure. Growth differentiation factor 3 (GDF3), a member of transforming growth factor beta (TGF-ß) superfamily, has been implicated in inflammatory response. Nonetheless, the role of GDF3 in macrophage-regulated endotoxemia/sepsis is unknown. Here, we show that serum GDF3 levels in septic patients are elevated and strongly correlate with severity of sepsis and 28-day mortality. Interestingly, macrophages treated with recombinant GDF3 protein (rGDF3) exhibit greatly reduced production of pro-inflammatory cytokines, comparing to controls upon endotoxin challenge. Moreover, acute administration of rGDF3 to endotoxin-treated mice suppresses macrophage infiltration to the heart, attenuates systemic and cardiac inflammation with less pro-inflammatory macrophages (M1) and more anti-inflammatory macrophages (M2), as well as prolongs mouse survival. Mechanistically, GDF3 is able to activate Smad2/Smad3 phosphorylation, and consequently inhibits the expression of nod-like receptor protein-3 (NLRP3) in macrophages. Accordingly, blockade of Smad2/Smad3 phosphorylation with SB431542 significantly offsets rGDF3-mediated anti-inflammatory effects. Taken together, this study uncovers that GDF3, as a novel sepsis-associated factor, may have a dual role in the pathophysiology of sepsis. Acute administration of rGDF3 into endotoxic shock mice could increase survival outcome and improve cardiac function through anti-inflammatory response by suppression of M1 macrophage phenotype. However, constitutive high levels of GDF3 in human sepsis patients are associated with lethality, suggesting that GDF3 may promote macrophage polarization toward M2 phenotype which could lead to immunosuppression.


Assuntos
Fator 3 de Diferenciação de Crescimento/metabolismo , Coração/fisiopatologia , Inflamação/patologia , Macrófagos/patologia , Sepse/prevenção & controle , Sepse/fisiopatologia , Adulto , Animais , Estudos de Casos e Controles , Polaridade Celular/efeitos dos fármacos , Citocinas/biossíntese , Endotoxinas , Fator 3 de Diferenciação de Crescimento/sangue , Fator 3 de Diferenciação de Crescimento/genética , Humanos , Inflamação/sangue , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Sepse/sangue , Proteínas Smad/metabolismo , Baço/patologia , Análise de Sobrevida , Resultado do Tratamento
9.
J Cell Physiol ; 235(6): 5241-5255, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31840817

RESUMO

Intervertebral disc degeneration (IDD) is a public health dilemma as it is associated with low back and neck pain, a frequent reason for patients to visit the physician. During IDD, nucleus pulposus (NP), the central compartment of intervertebral disc (IVD) undergo degeneration. Stem cells have been adopted as a promising biological source to regenerate the IVD and restore its function. Here, we describe a simple, two-step differentiation strategy using a cocktail of four factors (LDN, AGN, FGF, and CHIR) for efficient derivation of notochordal cells from human embryonic stem cells (hESCs). We employed a CRISPR/Cas9 based genome-editing approach to knock-in the mCherry reporter vector upstream of the 3' untranslated region of the Noto gene in H9-hESCs and monitored notochordal cell differentiation. Our data show that treatment of H9-hESCs with the above-mentioned four factors for 6 days successfully resulted in notochordal cells. These cells were characterized by morphology, immunostaining, and gene and protein expression analyses for established notochordal cell markers including FoxA2, SHH, and Brachyury. Additionally, pan-genomic high-throughput single cell RNA-sequencing revealed an efficient and robust notochordal differentiation. We further identified a key regulatory network consisting of eight candidate genes encoding transcription factors including PAX6, GDF3, FOXD3, TDGF1, and SOX5, which are considered as potential drivers of notochordal differentiation. This is the first single cell transcriptomic analysis of notochordal cells derived from hESCs. The ability to efficiently obtain notochordal cells from pluripotent stem cells provides an additional tool to develop new cell-based therapies for the treatment of IDD.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias Humanas/metabolismo , Degeneração do Disco Intervertebral/genética , Transcriptoma/genética , Biomarcadores/metabolismo , Proteínas Fetais/genética , Fatores de Transcrição Forkhead/genética , Proteínas Ligadas por GPI/genética , Redes Reguladoras de Genes/genética , Fator 3 de Diferenciação de Crescimento/genética , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas , Peptídeos e Proteínas de Sinalização Intercelular/genética , Disco Intervertebral/crescimento & desenvolvimento , Degeneração do Disco Intervertebral/patologia , Proteínas de Neoplasias/genética , Notocorda/crescimento & desenvolvimento , Notocorda/metabolismo , Núcleo Pulposo/crescimento & desenvolvimento , Núcleo Pulposo/metabolismo , Fator de Transcrição PAX6/genética , Regeneração/genética , Fatores de Transcrição SOXD/genética , Análise de Célula Única , Proteínas com Domínio T/genética
10.
Sci Rep ; 9(1): 12090, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431689

RESUMO

Computed tomography (CT) is a widely used imaging modality. Among the recent technical improvements to increase the range of detection for optimized diagnostic, new devices such as dual energy CT allow elemental discrimination but still remain limited to two energies. Spectral photon-counting CT (SPCCT) is an emerging X-ray imaging technology with a completely new multiple energy detection and high spatial resolution (200 µm). This unique technique allows detection and quantification of a given element thanks to an element-specific increase in X-ray absorption for an energy (K-band) depending on its atomic number. The main contrast media used hitherto are iodine-based compounds but the K-edge of iodine (33.2 keV) is out of the range of detection. Therefore, it is crucial to develop contrast media suitable for this advanced technology. Gadolinium, well known and used element for MRI, possess a K-edge (50.2 keV) well suited for the SPCCT modality. The use of nano-objects instead of molecular entities is pushed by the necessity of high local concentration. In this work, nano-GdF3 is validated on a clinical based prototype, to be used as efficient in vivo contrast media. Beside an extremely high stability, it presents long lasting time in the blood pool allowing perfusion imaging of small animals, without apparent toxicity.


Assuntos
Meios de Contraste/farmacologia , Nanopartículas/química , Tomografia Computadorizada por Raios X/métodos , Animais , Meios de Contraste/química , Fator 3 de Diferenciação de Crescimento/farmacologia , Humanos , Iodo/química , Iodo/farmacologia , Imageamento por Ressonância Magnética , Camundongos , Imagens de Fantasmas , Fótons/uso terapêutico
13.
Sci Rep ; 8(1): 13595, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206386

RESUMO

Growth differentiation factors 1 (GDF1) and 3 (GDF3) are members of the transforming growth factor superfamily (TGF-ß) that is involved in fundamental early-developmental processes that are conserved across vertebrates. The evolutionary history of these genes is still under debate due to ambiguous definitions of homologous relationships among vertebrates. Thus, the goal of this study was to unravel the evolution of the GDF1 and GDF3 genes of vertebrates, emphasizing the understanding of homologous relationships and their evolutionary origin. Our results revealed that the GDF1 and GDF3 genes found in anurans and mammals are the products of independent duplication events of an ancestral gene in the ancestor of each of these lineages. The main implication of this result is that the GDF1 and GDF3 genes of anurans and mammals are not 1:1 orthologs. In other words, genes that participate in fundamental processes during early development have been reinvented two independent times during the evolutionary history of tetrapods.


Assuntos
Proteínas de Anfíbios/genética , Fator 1 de Diferenciação de Crescimento/genética , Fator 3 de Diferenciação de Crescimento/genética , Filogenia , Animais , Anuros , Mamíferos
14.
Mov Disord ; 33(7): 1108-1118, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30153385

RESUMO

BACKGROUND: The most likely genetic cause of X-linked dystonia-parkinsonism, a neurodegenerative movement disorder endemic to the Philippines, is a 2672-bp-long retrotransposon insertion in intron 32 of the TAF1 gene. The objectives of this study were to investigate whether (1) TAF1 expression is altered in induced pluripotent stem cells and differentiated neuronal models and (2) excision of the retrotransposon insertion restores normal TAF1 expression. METHODS: Expression of TAF1 and its neuronal isoform were determined in induced pluripotent stem cells and in induced pluripotent stem cell-derived cortical neurons and spiny projection neurons using quantitative PCR. Genome editing-based excision of the retrotransposon insertion was performed on induced pluripotent stem cells from 3 X-linked dystonia-parkinsonism patients. Edited and unedited induced pluripotent stem cells from X-linked dystonia-parkinsonism patients and controls were differentiated into cortical neurons and spiny projection neurons, and TAF1 expression was compared across groups. RESULTS: TAF1 was reduced in patient-derived induced pluripotent stem cells (P < 0.05) and spiny projection neurons (P < 0.01). After genome editing, we observed higher TAF1 expression in edited compared with unedited induced pluripotent stem cells (P < 0.0001). In edited spiny projection neurons, TAF1 expression was also increased, but did not reach statistical significance. No expression differences were observed in cortical neurons. CONCLUSIONS: (1) TAF1 reduction in X-linked dystonia-parkinsonism is likely due to the retrotransposon insertion and is recapitulated in induced pluripotent stem cells and differentiated spiny projection neurons. (2) TAF1 reduction is a tractable molecular phenotype of X-linked dystonia-parkinsonism that can be driven by excision of the retrotransposon insertion. (3) Successful rescue of the molecular phenotype in an endogenous, genome-edited model serves as a proof of principle that may successfully be transferred to other inherited neurodegenerative diseases. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Edição de Genes/métodos , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Histona Acetiltransferases/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Adulto , Células Cultivadas , Córtex Cerebral/citologia , Feminino , Fator 3 de Diferenciação de Crescimento/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Homeobox Nanog/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transfecção , Tubulina (Proteína)/metabolismo
15.
Aging Cell ; 17(5): e12815, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30003692

RESUMO

Tissue regeneration is a highly coordinated process with sequential events including immune cell infiltration, clearance of damaged tissues, and immune-supported regrowth of the tissue. Aging has a well-documented negative impact on this process globally; however, whether changes in immune cells per se are contributing to the decline in the body's ability to regenerate tissues with aging is not clearly understood. Here, we set out to characterize the dynamics of macrophage infiltration and their functional contribution to muscle regeneration by comparing young and aged animals upon acute sterile injury. Injured muscle of old mice showed markedly elevated number of macrophages, with a predominance for Ly6Chigh pro-inflammatory macrophages and a lower ratio of the Ly6Clow repair macrophages. Of interest, a recently identified repair macrophage-derived cytokine, growth differentiation factor 3 (GDF3), was markedly downregulated in injured muscle of old relative to young mice. Supplementation of recombinant GDF3 in aged mice ameliorated the inefficient regenerative response. Together, these results uncover a deficiency in the quantity and quality of infiltrating macrophages during aging and suggest that in vivo administration of GDF3 could be an effective therapeutic approach.


Assuntos
Envelhecimento/patologia , Fator 3 de Diferenciação de Crescimento/administração & dosagem , Fator 3 de Diferenciação de Crescimento/farmacologia , Músculo Esquelético/lesões , Músculo Esquelético/fisiopatologia , Regeneração/efeitos dos fármacos , Doença Aguda , Envelhecimento/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Cinética , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Mioblastos/patologia , Fenótipo
16.
Diabetes ; 67(9): 1761-1772, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29945891

RESUMO

Previous genetic studies in mice have shown that functional loss of activin receptor-like kinase 7 (ALK7), a type I transforming growth factor-ß receptor, increases lipolysis to resist fat accumulation in adipocytes. Although growth/differentiation factor 3 (GDF3) has been suggested to function as a ligand of ALK7 under nutrient-excess conditions, it is unknown how GDF3 production is regulated. Here, we show that a physiologically low level of insulin converts CD11c- adipose tissue macrophages (ATMs) into GDF3-producing CD11c+ macrophages ex vivo and directs ALK7-dependent accumulation of fat in vivo. Depletion of ATMs by clodronate upregulates adipose lipases and reduces fat mass in ALK7-intact obese mice, but not in their ALK7-deficient counterparts. Furthermore, depletion of ATMs or transplantation of GDF3-deficient bone marrow negates the in vivo effects of insulin on both lipolysis and fat accumulation in ALK7-intact mice. The GDF3-ALK7 axis between ATMs and adipocytes represents a previously unrecognized mechanism by which insulin regulates both fat metabolism and mass.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Fator 3 de Diferenciação de Crescimento/agonistas , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Lipólise/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Receptores de Ativinas Tipo I/genética , Tecido Adiposo Branco/imunologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Adiposidade/efeitos dos fármacos , Animais , Transplante de Medula Óssea , Antígeno CD11c/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter/efeitos dos fármacos , Fator 3 de Diferenciação de Crescimento/genética , Fator 3 de Diferenciação de Crescimento/metabolismo , Células HEK293 , Humanos , Hipoglicemiantes/uso terapêutico , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Insulina/uso terapêutico , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Congênicos , Camundongos Endogâmicos , Camundongos Knockout , Obesidade/imunologia , Obesidade/metabolismo , Obesidade/patologia , Obesidade/terapia , Aumento de Peso/efeitos dos fármacos
17.
Med Sci Monit ; 24: 2992-3001, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29735971

RESUMO

BACKGROUND The present study aimed to evaluate the pathogenicity of 5 [i]GDF3[/i] gene variations using functional and [i]in silico[/i] assessment approaches in a Chinese congenital scoliosis population. MATERIAL AND METHODS We selected 13 patients carrying 5 variants from a congenital scoliosis cohort. The PCR products of samples were verified by Sanger sequencing. The data and sequence alignment were analyzed using Chromas and ClustalW. SIFT and PolyPhen-2 were used to predict the functional effects of each missense and amino acid substitutions. SWISS-MODEL server and Swiss-PdbViewer were used to analyze conformational changes of GDF3 structure. DUET, UCSF Chimera, and Ligplot software were used to further explore the protein stability, side chains, and hydrophobic interaction changes, respectively. Luciferase reporter gene and Western blot assays were used to perform functional assessments for every variant from the molecular level. RESULTS Of the 13 patients, the S212L variant reoccurred in 9 patients. The rest of the patients carried 1 missense mutation each. The variants of R84L and R84C were predicted as probably damaging [i]loci[/i]. S212L, N215S, A251T were predicted as benign [i]loci[/i]. In functional assays, R84L, S212L, and A251T display inhibitory effects on functional assays. N251S mutation showed a negative effect in protein expression assays but not in luciferase reporter gene assays. The variant of R84C displayed no negative effects on 2 functional assays. CONCLUSIONS Our results suggest that the 4 of the 5 variants in [i]GDF3[/i] gene contribute different pathogenicity in congenital scoliosis, which may provide molecular evidence for clinical genetic testing.


Assuntos
Povo Asiático/genética , Biologia Computacional/métodos , Fator 3 de Diferenciação de Crescimento/genética , Mutação/genética , Escoliose/congênito , Escoliose/genética , Adolescente , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Genes Reporter , Fator 3 de Diferenciação de Crescimento/química , Humanos , Luciferases/metabolismo , Masculino , Escoliose/diagnóstico por imagem , Homologia Estrutural de Proteína
18.
Vitam Horm ; 107: 227-261, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29544632

RESUMO

Primordial germ cells migrate to the fetal gonads and proliferate during gestation to generate a fixed complement of primordial follicles, the so-called ovarian reserve. Primordial follicles comprise an oocyte arrested at the diplotene stage of meiosis, surrounded by a layer of pregranulosa cells. Activation of primordial follicles to grow beyond this arrested stage is of particular interest because, once activated, they are subjected to regulatory mechanisms involved in growth, selection, maturation, and ultimately, ovulation or atresia. The vast majority of follicles succumb to atresia and are permanently lost from the quiescent or growing pool of follicles. The bone morphogenetic proteins (BMPs), together with other intraovarian growth factors, are intimately involved in regulation of follicle recruitment, dominant follicle selection, ovulation, and atresia. Activation of primordial follicles appears to be a continuous process, and the number of small antral follicles at the beginning of the menstrual cycle provides an indirect indication of ovarian reserve. Continued antral follicle development during the follicular phase of the menstrual cycle is driven by follicle stimulating hormone (FSH) and luteinizing hormone (LH) in conjunction with many intraovarian growth factors and inhibitors interrelated in a complex web of regulatory balance. The BMP signaling system has a major intraovarian role in many species, including the human, in the generation of transcription factors that influence proliferation, steroidogenesis, cell differentiation, and maturation prior to ovulation, as well as formation of corpora lutea after ovulation. At the anterior pituitary level, BMPs also contribute to the regulation of gonadotrophin production.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Fase Folicular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Oogênese , Ovário/fisiologia , Animais , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas/agonistas , Receptores de Proteínas Morfogenéticas Ósseas/genética , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Feminino , Fator 3 de Diferenciação de Crescimento/genética , Fator 3 de Diferenciação de Crescimento/metabolismo , Fator 9 de Diferenciação de Crescimento/genética , Fator 9 de Diferenciação de Crescimento/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Ligantes , Ovário/citologia , Ovário/metabolismo , Ovulação/metabolismo , Transdução de Sinais
19.
Elife ; 62017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29280436

RESUMO

Experiments by three independent groups on zebrafish have clarified the role of two signaling factors, Nodal and Gdf3, during the early stages of development.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Padronização Corporal , Fator 3 de Diferenciação de Crescimento , Proteína Nodal , Fator de Crescimento Transformador beta
20.
IET Nanobiotechnol ; 11(8): 1052-1058, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29155407

RESUMO

The authors synthesised porous GdF3:Er3+,Yb3+-COOH core-shell structured bi-functional nanoparticles through a one-step hydrothermal route during which ethylene diamine tetraacetic acid) was bound to the surface of the nanoparticles. It has high up-conversion emission intensity for monitoring the drug release process and magnetisation saturation value (10.2 emu/g) for drug targeting under foreign magnetic fields. Moreover, porous GdF3:Er3+,Yb3+ as drug carriers with a high drug-loading efficiency. cis-Dichlorodiammineplatinum(II) (cisplatin, CDDP)-loaded GdF3:Er3+,Yb3+ nanoparticles (GdF3:Er3+,Yb3+-CDDP) were characterised by the Fourier transform infrared spectra, and CDDP was loaded in the form of electrostatic interaction and hydrogen bonds. Compared with CDDP alone, GdF3:Er3+,Yb3+-CDDP nanoparticles increase concentration of CDDP in the target site and enhance its anticancer efficiency. Therefore, the as-prepared GdF3:Er3+,Yb3+-COOH nanoparticles allow simultaneous targeted drug delivery and monitoring as promising anti-cancer theranostic agents.


Assuntos
Sistemas de Liberação de Medicamentos , Érbio/química , Fator 3 de Diferenciação de Crescimento/administração & dosagem , Nanopartículas/administração & dosagem , Itérbio/química , Antineoplásicos/química , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA