Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.275
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732072

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease. Despite new methods of diagnostics and treatment as well as extensive biological and immunosuppressive treatment, the etiology of RA is not fully understood. Moreover, the problem of diagnosis and treatment of RA patients is still current and affects a large group of patients. It is suggested that endoplasmic reticulum (ER)-related features may impair adaptation to chronic stress, inferring the risk of rheumatoid arthritis. The main goal in this study was evaluation of changes in mRNA translation to determine chronic ER stress conditions in rheumatoid arthritis patients. The study group consist of 86 individuals including a total of 56 rheumatoid arthritis patients and 30 healthy controls. The expression level of mRNA form blood samples of RA patients as well as controls of the unfolded protein response (UPR)-associated genes (p-eIF2, BCL-2, PERK, ATF4, and BAX) were investigated using real-time qPCR. GAPDH expression was used as a standard control. Considering the median, the expression levels of PERK, BCL-2, p-eIF2, ATF4, and BAX were found to be significantly increased in the blood of RA patients compared with the control group. The p-value for the PERK gene was 0.0000000036, the p-value for the BCL-2 gene was 0.000000014, the p-value for the p-eIF2 gene was 0.006948, the p-value for the ATF4 gene was 0.0000056, and the p-value for the BAX gene was 0.00019, respectively. Thus, it can be concluded that the targeting of the components of the PERK-dependent UPR signaling pathway via small-molecule PERK inhibitors may contribute to the development of novel, innovative treatment strategies against rheumatoid arthritis.


Assuntos
Artrite Reumatoide , Estresse do Retículo Endoplasmático , Perfilação da Expressão Gênica , Resposta a Proteínas não Dobradas , eIF-2 Quinase , Humanos , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/sangue , Resposta a Proteínas não Dobradas/genética , Feminino , Masculino , Pessoa de Meia-Idade , Estresse do Retículo Endoplasmático/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Adulto , Idoso , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Estudos de Casos e Controles , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética
2.
Mol Reprod Dev ; 91(4): e23742, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644727

RESUMO

Preeclampsia (PE) is a common pregnancy complication with a high mortality rate. Abnormally activated endoplasmic reticulum stress (ERS) is believed to be responsible for the destruction of key placental cells-trophoblasts. Phenylbutyric acid (4-PBA), an ERS inhibitor, is involved in regulating the development of ERS-related diseases. At present, how 4-PBA affects trophoblasts and its mechanisms is still unclear. In this study, PE cell models were established by stimulating HTR-8/SVneo cells with hypoxia. To verify the underlying mechanisms of 4-PBA on PE, CCT020312, an activator of PERK, was also used. The results showed that 4-PBA restored hypoxia-induced trophoblast viability, inhibited HIF-1α protein expression, inflammation, and PERK/ATF-4/CHOP pathway. Hoechst 33342 staining and flow cytometry results confirmed that 4-PBA decreased hypoxia-induced apoptosis in trophoblasts. The results of the JC-1 analysis and apoptosis initiation enzyme activity assay also demonstrated that 4-PBA inhibited apoptosis related to the mitochondrial pathway. Furthermore, by detecting autophagy in trophoblasts, an increased number of autophagic vesicles, damaged mitochondria, enhanced dansylcadaverine fluorescence, enhanced levels of autophagy proteins Beclin-1, LC3II, and decreased p62 were seen in hypoxia-stimulated cells. These changes were reversed by 4-PBA. Furthermore, it was observed that CCT020312 reversed the effects of 4-PBA on the viability, apoptosis, and autophagosome number of hypoxia-induced trophoblasts. In summary, 4-PBA reduces autophagy and apoptosis via the PERK/ATF-4/CHOP pathway and mitochondrial pathway, thereby restoring the viability of hypoxic trophoblasts. These findings provide a solid evidence base for the use of 4-PBA in PE treatment and guide a new direction for improving the outcomes of patients with PE.


Assuntos
Fator 4 Ativador da Transcrição , Apoptose , Autofagia , Hipóxia Celular , Fenilbutiratos , Pré-Eclâmpsia , Fator de Transcrição CHOP , Trofoblastos , eIF-2 Quinase , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Trofoblastos/patologia , Feminino , Humanos , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/patologia , Autofagia/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Apoptose/efeitos dos fármacos , Gravidez , Fenilbutiratos/farmacologia , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Hipóxia Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Linhagem Celular
3.
Zhen Ci Yan Jiu ; 49(4): 358-366, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38649203

RESUMO

OBJECTIVES: To analyze the effects of electroacupuncture (EA) at "Fenglong" (ST40) and "Zusanli" (ST36) of different intensities and durations on rats with non-alcoholic fatty liver disease (NAFLD) based on the protein kinase R-like endoplasmic reticulum kinase (PERK)-activating transcription factor 4 (ATF4)-C/EBP homologous protein (CHOP) signaling pathway, so as to explore its mechanism underlying improvement of NAFLD. METHODS: SD rats were randomly divided into normal diet group, high-fat model group, sham EA group, strong stimulation EA (SEA) group, and weak stimulation EA (WEA) group, with 15 rats in each group. Each group was further divided into 2, 3, and 4-week subgroups. NAFLD rat model was established by feeding a high-fat diet. After successful modeling, rats in the SEA and WEA groups received EA at bilateral ST40 and ST36 with dense and sparse waves (4 Hz/20 Hz) at current intensities of 4 mA (SEA group) and 2 mA (WEA group), lasting for 20 minutes, once a day, 5 days a week with 2 days of rest. The sham EA group only had the EA apparatus connected without electricity. Different duration subgroups were intervened for 2, 3, and 4 weeks. After the intervention, the contents of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in rats were detected by an automatic biochemical analyzer;liver morphological changes were observed by Oil Red O staining;real-time fluorescence quantitative PCR and Western blot were used to detect the expression of PERK, ATF4, and CHOP mRNAs and proteins in the rat liver tissue. RESULTS: In the high-fat model group, there was a significant accumulation of red lipid droplets in the liver cells, which was reduced significantly in the SEA group at the 4th week. Compared with the normal diet group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and proteins in the liver tissue were elevated (P<0.01) in the high-fat model group . Compared with the high-fat model group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, CHOP mRNAs and proteins in the liver tissue were decreased (P<0.01, P<0.05) in the SEA and WEA groups. Compared with the sham EA group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs were decreased (P<0.01, P<0.05) in the SEA and WEA groups, the expression of PERK, ATF4, and CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA group at the 2nd, 3rd, and 4th week, the expression of PERK and CHOP proteins at the 2nd, 3rd, 4th week and ATF4 protein at 2nd week in the liver tissue were decreased (P<0.01, P<0.05) in the WEA group. Compared with the SEA group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and proteins in the liver tissue were elevated (P<0.05, P<0.01) in the WEA group. Compared with the 2-week time point within the groups, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and PERK proteins in the liver tissue were decreased (P<0.01, P<0.05) in the SEA and WEA groups at 3rd and 4th week, the expression of ATF4 proteins in the liver tissue was decreased (P<0.01) in the SEA group at 3rd and 4th week, and the expression of CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA group at 4th week and in the WEA group at 3rd and 4th week. Compared with the 3-week time point within the groups, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs were significantly decreased (P<0.05, P<0.01) in the SEA and WEA groups at 4th week, the expression of PERK and CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA and WEA groups at 4th week, and the expression of ATF4 protein in the liver tissue was decreased (P<0.05) in the SEA group at 4th week. CONCLUSIONS: EA at ST40 and ST36 can significantly improve liver function in NAFLD rats, and its mechanism of action may involve inhibiting PERK expression thereby targeting the downstream ATF4/CHOP signaling pathway to suppress endoplasmic reticulum stress, exerting a liver protective effect;the optimal effect was observed with EA intensity of 4 mA for 4 weeks.


Assuntos
Fator 4 Ativador da Transcrição , Pontos de Acupuntura , Eletroacupuntura , Fígado , Hepatopatia Gordurosa não Alcoólica , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Transcrição CHOP , eIF-2 Quinase , Animais , Ratos , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/genética , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética
4.
J Cell Mol Med ; 28(8): e18335, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652216

RESUMO

Management of hepatocellular carcinoma (HCC) remains challenging due to population growth, frequent recurrence and drug resistance. Targeting of genes involved with the ferroptosis is a promising alternative treatment strategy for HCC. The present study aimed to investigate the effect of dihydroartemisinin (DHA) against HCC and explore the underlying mechanisms. The effects of DHA on induction of ferroptosis were investigated with the measurement of malondialdehyde concentrations, oxidised C11 BODIPY 581/591 staining, as well as subcutaneous xenograft experiments. Activated transcription factor 4 (ATF4) and solute carrier family 7 member 11 (SLC7A11 or xCT) were overexpressed with lentiviruses to verify the target of DHA. Here, we confirmed the anticancer effect of DHA in inducing ferroptosis is related to ATF4. High expression of ATF4 is related to worse clinicopathological prognosis of HCC. Mechanistically, DHA inhibited the expression of ATF4, thereby promoting lipid peroxidation and ferroptosis of HCC cells. Overexpression of ATF4 rescued DHA-induced ferroptosis. Moreover, ATF4 could directly bound to the SLC7A11 promoter and increase its transcription. In addition, DHA enhances the chemosensitivity of sorafenib on HCC in vivo and in vitro. These findings confirm that DHA induces ferroptosis of HCC via inhibiting ATF4-xCT pathway, thereby providing new drug options for the treatment of HCC.


Assuntos
Fator 4 Ativador da Transcrição , Sistema y+ de Transporte de Aminoácidos , Artemisininas , Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Ferroptose/efeitos dos fármacos , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Humanos , Animais , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Camundongos Nus , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Feminino , Camundongos Endogâmicos BALB C
5.
Endocr Regul ; 58(1): 91-100, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656254

RESUMO

Objective. Glucose and glutamine supply as well as serine synthesis and endoplasmic reticulum (ER) stress are important factors of glioblastoma growth. Previous studies showed that the knockdown of ERN1 (ER to nucleus signaling 1) suppressed glioblastoma cell proliferation and modified the sensitivity of numerous gene expressions to nutrient deprivations. The present study is aimed to investigate the impact of glucose and glutamine deprivations on the expression of serine synthesis genes in U87MG glioblastoma cells in relation to ERN1 knockdown with the intent to reveal the role of ERN1 signaling pathway on the ER stress-dependent regulation of these gene expressions. Clarification of the regulatory mechanisms of serine synthesis is a great significance for glioblastoma therapy. Methods. The control U87MG glioblastoma cells (transfected by empty vector) and ERN1 knockdown cells (transfected by dominant-negative ERN1) were exposed under glucose and glutamine deprivation conditions for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of PHGDH (phosphoglycerate dehydrogenase), PSAT1 (phosphoserine amino-transferase 1), PSPH (phosphoserine phosphatase), ATF4 (activating transcription factor 4), and SHMT1 (serine hydroxymethyltransferase 1) genes was studied by real-time qPCR and normalized to ACTB. Results. It was found that the expression level of genes responsible for serine synthesis such as PHGDH, PSAT1, PSPH, and transcription factor ATF4 was up-regulated in U87MG glioblastoma cells under glucose and glutamine deprivations. Furthermore, inhibition of ERN1 significantly enhances the impact of glucose and especially glutamine deprivations on these gene expressions. At the same time, the expression of the SHMT1 gene, which is responsible for serine conversion to glycine, was down-regulated in both nutrient deprivation conditions with more significant changes in ERN1 knockdown glioblastoma cells. Conclusion. Taken together, the results of present study indicate that the expression of genes responsible for serine synthesis is sensitive to glucose and glutamine deprivations in gene-specific manner and that suppression of ERN1 signaling significantly modifies the impact of both glucose and glutamine deprivations on PHGDH, PSAT1, PSPH, ATF4, and SHMT1 gene expressions and reflects the ERN1-mediated genome reprograming introduced by nutrient deprivation condition.


Assuntos
Endorribonucleases , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Glucose , Glutamina , Fosfoglicerato Desidrogenase , Monoéster Fosfórico Hidrolases , Proteínas Serina-Treonina Quinases , Serina , Transaminases , Humanos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioblastoma/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina/metabolismo , Serina/biossíntese , Transdução de Sinais
6.
PLoS One ; 19(4): e0300958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625890

RESUMO

Oxidative damage to erythroid cells plays a key role in the pathogenesis of thalassemia. The oxidative stress in thalassemia is potentiated by heme, nonheme iron, and free iron produced by the Fenton reaction, due to degradation of the unstable hemoglobin and iron overload. In addition, the levels of antioxidant enzymes and molecules are significantly decreased in erythrocytes in α- and ß-thalassemia. The control of oxidative stress in red blood cells (RBCs) is known to be mediated by microRNAs (miRNAs). In erythroid cells, microR-214 (miR-214) has been reported to respond to external oxidative stress. However, the molecular mechanisms underlying this phenomenon remain unclear, especially during thalassemic erythropoiesis. In the present study, to further understand how miR-214 aggravates oxidative stress in thalassemia erythroid cells, we investigated the molecular mechanism of miR-214 and its regulation of the oxidative status in thalassemia erythrocytes. We have reported a biphasic expression of miR-214 in ß- and α-thalassemia. In the present study the effect of miR-214 expression was investigated by using miR -inhibitor and -mimic transfection in erythroid cell lines induced by hemin. Our study showed a biphasic expression of miR-214 in ß- and α-thalassemia. Subsequently, we examined the effect of miR-214 on erythroid differentiation in thalassemia. Our study reveals the loss-of-function of miR-214 during translational activation of activating transcription factor 4 mRNA, leading to decreased reactive oxygen species levels and increased glutathione levels in thalassemia erythroid cell. Our results suggest that the expression of activating transcription factor 4 regulated by miR-214 is important for oxidative stress modulation in thalassemic erythroid cells. Our findings can help to better understand the molecular mechanism of miRNA and transcription factors in regulation of oxidative status in erythroid cells, particularly in thalassemia, and could be useful for managing and relieving severe anemia symptoms in patients in the future.


Assuntos
MicroRNAs , Talassemia alfa , Talassemia beta , Humanos , Fator 4 Ativador da Transcrição/metabolismo , Estresse Oxidativo/genética , Células Eritroides/metabolismo , Talassemia beta/patologia , MicroRNAs/metabolismo , Ferro
7.
Cell ; 187(9): 2288-2304.e27, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38565142

RESUMO

Taurine is used to bolster immunity, but its effects on antitumor immunity are unclear. Here, we report that cancer-related taurine consumption causes T cell exhaustion and tumor progression. The taurine transporter SLC6A6 is correlated with aggressiveness and poor outcomes in multiple cancers. SLC6A6-mediated taurine uptake promotes the malignant behaviors of tumor cells but also increases the survival and effector function of CD8+ T cells. Tumor cells outcompete CD8+ T cells for taurine by overexpressing SLC6A6, which induces T cell death and malfunction, thereby fueling tumor progression. Mechanistically, taurine deficiency in CD8+ T cells increases ER stress, promoting ATF4 transcription in a PERK-JAK1-STAT3 signaling-dependent manner. Increased ATF4 transactivates multiple immune checkpoint genes and induces T cell exhaustion. In gastric cancer, we identify a chemotherapy-induced SP1-SLC6A6 regulatory axis. Our findings suggest that tumoral-SLC6A6-mediated taurine deficiency promotes immune evasion and that taurine supplementation reinvigorates exhausted CD8+ T cells and increases the efficacy of cancer therapies.


Assuntos
Linfócitos T CD8-Positivos , Glicoproteínas de Membrana , Taurina , Taurina/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Estresse do Retículo Endoplasmático , Fator 4 Ativador da Transcrição/metabolismo , Transdução de Sinais , Feminino , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Fator de Transcrição STAT3/metabolismo
8.
Toxicol Appl Pharmacol ; 485: 116920, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38582373

RESUMO

Asparaginase-associated pancreatitis (AAP) is a severe and potentially life-threatening drug-induced pancreas targeted toxicity in the combined chemotherapy of acute lymphoblastic leukemia among children and adolescents. The toxicological mechanism of AAP is not yet clear, and there are no effective preventive and treatment measures available clinically. Fibroblast growth factor 21 (FGF21) is a secretory hormone that regulates lipid, glucose, and energy metabolism balance. Acinar tissue is the main source of pancreatic FGF21 protein and plays an important role in maintaining pancreatic metabolic balance. In this study, we found that the decrease of FGF21 in pancreas is closely related to AAP. Pegaspargase (1 IU/g) induces widespread edema and inflammatory infiltration in the pancreas of rats/mice. The specific expression of FGF21 in the acinar tissue of AAP rats was significantly downregulated. Asparaginase caused dysregulation of the ATF4/ATF3/FGF21 axis in acinar tissue or cells, and thus mediated the decrease of FGF21. It greatly activated ATF3 in the acinar, which competed with ATF4 for the Fgf21 promoter, thereby inhibiting the expression of FGF21. Pharmacological replacement of FGF21 (1 mg/kg) or PERK inhibitors (GSK2656157, 25 mg/kg) can significantly mitigate the pancreatic tissue damage and reduce markers of inflammation associated with AAP, representing potential strategies for the prevention and treatment of AAP.


Assuntos
Asparaginase , Fatores de Crescimento de Fibroblastos , Pâncreas , Pancreatite , eIF-2 Quinase , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Asparaginase/toxicidade , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Pancreatite/patologia , Masculino , Ratos , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pâncreas/metabolismo , Camundongos , Ratos Sprague-Dawley , Polietilenoglicóis/toxicidade , Antineoplásicos/toxicidade , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Camundongos Endogâmicos C57BL
9.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 241-247, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650127

RESUMO

Oral squamous cell carcinoma (OSCC) is a common malignant tumor. Importin7 (IPO7) is responsible for nucleoplasmic transport of RNAs and proteins, and it has been confirmed to be involved in the development of human cancers. This study aimed to explore the function and mechanism of IPO7 in OSCC. IPO7 expression in tissues and cells was determined by RT-qPCR. Cell proliferative, migratory, and invasive capabilities were detected through transwell assay and colony formation assay. Mice xenograft models were established for evaluating tumor growth. Autophagy was estimated by the LC3 levels in cells through western blot and immunofluorescence (IF). Western blot was utilized to detect the key proteins in PERK/EIF2AK3/ATF4 pathway for assessing the endoplasmic reticulum stress (ERS). The interaction of IPO7 and homeobox A10 (HOXA10) was tested by GST pull-down assay and Co-IP assay. ChIP assay and luciferase reporter assay were utilized to determine the combination of HOXA10 and EIF2AK3. We proved that IPO7 was upregulated in OSCC tissues and cells, and its depletion reduced cell proliferation, migration, invasion and tumor growth. Furthermore, LC3 expression in cells was found to be reduced by IPO7 knockdown. IPO7 promoted OSCC tumor metastasis by activating autophagy. Additionally, we discovered that IPO7 could regulate ERS by activating the PERK/ATF4 pathway. EIF2AK3 upregulation can promote cell autophagy. Furthermore, IPO7 was proven to promote nuclear translocation of HOXA10 in cells. EIF2AK3 promoter can bind to HOXA10. Rescue assay confirmed that HOXA10 upregulation can reverse the effect of IPO7 silencing on OSCC progression. IPO7 can enhance proliferation, migration, invasion, and autophagy by nuclear translocation of HOXA10 and the activation of EIF2AK3/ATF4 pathway in OSCC.


Assuntos
Autofagia , Carcinoma de Células Escamosas , Movimento Celular , Núcleo Celular , Proliferação de Células , Proteínas Homeobox A10 , Proteínas de Homeodomínio , Neoplasias Bucais , alfa Carioferinas , eIF-2 Quinase , Humanos , Autofagia/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Movimento Celular/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Núcleo Celular/metabolismo , Camundongos , Estresse do Retículo Endoplasmático/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Transdução de Sinais , Carioferinas/metabolismo , Carioferinas/genética , Masculino , Camundongos Endogâmicos BALB C , Feminino , Invasividade Neoplásica
10.
Tissue Eng Regen Med ; 21(4): 595-608, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38466361

RESUMO

BACKGROUND: The purpose of this study was to investigate the specific effects of signal transducer and activator of transcription 4 (STAT4)-induced long intergenic nonprotein coding RNA 1278 (LINC01278) on the growth of non-small cell lung cancer (NSCLC) cells involved in the microRNA (miR)-877-5p/activated transcription factor 4 (ATF4) axis. METHODS: NSCLC tumor tissue and adjacent normal tissue were collected. Human normal lung epithelial cell BEAS-2B and human NSCLC cell lines (H1299, H1975, A549, H2228) were collected. The expression levels of STAT4, LINC01278, miR-877-5p, and ATF4 were detected. A549 cells were screened for subsequent experiments. The proliferation ability of cells was detected by colony formation experiment. Cell apoptosis was tested by flow cytometry. Scratch test and transwell assay were used to detect the migration and invasion ability of cells. Biological function of LINC01278 in NSCLC was confirmed by xenograft experiments. RESULTS: Low expression miR-877-5p and high expression of STAT4, LINC01278 and ATF4 were detected in NSCLC. Silenced LINC01278 in A549 cell depressed cell proliferation, migration and invasion, but facilitated cell apoptosis. LINC01278 was positively correlated with STAT4 and could directly bind to miR-877-5p. Upregulating miR-877-5p suppressed NSCLC cell progression, while downregulating miR-877-5p had the opposite effect. Upregulating miR-877-5p abrogated the effects of silenced LINC01278 on NSCLC cell progression. MiR-877-5p targeted ATF4. ATF4 upregulation could partly restore the carcinogenic effect of LINC01278 in vitro and in vivo. CONCLUSION: Our data supports that STAT4-induced upregulation of LINC01278 promotes NSCLC progression by modulating the miR-877-5p/ATF4 axis, suggesting a novel direction for NSCLC treatment.


Assuntos
Fator 4 Ativador da Transcrição , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Fator de Transcrição STAT4 , Regulação para Cima , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Animais , Fator de Transcrição STAT4/metabolismo , Fator de Transcrição STAT4/genética , Invasividade Neoplásica , Linhagem Celular Tumoral , Células A549 , Camundongos Nus , Camundongos , Apoptose , Feminino , Masculino , Movimento Celular , Camundongos Endogâmicos BALB C
11.
Adv Sci (Weinh) ; 11(18): e2400845, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520732

RESUMO

Complete remission of colorectal cancer (CRC) is still unachievable in the majority of patients by common fractionated radiotherapy, leaving risks of tumor metastasis and recurrence. Herein, clinical CRC samples demonstrated a difference in the phosphorylation of translation initiation factor eIF2α (p-eIF2α) and the activating transcription factor 4 (ATF4), whose increased expression by initial X-ray irradiation led to the resistance to subsequent radiotherapy. The underlying mechanism is studied in radio-resistant CT26 cells, revealing that the incomplete mitochondrial outer membrane permeabilization (iMOMP) triggered by X-ray irradiation is key for the elevated expression of p-eIF2α and ATF4, and therefore radio-resistance. This finding guided to discover that metformin and 2-DG are synergistic in reversing radio resistance by inhibiting p-eIF2α and ATF4. Liposomes loaded with metformin and 2-DG (M/D-Lipo) are thus prepared for enhancing fractionated radiotherapy of CRC, which achieved satisfactory therapeutic efficacy in both local and metastatic CRC tumors by reversing radio-resistance and preventing T lymphocyte exhaustion.


Assuntos
Neoplasias Colorretais , Lipossomos , Metformina , Mitocôndrias , Tolerância a Radiação , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/radioterapia , Neoplasias Colorretais/patologia , Camundongos , Animais , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Metformina/farmacologia , Metformina/uso terapêutico , Tolerância a Radiação/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética
12.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542323

RESUMO

As the global population ages, the number of patients with osteoporosis is rapidly rising. The existing first-line clinical drugs are bone resorption inhibitors that have difficulty restoring the bone mass of elderly patients to the safe range. The range and period of use of existing peptides and monoclonal antibodies are limited, and small-molecule bone formation-promoting drugs are urgently required. We established an I-9 synthesis route with high yield, simple operation, and low cost that was suitable for future large-scale production. I-9 administration promoted bone formation and increased bone mass in mice with low bone mass in an aged C57 mouse model. Our findings revealed a hitherto undescribed pathway involving the BMP2-ERK-ATF4 axis that promotes osteoblast differentiation; I-9 has favorable biosafety in mice. This study systematically investigated the efficacy, safety, and mechanism of I-9 for treating osteoporosis and positions this drug for preclinical research in the future. Thus, this study has promoted the development of small-molecule bone-promoting drugs.


Assuntos
Conservadores da Densidade Óssea , Osteoporose , Idoso , Camundongos , Humanos , Animais , Osteogênese , Preparações Farmacêuticas/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Conservadores da Densidade Óssea/uso terapêutico , Peptídeos/metabolismo , Diferenciação Celular , Osteoblastos/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Proteína Morfogenética Óssea 2/metabolismo
13.
J Pharmacol Sci ; 155(1): 14-20, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38553134

RESUMO

L-type amino acid transporter 1 (LAT1) is recognized as a promising target for cancer therapy; however, the cellular adaptive response to its pharmacological inhibition remains largely unexplored. This study examined the adaptive response to LAT1 inhibition using nanvuranlat, a high-affinity LAT1 inhibitor. Proteomic analysis revealed the activation of a stress-induced transcription factor ATF4 following LAT1 inhibition, aligning with the known cellular responses to amino acid deprivation. This activation was linked to the GCN2-eIF2α pathway which regulates translation initiation. Our results show that ATF4 upregulation counteracts the suppressive effect of nanvuranlat on cell proliferation in pancreatic ductal adenocarcinoma cell lines, suggesting a role for ATF4 in cellular adaptation to LAT1 inhibition. Importantly, dual targeting of LAT1 and ATF4 exhibited more substantial anti-proliferative effects in vitro than individual treatments. This study underscores the potential of combining LAT1 and ATF4 inhibition as a therapeutic strategy in cancer treatment.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Regulação para Cima , Proteômica , Aminoácidos/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Linhagem Celular Tumoral , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo
14.
Cell Rep ; 43(4): 113995, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38527061

RESUMO

The tumor microenvironment (TME) is restricted in metabolic nutrients including the semi-essential amino acid arginine. While complete arginine deprivation causes T cell dysfunction, it remains unclear how arginine levels fluctuate in the TME to shape T cell fates. Here, we find that the 20-µM low arginine condition, representing the levels found in the plasma of patients with cancers, confers Treg-like immunosuppressive capacities upon activated T cells. In vivo mouse tumor models and human single-cell RNA-sequencing datasets reveal positive correlations between low arginine condition and intratumoral Treg accumulation. Mechanistically, low arginine-activated T cells engage in metabolic and transcriptional reprogramming, using the ATF4-SLC7A11-GSH axis, to preserve their suppressive function. These findings improve our understanding of the role of arginine in human T cell biology with potential applications for immunotherapy strategies.


Assuntos
Fator 4 Ativador da Transcrição , Arginina , Linfócitos T CD4-Positivos , Arginina/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Microambiente Tumoral/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Feminino , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética
15.
Sci Total Environ ; 924: 171649, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38485018

RESUMO

Unstoppable global warming and increased frequency of extreme heat leads to human and animals easier to suffer from heat stress (HS), with gastrointestinal abnormalities as one of the initial clinical symptoms. HS induces intestinal mucosal damage owing to intestinal hypoxia and hyperthermia. Hypoxia-inducible factor 1α (HIF-1α) activates numerous genes to mediate cell hypoxic responses; however, its role in HS-treated intestinal mucosa is unknown. This work aimed to explore HIF-1α function and regulatory mechanisms in HS-treated pig intestines. We assigned 10 pigs to control and moderate HS groups. Physical signs, stress, and antioxidant levels were detected, and the intestines were harvested after 72 h of HS treatment to study histological changes and HIF-1α, heat shock protein 90 (HSP90), and prolyl-4-hydroxylase 2 (PHD-2) expression. In addition, porcine intestinal columnar epithelial cells (IPEC-J2) underwent HS treatment (42 °C, 5 % O2) to further explore the functions and regulatory mechanism of HIF-1α. The results of histological examination revealed HS caused intestinal villi damage and increased apoptotic epithelial cell; the expression of HIF-1α and HSP90 increased while PHD-2 showed and opposite trend. Transcriptome sequencing analysis revealed that HS activated HIF-1 signaling. To further explore the role of HIF-1α on HS induced IPEC-J2 apoptosis, the HIF-1α was interfered and overexpression respectively, and the result confirmed that HIF-1α could inhibited cell apoptosis under HS. Furthermore, HS-induced apoptosis depends on eukaryotic initiation factor 2 alpha (eif2α)/activating transcription factor 4 (ATF4)/CCAAT-enhancer-binding protein homologous protein (CHOP) pathway, and HIF-1α can inhibit this pathway to alleviate IPEC-J2 cell apoptosis. In conclusion, this study suggests that HS can promote intestinal epithelial cell apoptosis and cause pig intestinal mucosal barrier damage; the HIF-1α can alleviate cell apoptosis by inhibiting eif2α/ATF4/CHOP signaling. These results indicate that HIF-1α plays a protective role in HS, and offers a potential target for HS prevention and mitigation.


Assuntos
Apoptose , Resposta ao Choque Térmico , Subunidade alfa do Fator 1 Induzível por Hipóxia , Animais , Fator 4 Ativador da Transcrição/metabolismo , Apoptose/genética , Apoptose/fisiologia , Células Epiteliais/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Resposta ao Choque Térmico/genética , Intestinos/metabolismo , Suínos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator de Transcrição CHOP/metabolismo , Transdução de Sinais
16.
JCI Insight ; 9(8)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483541

RESUMO

Glioblastoma (GBM) remains an incurable disease, requiring more effective therapies. Through interrogation of publicly available CRISPR and RNAi library screens, we identified the α-ketoglutarate dehydrogenase (OGDH) gene, which encodes an enzyme that is part of the tricarboxylic acid (TCA) cycle, as essential for GBM growth. Moreover, by combining transcriptome and metabolite screening analyses, we discovered that loss of function of OGDH by the clinically validated drug compound CPI-613 was synthetically lethal with Bcl-xL inhibition (genetically and through the clinically validated BH3 mimetic, ABT263) in patient-derived xenografts as well neurosphere GBM cultures. CPI-613-mediated energy deprivation drove an integrated stress response with an upregulation of the BH3-only domain protein, Noxa, in an ATF4-dependent manner, as demonstrated by genetic loss-of-function experiments. Consistently, silencing of Noxa attenuated cell death induced by CPI-613 in model systems of GBM. In patient-derived xenograft models of GBM in mice, the combination treatment of ABT263 and CPI-613 suppressed tumor growth and extended animal survival more potently than each compound on its own. Therefore, combined inhibition of Bcl-xL along with disruption of the TCA cycle might be a treatment strategy for GBM.


Assuntos
Compostos de Anilina , Caprilatos , Glioblastoma , Complexo Cetoglutarato Desidrogenase , Sulfetos , Sulfonamidas , Mutações Sintéticas Letais , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X , Animais , Humanos , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Compostos de Anilina/farmacologia , Proteína bcl-X/metabolismo , Proteína bcl-X/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/efeitos dos fármacos , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Complexo Cetoglutarato Desidrogenase/metabolismo , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas/farmacologia
17.
Cell Rep ; 43(4): 113976, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38507410

RESUMO

Activating transcription factor 4 (ATF4) is a master transcriptional regulator of the integrated stress response, leading cells toward adaptation or death. ATF4's induction under stress was thought to be due to delayed translation reinitiation, where the reinitiation-permissive upstream open reading frame 1 (uORF1) plays a key role. Accumulating evidence challenging this mechanism as the sole source of ATF4 translation control prompted us to investigate additional regulatory routes. We identified a highly conserved stem-loop in the uORF2/ATF4 overlap, immediately preceded by a near-cognate CUG, which introduces another layer of regulation in the form of ribosome queuing. These elements explain how the inhibitory uORF2 can be translated under stress, confirming prior observations but contradicting the original regulatory model. We also identified two highly conserved, potentially modified adenines performing antagonistic roles. Finally, we demonstrated that the canonical ATF4 translation start site is substantially leaky scanned. Thus, ATF4's translational control is more complex than originally described, underpinning its key role in diverse biological processes.


Assuntos
Fator 4 Ativador da Transcrição , Fases de Leitura Aberta , Biossíntese de Proteínas , Ribossomos , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Humanos , Ribossomos/metabolismo , Fases de Leitura Aberta/genética , Estresse Fisiológico , Células HEK293 , Sequência de Bases
18.
Phytomedicine ; 128: 155317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537439

RESUMO

BACKGROUND: Sorafenib (Sora), a multi-target tyrosine kinase inhibitor, is widely recognized as a standard chemotherapy treatment for advanced hepatocellular carcinoma (HCC). However, drug resistance mechanisms hinder its anticancer efficacy. Derived from Withania somnifera, Withaferin A (WA) exhibits remarkable anti-tumor properties as a natural bioactive compound. This study aimed to examine the mechanisms that underlie the impacts of Sora and WA co-treatment on HCC. METHODS: Cell proliferation was evaluated through colony formation and MTT assays. Flow cytometry was employed to determine cellular apoptosis and reactive oxygen species (ROS) levels. The evaluation of apoptosis-related protein levels, DNA damage, and endoplasmic reticulum stress was conducte utilizing IHC staining and western blotting. Moreover, the caspase inhibitor Z-VAD-FMK, ATF4 siRNA, ROS scavenger N-acetyl cysteine (NAC), and TrxR1 shRNA were used to elucidate the underlying signaling pathways. To validate the antitumor effects of Sora/WA co-treatment, in vivo experiments were ultimately executed using Huh7 xenografts. RESULTS: Sora/WA co-treatment demonstrated significant synergistic antitumor impacts both in vivo and in vitro. Mechanistically, the enhanced antitumor impact of Sora by WA was achieved through the inhibition of TrxR1 activity, resulting in ROS accumulation. Moreover, ROS generation induced the activation of DNA damage and endoplasmic reticulum (ER) stress pathways, eventually triggering cellular apoptosis. Pre-treatment with the antioxidant NAC significantly inhibited ROS generation, ER stress, DNA damage, and apoptosis induced by Sora/WA co-treatment. Additionally, the inhibition of ATF4 by small interfering RNA (siRNA) attenuated Sora/WA co-treatment-induced apoptosis. In vivo, Sora/WA co-treatment significantly suppressed tumor growth in HCC xenograft models and decreased TrxR1 activity in tumor tissues. CONCLUSION: Our study suggests that WA synergistically enhances the antitumor effect of Sora, offering promising implications for evolving treatment approaches for HCC.


Assuntos
Apoptose , Carcinoma Hepatocelular , Dano ao DNA , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático , Neoplasias Hepáticas , Camundongos Nus , Espécies Reativas de Oxigênio , Sorafenibe , Vitanolídeos , Vitanolídeos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Animais , Dano ao DNA/efeitos dos fármacos , Sorafenibe/farmacologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Tiorredoxina Redutase 1/metabolismo , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Fator 4 Ativador da Transcrição/metabolismo
19.
Oncogene ; 43(20): 1534-1548, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548966

RESUMO

While Stimulator-of-interferon genes (STING) is an innate immune adapter cruicial for sensing cytosolic DNA and modulating immune microenvironment, its tumor-promoting role in tumor survival and immune evasion remains largely unknown. Here we reported that renal cancer cells are exceptionally dependent on STING for survival and evading immunosurveillance via suppressing ER stress-mediated pyroptosis. We found that STING is significantly amplified and upregulated in clear cell renal cell carcinoma (ccRCC), and its elevated expression is associated with worse clinical outcomes. Mechanically, STING depletion in RCC cells specifically triggers activation of the PERK/eIF2α/ATF4/CHOP pathway and activates cleavage of Caspase-8, thereby inducing GSDMD-mediated pyroptosis, which is independent of the innate immune pathway of STING. Moreover, animal study revealed that STING depletion promoted infiltration of CD4+ and CD8+ T cells, consequently boosting robust antitumor immunity via pyroptosis-induced inflammation. From the perspective of targeted therapy, we found that Compound SP23, a PROTAC STING degrader, demonstrated comparable efficacy to STING depletion both in vitro and in vivo for treatment of ccRCC. These findings collectively unveiled an unforeseen function of STING in regulating GSDMD-dependent pyroptosis, thus regulating immune response in RCC. Consequently, pharmacological degradation of STING by SP23 may become an attractive strategy for treatment of advanced RCC.


Assuntos
Carcinoma de Células Renais , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Renais , Proteínas de Membrana , Proteínas de Ligação a Fosfato , Piroptose , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Humanos , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/genética , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linhagem Celular Tumoral , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética , Transdução de Sinais , Gasderminas
20.
J Cell Physiol ; 239(4): e31204, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38419397

RESUMO

Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are protein- and lipid-enriched hubs that mediate interorganellar communication by contributing to the dynamic transfer of Ca2+, lipid, and other metabolites between these organelles. Defective MERCs are associated with cellular oxidative stress, neurodegenerative disease, and cardiac and skeletal muscle pathology via mechanisms that are poorly understood. We previously demonstrated that skeletal muscle-specific knockdown (KD) of the mitochondrial fusion mediator optic atrophy 1 (OPA1) induced ER stress and correlated with an induction of Mitofusin-2, a known MERC protein. In the present study, we tested the hypothesis that Opa1 downregulation in skeletal muscle cells alters MERC formation by evaluating multiple myocyte systems, including from mice and Drosophila, and in primary myotubes. Our results revealed that OPA1 deficiency induced tighter and more frequent MERCs in concert with a greater abundance of MERC proteins involved in calcium exchange. Additionally, loss of OPA1 increased the expression of activating transcription factor 4 (ATF4), an integrated stress response (ISR) pathway effector. Reducing Atf4 expression prevented the OPA1-loss-induced tightening of MERC structures. OPA1 reduction was associated with decreased mitochondrial and sarcoplasmic reticulum, a specialized form of ER, calcium, which was reversed following ATF4 repression. These data suggest that mitochondrial stress, induced by OPA1 deficiency, regulates skeletal muscle MERC formation in an ATF4-dependent manner.


Assuntos
Fator 4 Ativador da Transcrição , Doenças Neurodegenerativas , Animais , Camundongos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Lipídeos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Doenças Neurodegenerativas/patologia , Masculino , Camundongos Endogâmicos C57BL , Células Cultivadas , GTP Fosfo-Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA