Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Nat Commun ; 15(1): 8038, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271683

RESUMO

Diabetic kidney disease (DKD) is the main cause of chronic kidney disease worldwide. While injury to the podocytes, visceral epithelial cells that comprise the glomerular filtration barrier, drives albuminuria, proximal tubule (PT) dysfunction is the critical mediator of DKD progression. Here, we report that the podocyte-specific induction of human KLF6, a zinc-finger binding transcription factor, attenuates podocyte loss, PT dysfunction, and eventual interstitial fibrosis in a male murine model of DKD. Utilizing combination of snRNA-seq, snATAC-seq, and tandem mass spectrometry, we demonstrate that podocyte-specific KLF6 triggers the release of secretory ApoJ to activate calcium/calmodulin dependent protein kinase 1D (CaMK1D) signaling in neighboring PT cells. CaMK1D is enriched in the first segment of the PT, proximal to the podocytes, and is critical to attenuating mitochondrial fission and restoring mitochondrial function under diabetic conditions. Targeting podocyte-PT signaling by enhancing ApoJ-CaMK1D might be a key therapeutic strategy in attenuating the progression of DKD.


Assuntos
Nefropatias Diabéticas , Túbulos Renais Proximais , Fator 6 Semelhante a Kruppel , Podócitos , Transdução de Sinais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/genética , Podócitos/metabolismo , Podócitos/patologia , Animais , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Humanos , Camundongos , Fator 6 Semelhante a Kruppel/metabolismo , Fator 6 Semelhante a Kruppel/genética , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Ann Med ; 56(1): 2397568, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39215680

RESUMO

BACKGROUND: Intracranial aneurysm (IA) is a cerebrovascular disease with a high mortality rate due to ruptured subarachnoid hemorrhage. While Krüppel-like factor 6 (KLF6) dysregulation has been implicated in cancer and cardiovascular diseases, its role in IA remains unclear. MATERIALS AND METHODS: The GSE122897 and GSE15629 datasets were downloaded from the Gene Expression Omnibus database. Immune cell infiltration and hypoxia analysis were performed to explore the effects of KLF6 on IA. Weighted gene co-expression network analysis was used to identify hub genes related to KLF6 expression for subsequent analyses. Hypoxia-related genes were identified. Drug prediction was performed for IA. Samples from healthy individuals and patients with IA were collected to detect the expression of endothelin-1 (ET-1), vascular hematoma factor (vWF), and KLF6. A model of H2O2-induced human brain vascular smooth muscle cells (HBVSMC) injury was constructed to explore the effects of KLF6 and melatonin to treat IA. RESULTS: T cells CD4 memory resting and monocytes were significantly different in the KLF6 high and low expression groups. Four hypoxia-related gene sets were significantly enriched in the KLF6 high-expression group. Six hypoxia-related hub genes were obtained, which were significantly associated with KLF6. Drug prediction showed that melatonin may be a potential drug for IA. The levels of ET-1, vWF, and KLF6 were significantly upregulated in patients with IA. KLF6 exacerbates H2O2-induced injury in HBVSMC, ameliorated by melatonin. CONCLUSION: KLF6 may be a potential target for IA treatment, with melatonin-mediated KLF6 effects playing a crucial role in the development of IA.


KLF6 was associated with infiltrated immune cells and hypoxia genes in intracranial aneurysm.KLF6 was significantly upregulated in patients with intracranial aneurysm.KLF6 exacerbates H2O2-induced injury in HBVSMC, ameliorated by melatonin.


Assuntos
Aneurisma Intracraniano , Fator 6 Semelhante a Kruppel , Melatonina , Humanos , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/metabolismo , Aneurisma Intracraniano/tratamento farmacológico , Endotelina-1/metabolismo , Endotelina-1/genética , Masculino , Músculo Liso Vascular/metabolismo , Feminino
3.
Development ; 151(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39114968

RESUMO

The definition of molecular and cellular mechanisms contributing to brain ontogenetic trajectories is essential to investigate the evolution of our species. Yet their functional dissection at an appropriate level of granularity remains challenging. Capitalizing on recent efforts that have extensively profiled neural stem cells from the developing human cortex, we develop an integrative computational framework to perform trajectory inference and gene regulatory network reconstruction, (pseudo)time-informed non-negative matrix factorization for learning the dynamics of gene expression programs, and paleogenomic analysis for a higher-resolution mapping of derived regulatory variants in our species in comparison with our closest relatives. We provide evidence for cell type-specific regulation of gene expression programs during indirect neurogenesis. In particular, our analysis uncovers a key role for a cholesterol program in outer radial glia, regulated by zinc-finger transcription factor KLF6. A cartography of the regulatory landscape impacted by Homo sapiens-derived variants reveals signals of selection clustering around regulatory regions associated with GLI3, a well-known regulator of radial glial cell cycle, and impacting KLF6 regulation. Our study contributes to the evidence of significant changes in metabolic pathways in recent human brain evolution.


Assuntos
Encéfalo , Colesterol , Células Ependimogliais , Redes Reguladoras de Genes , Humanos , Colesterol/metabolismo , Encéfalo/metabolismo , Células Ependimogliais/metabolismo , Células Ependimogliais/citologia , Evolução Biológica , Neurogênese/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Fator 6 Semelhante a Kruppel/metabolismo , Fator 6 Semelhante a Kruppel/genética
4.
Placenta ; 155: 42-51, 2024 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-39121586

RESUMO

INTRODUCTION: Trophoblast homeostasis and differentiation require a proper endoplasmic reticulum (ER) function. The Krüppel-like factor-6 (KLF6) transcription factor modulates trophoblast migration, differentiation, and reactive oxygen species (ROS) production. Since ROS may impact on ER homeostasis, we assessed whether downregulation of KLF6 altered the unfolded protein response (UPR) and cellular process associated with ER homeostasis. MATERIALS AND METHODS: Protein and RNA expression were analyzed by Western blot and qRT-PCR, respectively, in extravillous trophoblast HTR-8/SVneo cells silenced for KLF6. Apoptosis was detected by flow cell cytometry using Annexin V Apoptosis Detection Kit. Protein trafficking was assessed by confocal microscopy of a reporter fluorescent protein whose release from the ER was synchronized. RESULTS: KLF6 downregulation reduced the expression of BiP, the master regulator of the UPR, at protein, mRNA, and pre-mRNA levels. Ire1α protein, XBP1 splicing, and DNAJB9 mRNA levels were also reduced in KLF6-silenced cells. Instead, PDI, Ero1α, and the p-eIF2α/eIF2α ratio as well as autophagy and proteasome dependent protein degradation remained unchanged while intracellular trafficking was increased. Under thapsigargin-induced stress, KLF6 silencing impaired BiP protein and mRNA expression increase, as well as the activation of the Ire1α pathway, but it raised the p-eIF2α/eIF2α ratio and CHOP protein levels. Nevertheless, apoptosis was not increased. DISCUSSION: Results provide the first evidence of KLF6 as a modulator of the UPR components. The increase in protein trafficking and protection from apoptosis, observed in KLF6-silenced cells, are consistent with its role in extravillous trophoblast migration and differentiation.


Assuntos
Apoptose , Retículo Endoplasmático , Fator 6 Semelhante a Kruppel , Trofoblastos , Resposta a Proteínas não Dobradas , Humanos , Trofoblastos/metabolismo , Trofoblastos/fisiologia , Fator 6 Semelhante a Kruppel/metabolismo , Fator 6 Semelhante a Kruppel/genética , Retículo Endoplasmático/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Apoptose/fisiologia , Homeostase , Linhagem Celular , Feminino , Estresse do Retículo Endoplasmático/fisiologia , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Trofoblastos Extravilosos
5.
Am J Chin Med ; 52(5): 1487-1505, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39169449

RESUMO

Recent research has indicated that formononetin demonstrates a potent anti-inflammatory effect in various diseases. However, its impact on sterile inflammation kidney injury, specifically acute kidney injury (AKI), remains unclear. In this study, we utilized an ischemia/reperfusion-induced AKI (IRI-AKI) mouse model and bone marrow-derived macrophages (BMDMs) to investigate the effects of formononetin on sterile inflammation of AKI and to explore the underlying mechanism. The administration of formononetin significantly preserved kidney function from injury, as evidenced by lower serum creatinine and blood urea nitrogen levels compared to IRI-AKI mice without treatment. This was further confirmed by less pathological changes in renal tubules and low expression of tubular injury markers such as KIM-1 and NGAL in the formononetin-treated IRI-AKI group. Furthermore, formononetin effectively suppressed the expression of pro-inflammatory cytokines (MCP-1, TNF-α, and IL-1ß) and macrophage infiltration into the kidneys of AKI mice. In vitro studies showed that formononetin led to less macrophage polarization towards a pro-inflammatory phenotype in BMDMs stimulated by LPS and IFN-[Formula: see text]. The mechanism involved the KLF6 and p-STAT3 pathway, as overexpression of KLF6 restored pro-inflammatory cytokine levels and pro-inflammatory polarization. Our findings demonstrate that formononetin can significantly improve renal function and reduce inflammation in IRI-AKI, which may be attributed to the inhibition of KLF6/STAT3-mediated macrophage pro-inflammatory polarization. This discovery presents a new promising therapeutic option for the treatment of IRI-AKI.


Assuntos
Injúria Renal Aguda , Modelos Animais de Doenças , Isoflavonas , Fator 6 Semelhante a Kruppel , Macrófagos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3 , Animais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Isoflavonas/farmacologia , Fator de Transcrição STAT3/metabolismo , Macrófagos/metabolismo , Masculino , Fator 6 Semelhante a Kruppel/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Traumatismo por Reperfusão/tratamento farmacológico , Fitoterapia , Citocinas/metabolismo , Células Cultivadas
6.
Nat Immunol ; 25(9): 1637-1649, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39060651

RESUMO

Approximately 25% of cancers are preceded by chronic inflammation that occurs at the site of tumor development. However, whether this multifactorial oncogenic process, which commonly occurs in the intestines, can be initiated by a specific immune cell population is unclear. Here, we show that an intestinal T cell subset, derived from interleukin-17 (IL-17)-producing helper T (TH17) cells, induces the spontaneous transformation of the intestinal epithelium. This subset produces inflammatory cytokines, and its tumorigenic potential is not dependent on IL-17 production but on the transcription factors KLF6 and T-BET and interferon-γ. The development of this cell type is inhibited by transforming growth factor-ß1 (TGFß1) produced by intestinal epithelial cells. TGFß signaling acts on the pretumorigenic TH17 cell subset, preventing its progression to the tumorigenic stage by inhibiting KLF6-dependent T-BET expression. This study therefore identifies an intestinal T cell subset initiating cancer.


Assuntos
Mucosa Intestinal , Fator 6 Semelhante a Kruppel , Proteínas com Domínio T , Células Th17 , Animais , Células Th17/imunologia , Camundongos , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Fator 6 Semelhante a Kruppel/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Transdução de Sinais/imunologia , Camundongos Endogâmicos C57BL , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Camundongos Knockout , Interferon gama/metabolismo , Interferon gama/imunologia , Interleucina-17/metabolismo , Interleucina-17/imunologia , Camundongos Transgênicos , Proteínas Proto-Oncogênicas/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Neoplasias Intestinais/imunologia , Neoplasias Intestinais/patologia , Neoplasias Intestinais/metabolismo , Humanos
7.
Life Sci ; 351: 122805, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38851422

RESUMO

AIMS: Heart failure (HF) is one of the most devastating consequences of cardiovascular diseases. Regardless of etiology, cardiac fibrosis is present and promotes the loss of heart function in HF patients. Cardiac resident fibroblasts, in response to a host of pro-fibrogenic stimuli, trans-differentiate into myofibroblasts to mediate cardiac fibrosis, the underlying mechanism of which remains incompletely understood. METHODS: Fibroblast-myofibroblast transition was induced in vitro by exposure to transforming growth factor (TGF-ß). Cardiac fibrosis was induced in mice by either transverse aortic constriction (TAC) or by chronic infusion with angiotensin II (Ang II). RESULTS: Through bioinformatic screening, we identified Kruppel-like factor 6 (KLF6) as a transcription factor preferentially up-regulated in cardiac fibroblasts from individuals with non-ischemic cardiomyopathy (NICM) compared to the healthy donors. Further analysis showed that nuclear factor kappa B (NF-κB) bound to the KLF6 promoter and mediated KLF6 trans-activation by pro-fibrogenic stimuli. KLF6 knockdown attenuated whereas KLF6 over-expression enhanced TGF-ß induced fibroblast-myofibroblast transition in vitro. More importantly, myofibroblast-specific KLF6 depletion ameliorated cardiac fibrosis and rescued heart function in mice subjected to the TAC procedure or chronic Ang II infusion. SIGNIFICANCE: In conclusion, our data support a role for KLF6 in cardiac fibrosis.


Assuntos
Fibroblastos , Fibrose , Fator 6 Semelhante a Kruppel , Camundongos Endogâmicos C57BL , Miofibroblastos , Animais , Fator 6 Semelhante a Kruppel/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fibrose/metabolismo , Camundongos , Humanos , Masculino , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Angiotensina II/farmacologia , Miocárdio/metabolismo , Miocárdio/patologia , Fator de Crescimento Transformador beta/metabolismo , NF-kappa B/metabolismo , Células Cultivadas , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/genética
8.
Cell Signal ; 120: 111230, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761988

RESUMO

Despite decades of research, endometriosis remains a mysterious gynecological disease with unknown etiology and pathogenesis. Krüppel-like Factor 6 (KLF6), a transcription factor, has a wide expression profile and regulates a variety of biological processes. Here, we investigated the expression and function of KLF6 and its possible regulatory mechanisms in endometriosis. To determine the function of KLF6, knockdown and overexpression experiments were performed in eutopic endometrial stromal cells (EU-ESCs) and ectopic endometrial stromal cells (EC-ESCs), respectively. Cell viability, apoptosis, migration, invasion, and angiogenesis assays were conducted in ESCs. ChIP-sequencing and mRNA-sequencing were performed to investigate the functional mechanism of KLF6 in regulating ESCs. We found that KLF6 was highly expressed in eutopic endometrium of endometriosis patients, compared with ectopic endometrium. Similarly, the same was true in EU-ESCs, which was compared with EC-ESCs. Overexpression of KLF6 significantly suppressed EC-ESC proliferation, migration and invasion and induced cell apoptosis, while knockdown of KLF6 resulted in the opposite effects on EU-ESCs. Overexpression of KLF6 significantly inhibited EC-ESC angiogenesis. Mechanistically, the results of ChIP sequencing and mRNA sequencing revealed that CTNNB1 may be a transcriptional target regulated by KLF6. Reintroduction of KLF6 reversed the effects of KLF6 knockdown on EU-ESCs. KLF6 inhibited the proliferation, migration and angiogenesis of EC-ESCs by inhibiting the expression of CTNNB1. Our findings provided a new perspective on the role of KLF6 in endometriosis progression and inspire potential targeted therapeutic strategies.


Assuntos
Movimento Celular , Endometriose , Endométrio , Fator 6 Semelhante a Kruppel , Células Estromais , beta Catenina , Humanos , Feminino , Endometriose/metabolismo , Endometriose/patologia , Endometriose/genética , Fator 6 Semelhante a Kruppel/metabolismo , Fator 6 Semelhante a Kruppel/genética , beta Catenina/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Endométrio/metabolismo , Endométrio/patologia , Adulto , Apoptose/genética , Proliferação de Células , Progressão da Doença
9.
Shock ; 62(2): 201-207, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38662610

RESUMO

ABSTRACT: Background: Myocardial infarction (MI) is a severe condition that typically results from the ischemia and necrosis of heart muscle. Kruppel-like factor 6 (KLF6) can aggravate myocardial ischemia/reperfusion injury. This work aims to reveal its role and mechanism in hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury. Methods: Human cardiomyocyte (AC16) was exposed to hypoxic treatment to mimic MI-like cell injury. mRNA expression levels of KLF6 and WT1-associated protein (WTAP) were detected by quantitative real-time polymerase chain reaction. Protein expression was detected by western blotting assay. Cell viability was assessed by CCK-8 assay. Cell apoptosis and cell cycle were investigated by flow cytometry. Enzyme-linked immunosorbent assays were conducted to detect IL-1ß, TNF-α and IL-6 levels. Fe 2+ colorimetric assay kit was used to detect Fe 2+ level. MDA Content Assay Kit was used to detect MDA level. Cellular ROS Assay kit was applied to assess ROS level. The association of KLF6 and WTAP was identified by RNA immunoprecipitation assay and dual-luciferase reporter assay. Results: KLF6 and WTAP expression at mRNA and protein levels were significantly upregulated in serum samples of MI patients and H/R-induced AC16 cells when compared with control groups. KLF6 silencing attenuated H/R-induced AC16 cell apoptosis, inflammatory response, oxidative stress, and ferroptosis. Additionally, WTAP stabilized KLF6 mRNA by regulating its m6A modification. Furthermore, WTAP knockdown rescued H/R-induced AC16 cell apoptosis, inflammatory response, oxidative stress, and ferroptosis by decreasing KLF6 expression. Conclusion: WTAP-mediated m6A modification of KLF6 aggravated hypoxia/reoxygenation-induced apoptosis, inflammatory response, oxidative stress, and ferroptosis of human cardiomyocytes, providing a therapeutic strategy for MI.


Assuntos
Fator 6 Semelhante a Kruppel , Miócitos Cardíacos , Humanos , Apoptose , Proteínas Reguladoras de Apoptose , Hipóxia Celular/fisiologia , Fator 6 Semelhante a Kruppel/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proteínas de Membrana , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
10.
J Agric Food Chem ; 72(17): 9656-9668, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642059

RESUMO

Intramuscular fat is a crucial determinant of carcass quality traits like tenderness and taste, which in turn is influenced by the proliferation of intramuscular preadipocytes. This study aimed to investigate the Krüppel-like factor 6 (KLF6)-mediated proliferation of bovine preadipocytes and identify underlying molecular mechanisms. Down-regulation of KLF6 by siKLF6 resulted in a significant (p < 0.01) suppression of cell cycle-related genes including CDK1, MCM6, ZNF4, PCNA, CDK2, CCNB1, and CDK6. Conversely, the expression level of p27 was significantly (p < 0.01) increased. Moreover, EdU (5-ethynyl-20-deoxyuridine) staining revealed a significant decrease in EdU-labeled cells due to KLF6 down-regulation. Collectively, these findings indicate that KLF6 down-regulation inhibits adipocyte proliferation. Furthermore, RNA sequencing of preadipocytes transfected with siKLF6 and NC, followed by differential gene expression analysis, identified 100 up-regulated and 70 down-regulated genes. Additionally, the differentially expressed genes also significantly influenced various Gene Ontology (GO) terms related to cell cycle, nuclear chromosomes, and catalytic activity on DNA. Furthermore, the top 20 pathways enriched in these DEGs included cell cycle, DNA replication, cellular senescence, and homologous recombination. These GO terms and KEGG pathways play key roles in bovine preadipocyte proliferation. In conclusion, the results of this study suggest that KLF6 positively regulates the proliferation of bovine preadipocytes.


Assuntos
Adipócitos , Proliferação de Células , Fator 6 Semelhante a Kruppel , Animais , Bovinos/metabolismo , Bovinos/genética , Adipócitos/metabolismo , Adipócitos/citologia , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Ciclo Celular , Carne Vermelha/análise
11.
BMC Oral Health ; 24(1): 510, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689229

RESUMO

BACKGROUND: Periodontitis is a chronic osteolytic inflammatory disease, where anti-inflammatory intervention is critical for restricting periodontal damage and regenerating alveolar bone. Ropinirole, a dopamine D2 receptor agonist, has previously shown therapeutic potential for periodontitis but the underlying mechanism is still unclear. METHODS: Human gingival fibroblasts (HGFs) treated with LPS were considered to mimic periodontitis in vitro. The dosage of Ropinirole was selected through the cell viability of HGFs evaluation. The protective effects of Ropinirole on HGFs were evaluated by detecting cell viability, cell apoptosis, and pro-inflammatory factor levels. The molecular docking between NAT10 and Ropinirole was performed. The interaction relationship between NAT10 and KLF6 was verified by ac4C Acetylated RNA Immunoprecipitation followed by qPCR (acRIP-qPCR) and dual-luciferase reporter assay. RESULTS: Ropinirole alleviates LPS-induced damage of HGFs by promoting cell viability, inhibiting cell apoptosis and the levels of IL-1ß, IL-18, and TNF-α. Overexpression of NAT10 weakens the effects of Ropinirole on protecting HGFs. Meanwhile, NAT10-mediated ac4C RNA acetylation promotes KLF6 mRNA stability. Upregulation of KLF6 reversed the effects of NAT10 inhibition on HGFs. CONCLUSIONS: Taken together, Ropinirole protected HGFs through inhibiting the NAT10 ac4C RNA acetylation to decrease the KLF6 mRNA stability from LPS injury. The discovery of this pharmacological and molecular mechanism of Ropinirole further strengthens its therapeutic potential for periodontitis.


Assuntos
Fibroblastos , Indóis , Fator 6 Semelhante a Kruppel , Acetiltransferases N-Terminal , Periodontite , Humanos , Acetilação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Gengiva/efeitos dos fármacos , Gengiva/metabolismo , Indóis/farmacologia , Indóis/uso terapêutico , Fator 6 Semelhante a Kruppel/metabolismo , Lipopolissacarídeos , Simulação de Acoplamento Molecular , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Acetiltransferases N-Terminal/antagonistas & inibidores
12.
Eur J Immunol ; 54(5): e2350717, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38462943

RESUMO

Resistance to immunity is associated with the selection of cancer cells with superior capacities to survive inflammatory reactions. Here, we tailored an ex vivo immune selection model for acute myeloid leukemia (AML) and isolated the residual subpopulations as "immune-experienced" AML (ieAML) cells. We confirmed that upon surviving the immune reactions, the malignant blasts frequently decelerated proliferation, displayed features of myeloid differentiation and activation, and lost immunogenicity. Transcriptomic analyses revealed a limited number of commonly altered pathways and differentially expressed genes in all ieAML cells derived from distinct parental cell lines. Molecular signatures predominantly associated with interferon and inflammatory cytokine signaling were enriched in the AML cells resisting the T-cell-mediated immune reactions. Moreover, the expression and nuclear localization of the transcription factors c-MYB and KLF6 were noted as the putative markers for immune resistance and identified in subpopulations of AML blasts in the patients' bone marrow aspirates. The immune modulatory capacities of ieAML cells lasted for a restricted period when the immune selection pressure was omitted. In conclusion, myeloid leukemia cells harbor subpopulations that can adapt to the harsh conditions established by immune reactions, and a previous "immune experience" is marked with IFN signature and may pave the way for susceptibility to immune intervention therapies.


Assuntos
Interferons , Fator 6 Semelhante a Kruppel , Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-myb , Humanos , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/imunologia , Fator 6 Semelhante a Kruppel/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/imunologia , Proteínas Proto-Oncogênicas c-myb/metabolismo , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/genética , Interferons/imunologia , Interferons/metabolismo , Interferons/genética , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Linhagem Celular Tumoral , Adulto , Transcriptoma
13.
Artigo em Inglês | MEDLINE | ID: mdl-38544929

RESUMO

Background: The incidence of chronic obstructive pulmonary disease (COPD) is increasing year by year. Kruppel-like factor 6 (KLF6) plays an important role in inflammatory diseases. However, the regulatory role of KLF6 in COPD has not been reported so far. Methods: The viability of human bronchial epithelial cells BEAS-2B induced by cigarette smoke extract (CSE) was detected by CCK-8 assay. The protein expression of KLF6 and sirtuin 4 (SIRT4) was appraised with Western blot. RT-qPCR and Western blot were applied to examine the transfection efficacy of sh-KLF6 and Oe-KLF6. Cell apoptosis was detected using flow cytometry. The levels of inflammatory factors IL-6, TNF-α and IL-1ß were assessed with ELISA assay. DCFH-DA staining was employed for the detection of ROS activity and the levels of oxidative stress markers SOD, CAT and MDA were estimated with corresponding assay kits. The mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content and Complex I activity were evaluated with JC-1 staining, ATP colorimetric/fluorometric assay kit and Complex I enzyme activity microplate assay kit. With the application of mitochondrial permeability transition pore detection kit, mPTP opening was measured. Luciferase report assay was employed to evaluate the activity of SIRT4 promoter and chromatin immunoprecipitation (ChIP) to verify the binding ability of KLF6 and SIRT4 promoter. Results: KLF6 expression was significantly elevated in CSE-induced cells. KLF6 was confirmed to suppress SIRT4 transcription. Interference with KLF6 expression significantly inhibited cell viability damage, cell apoptosis, inflammatory response, oxidative stress and mitochondrial dysfunction in CSE-induced BEAS-2B cells, which were all reversed by SIRT4 overexpression. Conclusion: Silencing KLF6 alleviated CSE-induced mitochondrial dysfunction in bronchial epithelial cells by SIRT4 upregulation.


Assuntos
Fumar Cigarros , Doenças Mitocondriais , Doença Pulmonar Obstrutiva Crônica , Sirtuínas , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Regulação para Cima , Linhagem Celular , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo , Fumar Cigarros/efeitos adversos , Apoptose , Células Epiteliais/metabolismo , Trifosfato de Adenosina/efeitos adversos , Trifosfato de Adenosina/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/efeitos adversos , Proteínas Mitocondriais/metabolismo , Sirtuínas/genética
14.
Mol Med Rep ; 29(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38516774

RESUMO

Acute liver failure (ALF) is a complex syndrome characterized by overactivation of innate immunity, and the recruitment and differentiation of immune cells at inflammatory sites. The present study aimed to explore the role of microRNA (miRNA/miR)­21 and its potential mechanisms underlying inflammatory responses in ALF. Baseline serum miR­21 was analyzed in patients with ALF and healthy controls. In addition, miR­21 antagomir was injected via the tail vein into C57BL/6 mice, and lipopolysaccharide/D­galactosamine (LPS/GalN) was injected into mice after 48 h. The expression levels of miR­21, Krüppel­like­factor­6 (KLF6), autophagy­related proteins and interleukin (IL)­23, and hepatic pathology were then assessed in the liver tissue. Furthermore, THP­1­derived macrophages were transfected with a miRNA negative control, miR­21 inhibitor, miR­21 mimics or KLF6 overexpression plasmid, followed by treatment with or without rapamycin, and the expression levels of miR­21, KLF6, autophagy­related proteins and IL­23 were evaluated. The results revealed that baseline serum miR­21 levels were significantly upregulated in patients with ALF. In addition, LPS/GalN­induced ALF was attenuated in the antagomir­21 mouse group. KLF6 was identified as a target of miR­21­5p with one putative seed match site identified by TargetScan. A subsequent luciferase activity assay demonstrated a direct interaction between miR­21­5p and the 3'­UTR of KLF6 mRNA. Further experiments suggested that miR­21 promoted the expression of IL­23 via inhibiting KLF6, which regulated autophagy. In conclusion, in the present study, baseline serum miR­21 levels were highly upregulated in patients with ALF, antagomir­21 attenuated LPS/GalN­induced ALF in a mouse model, and miR­21 could promote the expression of IL­23 via inhibiting KLF6.


Assuntos
Falência Hepática Aguda , MicroRNAs , Animais , Humanos , Camundongos , Antagomirs , Autofagia/genética , Proteínas Relacionadas à Autofagia , Interleucina-23/genética , Interleucina-23/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo , Lipopolissacarídeos/toxicidade , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/genética , Falência Hepática Aguda/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais
15.
Pol J Pathol ; 74(3): 194-202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37955538

RESUMO

Cutaneous carcinoma is one of the most common neoplasm tumors in the West. Its incidence rate is one of the fastest growing tumors in China. The Krüppel-like factor 6 (KLF6) is a latent tumor suppressor. Decreased KLF6 is related to the occurrence and progression of many cancers in human. Our previous studies have demonstrated that KLF6 was down-regulation in cutaneous malignant melanoma (CMM), and was significant correlated with ulcer, lymph node metastasis and clinical stage, suggesting that KLF6 loss is expected to become a biological indicator of poor prognosis in CMM patients. In this research, we would further study the features of KLF6 in the malignant progression of CMM. The expression of KLF6 was up-regulated by lentivirus infection containing KLF6, and short hairpin RNA (shRNA) was used for knockdown of KLF6 in CMM cells. Western blot, RT-qpcr, CCK8 assay, transwell migration assays, wound healing assay and flow cytometry were used to test the role of KLF6 in the CMM. We found that reduced expression of KLF6 significantly enhanced proliferation, migration and invasion. Moreover, KLF6 induced CMM cell apoptosis and G1 cycle arrest. The decreased KLF6 expression is expected to be a biological indicator of poor prognosis in CMM patients.


Assuntos
Biomarcadores Ambientais , Melanoma , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Melanoma/genética , Melanoma/patologia , Melanoma Maligno Cutâneo
16.
Autoimmunity ; 56(1): 2282939, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37975481

RESUMO

The pathogenesis of rheumatoid arthritis (RA) is heavily impacted by the inflammation and activation of fibroblast-like synoviocytes (FLS). The objective of this investigation is to clarify the involvement of exosomes derived from FLS stimulated by tumour necrosis factor α (TNF-α) in angiogenesis and the underlying mechanisms. FLS cells were obtained from synovial fluid of RA patients and exosomes were obtained from FLS cell supernatant with TNF-α stimulation by ultracentrifugation. Exosomes were subsequently analysed using transmission electron microscopy, nanoparticle tracking analysis, and western blotting. The functional effects of exosomes with TNF-α stimulation on human umbilical vein endothelial cells (HUVEC) migration, invasion, and angiogenesis was evaluated using wound scratch healing test, transwell invasion assay, and tube formation assay. DNA nanoball-seq (DNBSEQ) sequencing platform was utilised to analysis different expression miRNA from exosomes, miRNA and mRNA from HUVEC. The expression level of miR-200a-3p was determined through quantitative real-time polymerase chain reaction (qRT-PCR). The quantification of KLF6 and VEGFA expression levels were performed by qRT-PCR and western blot analysis. The validation of the association between miR-200a-3p and KLF6 was established through a fluorescence enzyme reporting assay. In comparison to exosome induced by PBS, exosome induced by TNF-α exhibited a substantial exacerbation of invasion, migration, and angiogenesis in HUVEC. 4 miRNAs in exosomes and HUVEC cells, namely miR-1246, miR-200a-3p, miR-30a-3p, and miR-99b-3p was obtained. MiR-200a-3p maintained high consistency with the sequencing results. We obtained 5 gene symbols, and KLF6 was chose for further investigation. The expression of miR-200a-3p in exosomes induced by TNF-α and in HUVEC treated with these exosomes demonstrated a significantly increase. Additionally, HUVEC cells displayed a notable decrease in KLF6 expression and a significant elevation in VEGFA expression. This was further confirmed by the fluorescence enzyme report assay, which provided evidence of the direct targeting of KLF6 by miR-200a-3p. Exosomes induced by TNF-α have the ability to enhance the migration, invasion, and angiogenesis of HUVEC cells via the miR-200a-3p/KLF6/VEGFA axis.


Assuntos
Artrite Reumatoide , Exossomos , MicroRNAs , Sinoviócitos , Humanos , Artrite Reumatoide/metabolismo , Proliferação de Células , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Fator 6 Semelhante a Kruppel/metabolismo , Fator 6 Semelhante a Kruppel/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Sinoviócitos/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
17.
Science ; 381(6658): eade6289, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37561850

RESUMO

Skin color, one of the most diverse human traits, is determined by the quantity, type, and distribution of melanin. In this study, we leveraged the light-scattering properties of melanin to conduct a genome-wide screen for regulators of melanogenesis. We identified 169 functionally diverse genes that converge on melanosome biogenesis, endosomal transport, and gene regulation, of which 135 represented previously unknown associations with pigmentation. In agreement with their melanin-promoting function, the majority of screen hits were up-regulated in melanocytes from darkly pigmented individuals. We further unraveled functions of KLF6 as a transcription factor that regulates melanosome maturation and pigmentation in vivo, and of the endosomal trafficking protein COMMD3 in modulating melanosomal pH. Our study reveals a plethora of melanin-promoting genes, with broad implications for human variation, cell biology, and medicine.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fator 6 Semelhante a Kruppel , Melaninas , Melanócitos , Melanossomas , Pigmentação da Pele , Humanos , Melaninas/biossíntese , Melaninas/genética , Melanócitos/metabolismo , Melanossomas/metabolismo , Pigmentação da Pele/genética , Estudo de Associação Genômica Ampla , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo , Endossomos/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral
18.
Ecotoxicol Environ Saf ; 263: 115265, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478567

RESUMO

Nicotine contributes to the causation of atherosclerosis, which the prominent cellular components are macrophages. Long non-coding RNAs (lncRNAs) play an important role in regulating cell functions such as cell proliferation, differentiation and programmed death. However, the function and mechanism of lncRNAs in nicotine-induced macrophage pyroptosis has not been reported. We screened the deferentially expressed lncRNAs of human carotid artery plaque (GSE97210) and verified them in nicotine-induced pyroptosis of macrophages. Results showed only LINC01272 was up-regulated in a dose-dependent manner in macrophages. The immunofluorescence staining result confirmed that interfering LINC01272 inhibited nicotine-induced macrophage pyroptosis. Through bioinformatics analysis, dual luciferase reporter gene assay and qPCR, we identified miR-515 was significantly negatively correlated with the expression of LINC01272, and KLF6 is the target gene of miR-515. Furthermore, our results demonstrated that LINC01272/miR-515/KLF6 axis meditated nicotine-induced macrophage pyroptosis. In addition, in human peripheral blood mononuclear cells of smoking populations, the expression of GSDMD-N, NLRP3, LINC01272 and KLF6 was significantly increased, while the level of miR-515 was reduced. This study confirmed that nicotine increases the expression of LINC01272 to competitively bind with miR-515 in macrophages, reducing the inhibitory effect of miR-515 on its target gene KLF6, which ultimately induces macrophage pyroptosis.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Piroptose/genética , Nicotina/toxicidade , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Leucócitos Mononucleares , Macrófagos/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo
19.
J Lipid Res ; 64(8): 100411, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437844

RESUMO

The transcription factor SREBP2 is the main regulator of cholesterol homeostasis and is central to the mechanism of action of lipid-lowering drugs, such as statins, which are responsible for the largest overall reduction in cardiovascular risk and mortality in humans with atherosclerotic disease. Recently, SREBP2 has been implicated in leukocyte innate and adaptive immune responses by upregulation of cholesterol flux or direct transcriptional activation of pro-inflammatory genes. Here, we investigate the role of SREBP2 in endothelial cells (ECs), since ECs are at the interface of circulating lipids with tissues and crucial to the pathogenesis of cardiovascular disease. Loss of SREBF2 inhibits the production of pro-inflammatory chemokines but amplifies type I interferon response genes in response to inflammatory stimulus. Furthermore, SREBP2 regulates chemokine expression not through enhancement of endogenous cholesterol synthesis or lipoprotein uptake but partially through direct transcriptional activation. Chromatin immunoprecipitation sequencing of endogenous SREBP2 reveals that SREBP2 bound to the promoter regions of two nonclassical sterol responsive genes involved in immune modulation, BHLHE40 and KLF6. SREBP2 upregulation of KLF6 was responsible for the downstream amplification of chemokine expression, highlighting a novel relationship between cholesterol homeostasis and inflammatory phenotypes in ECs.


Assuntos
Citocinas , Células Endoteliais , Humanos , Ativação Transcricional , Células Endoteliais/metabolismo , Citocinas/metabolismo , Colesterol/metabolismo , Fatores de Transcrição/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo
20.
Nephron ; 147(12): 766-768, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37263229

RESUMO

Members of the Krüppel-like family of transcription factors are widely expressed, including in the kidney. Expression of some KLFs changes in acute kidney injury, and this may be adaptive or maladaptive, and result in effects on various cellular pathways. This mini-review will highlight the roles of KLF6 and KLF15 in control of proximal tubular cell metabolism.


Assuntos
Fatores de Transcrição Kruppel-Like , Fatores de Transcrição , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Rim/metabolismo , Células Epiteliais/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA