Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Genes (Basel) ; 11(11)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105635

RESUMO

Bacterial conjugation, also referred to as bacterial sex, is a major horizontal gene transfer mechanism through which DNA is transferred from a donor to a recipient bacterium by direct contact. Conjugation is universally conserved among bacteria and occurs in a wide range of environments (soil, plant surfaces, water, sewage, biofilms, and host-associated bacterial communities). Within these habitats, conjugation drives the rapid evolution and adaptation of bacterial strains by mediating the propagation of various metabolic properties, including symbiotic lifestyle, virulence, biofilm formation, resistance to heavy metals, and, most importantly, resistance to antibiotics. These properties make conjugation a fundamentally important process, and it is thus the focus of extensive study. Here, we review the key steps of plasmid transfer by conjugation in Gram-negative bacteria, by following the life cycle of the F factor during its transfer from the donor to the recipient cell. We also discuss our current knowledge of the extent and impact of conjugation within an environmentally and clinically relevant bacterial habitat, bacterial biofilms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana/genética , Fator F/genética , Transferência Genética Horizontal/genética , Bactérias Gram-Negativas/genética , DNA Bacteriano/genética , Fator F/fisiologia , Fímbrias Bacterianas/metabolismo
2.
Science ; 364(6442): 778-782, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31123134

RESUMO

Drug-resistance dissemination by horizontal gene transfer remains poorly understood at the cellular scale. Using live-cell microscopy, we reveal the dynamics of resistance acquisition by transfer of the Escherichia coli fertility factor-conjugation plasmid encoding the tetracycline-efflux pump TetA. The entry of the single-stranded DNA plasmid into the recipient cell is rapidly followed by complementary-strand synthesis, plasmid-gene expression, and production of TetA. In the presence of translation-inhibiting antibiotics, resistance acquisition depends on the AcrAB-TolC multidrug efflux pump, because it reduces tetracycline concentrations in the cell. Protein synthesis can thus persist and TetA expression can be initiated immediately after plasmid acquisition. AcrAB-TolC efflux activity can also preserve resistance acquisition by plasmid transfer in the presence of antibiotics with other modes of action.


Assuntos
Proteínas de Transporte/fisiologia , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Fator F/fisiologia , Antibacterianos/farmacologia , Antiporters/antagonistas & inibidores , Antiporters/biossíntese , Antiporters/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Conjugação Genética , DNA de Cadeia Simples , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fator F/genética , Microscopia , Biossíntese de Proteínas/efeitos dos fármacos , Tetraciclina/farmacologia
3.
Mol Microbiol ; 64(5): 1198-213, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17542915

RESUMO

The F plasmid is actively partitioned to daughter cells by the sopABC gene. To elucidate the partitioning mechanisms, we simultaneously analysed movements of the plasmid and the SopA ATPase in single living cells. SopA, which is a putative motor protein assembled densely near nucleoid borders and formed a single discrete focus associated with less dense filamentous distribution along the long axis of the cell. The dense SopA focus oscillates between cell poles. The direction of the plasmid motion switches as the SopA focus switches its position. The velocity of the plasmid motion stays constant while it oscillates moving towards the SopA focus. The low density filamentous distribution of SopA persisted throughout the SopA oscillation. The focus associated with filamentous distribution of SopA was also observed in a cell without nucleoid. The SopA filament may guide the movement of the plasmid as a railway track and lead it to cell quarters.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Fator F/fisiologia , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Núcleo Celular/genética , Núcleo Celular/metabolismo , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Cinética , Modelos Biológicos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
4.
Folia Microbiol (Praha) ; 52(5): 479-83, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18298044

RESUMO

Cell viability during chronological aging and after apoptotic stimuli in some yeast mutants with altered mitochondrial morphology was followed; a function for the corresponding genes in the apoptotic process was assessed. MDM30 and DNM1, the genes encoding an F-box protein and the dynamin-related GTPase, respectively, are involved in triggering aging and apoptosis. In contrast, YME1, encoding a subunit of the mitochondrial inner membrane i-AAA proteinase complex, has a protective role in these processes. FIS1, the mitochondrial fission gene, might play a protective role after an apoptotic insult while it seems to promote cell death in aging cells.


Assuntos
Mitocôndrias/fisiologia , Mutação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Proteases Dependentes de ATP , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Apoptose , Fator F/genética , Fator F/fisiologia , Proteínas F-Box/genética , Proteínas F-Box/fisiologia , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/fisiologia , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Estresse Oxidativo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia
5.
J Evol Biol ; 19(5): 1671-6, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16910996

RESUMO

It is widely assumed that microsatellites are generated by replication slippage, a mutation process specific to repetitive DNA. Consistent with their high mutation rate, microsatellites are highly abundant in most eukaryotic genomes. In Escherichia coli, however, microsatellites are rare and short despite the fact that a high microsatellite mutation rate was described. We show that this high microsatellite instability depends on the presence of the F-plasmid. E. coli cells lacking the F-plasmid have extremely low microsatellite mutation rates. This result provides a possible explanation for the genome-wide low density of microsatellites in E. coli. Furthermore, we show that the F-plasmid induced microsatellite instability is independent of the mismatch repair pathway.


Assuntos
Escherichia coli/genética , Evolução Molecular , Instabilidade Genômica , Repetições de Microssatélites , Mutação , Conjugação Genética , Fator F/genética , Fator F/fisiologia , Genoma Bacteriano
6.
Plasmid ; 54(1): 48-56, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15907538

RESUMO

Host-range, a fundamental property of a bacterial plasmid, is primarily determined by the plasmid replication system. To investigate the basis of the restricted host-range of the well-studied F-plasmid of Escherichia coli, we characterized in vitro the interactions of the host DnaA initiation protein and DnaB helicase from Pseudomonas aeruginosa and Pseudomonas putida with the replication origin, oriS, and initiation protein, RepE, of the RepFIA replicon. The results presented here show that a pre-priming complex can form at the F-origin with the replication proteins from the non-native hosts in the presence of RepE. However, RepE cannot form a stable complex with DnaB of P. aeruginosa or P. putida but does stably interact with E. coli DnaB. This unstable association may affect the ability of F to replicate in Pseudomonas. In addition, replication studies in vivo suggest that inefficient expression of the RepE initiation protein from its native promoter in Pseudomonas is a factor in restricting its host-range. This, however, is not the only barrier to F replication, as mini-F derivatives with an alternative promoter for RepE expression do not replicate in P. putida and are not stably maintained in P. aeruginosa.


Assuntos
Replicação do DNA/genética , Fator F/fisiologia , Pseudomonas/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DnaB Helicases , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fator F/genética , Regiões Promotoras Genéticas , Origem de Replicação/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Especificidade da Espécie
7.
J Mol Biol ; 348(5): 1091-102, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15854646

RESUMO

Gyrase is an ubiquitous bacterial enzyme that is responsible for disentangling DNA during DNA replication and transcription. It is the target of the toxin CcdB, a paradigm for plasmid addiction systems and related bacterial toxin-antitoxin systems. The crystal structure of CcdB and the dimerization domain of the A subunit of gyrase (GyrA14) dictates an open conformation for the catalytic domain of gyrase when CcdB is bound. The action of CcdB is one of a wedge that stabilizes a dead-end covalent gyrase:DNA adduct. Although CcdB and GyrA14 form a globally symmetric complex where the two 2-fold axes of both dimers align, the complex is asymmetric in its details. At the centre of the interaction site, the Trp99 pair of CcdB stacks with the Arg462 pair of GyrA14, explaining why the Arg462Cys mutation in the A subunit of gyrase confers resistance to CcdB. Overexpression of GyrA14 protects Escherichia coli cells against CcdB, mimicking the action of the antidote CcdA.


Assuntos
Proteínas de Bactérias/química , Toxinas Bacterianas/química , DNA Girase/química , Inibidores da Topoisomerase II , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Domínio Catalítico/genética , Domínio Catalítico/fisiologia , Cristalografia , DNA Girase/genética , Dimerização , Escherichia coli/genética , Escherichia coli/fisiologia , Fator F/genética , Fator F/fisiologia , Estrutura Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Estrutura Terciária de Proteína
8.
J Bacteriol ; 187(2): 697-706, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15629940

RESUMO

The F-plasmid-encoded TraI protein, also known as DNA helicase I, is a bifunctional protein required for conjugative DNA transfer. The enzyme catalyzes two distinct but functionally related reactions required for the DNA processing events associated with conjugation: the site- and strand-specific transesterification (relaxase) reaction that provides the nick required to initiate strand transfer and a processive 5'-to-3' helicase reaction that provides the motive force for strand transfer. Previous studies have identified the relaxase domain, which encompasses the first approximately 310 amino acids of the protein. The helicase-associated motifs lie between amino acids 990 and 1450. The function of the region between amino acids 310 and 990 and the region from amino acid 1450 to the C-terminal end is unknown. A protein lacking the C-terminal 252 amino acids (TraIDelta252) was constructed and shown to have essentially wild-type levels of transesterase and helicase activity. In addition, the protein was capable of a functional interaction with other components of the minimal relaxosome. However, TraIDelta252 was not able to support conjugative DNA transfer in genetic complementation experiments. We conclude that TraIDelta252 lacks an essential C-terminal domain that is required for DNA transfer. We speculate this domain may be involved in essential protein-protein interactions with other components of the DNA transfer machinery.


Assuntos
DNA Helicases/genética , DNA Helicases/fisiologia , DNA/metabolismo , Fator F/genética , Transporte Biológico , Conjugação Genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli , Fator F/fisiologia , Técnicas de Transferência de Genes , Teste de Complementação Genética , Ligação Proteica , Estrutura Terciária de Proteína , Deleção de Sequência
9.
J Mol Biol ; 329(5): 875-89, 2003 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-12798679

RESUMO

Active partition of the F plasmid to dividing daughter cells is assured by interactions between proteins SopA and SopB, and a centromere, sopC. A close homologue of the sop operon is present in the linear prophage N15 and, together with sopC-like sequences, it ensures stability of this replicon. We have exploited this sequence similarity to construct hybrid sop operons with the aim of locating specific interaction determinants within the SopA and SopB proteins that are needed for partition function and for autoregulation of sopAB expression. Centromere binding was found to be specified entirely by a central 25 residue region of SopB strongly predicted to form a helix-turn-helix structure. SopB protein also carries a species-specific SopA-interaction determinant within its N-terminal 45 amino acids, and, as shown by Escherichia coli two-hybrid analysis, a dimerization domain within its C-terminal 75 (F) or 97 (N15) residues. Promoter-operator binding specificity was located within an N-terminal 66 residue region of SopA, which is predicted to contain a helix-turn-helix motif. Two other regions of SopA protein, one next to the ATPase Walker A-box, the other C-terminal, specify interaction with SopB. Yeast two-hybrid analysis indicated that these regions contact SopB directly. Evidence for the involvement of the SopA N terminus in autoinhibition of SopA function was obtained, revealing a possible new aspect of the role of SopB in SopA activation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Fator F/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Bacteriófagos/genética , Sítios de Ligação , Centrômero/genética , Centrômero/metabolismo , Dimerização , Fator F/fisiologia , Sequências Hélice-Volta-Hélice , Dados de Sequência Molecular , Regiões Operadoras Genéticas , Óperon , Fenótipo , Engenharia de Proteínas/métodos , Estrutura Terciária de Proteína/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
10.
J Bacteriol ; 184(11): 3126-9, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12003956

RESUMO

We have examined the functional role of two internal cysteine residues of the F-plasmid TraV outer membrane lipoprotein. Each was mutated to a serine separately and together to yield three mutant traV genes: traV(C10S), traV(C18S), and traV(C10S/C18S). All three cysteine mutations complemented a traV mutant for DNA donor activity and for sensitivity to donor-specific bacteriophage; however, when measured by a transduction assay, the donor-specific DNA bacteriophage sensitivities of the traV(C18S) and, especially, traV(C10S/C18S) mutant strains were significantly less than those of the traV(+) and traV(C10S) strains. Thus, unlike the Agrobacterium tumefaciens T-plasmid-encoded VirB7 outer membrane lipoprotein, TraV does not require either internal cysteine to retain significant biological activity. By Western blot analysis, all three mutant TraV proteins were shown to accumulate in the outer membrane. However, by nonreducing gel electrophoresis, wild-type TraV and especially the TraV(C18S) mutant were shown to form mixed disulfides with numerous cell envelope proteins. This was not observed with the TraV(C10S) or TraV(C10S/C18S) proteins. Thus, it appears that TraV C10 is unusually reactive and that this reactivity is reduced by C18, perhaps by intramolecular oxidation. Finally, whereas the TraV(C10S) and TraV(C18S) proteins fractionated primarily with the outer membrane, as did the wild-type protein, the TraV(C10S/C18S) protein was found in osmotic shock fluid and inner membrane fractions as well as outer membrane fractions. Hence, at least one cysteine is required for the efficient localization of TraV to the outer membrane.


Assuntos
Agrobacterium tumefaciens/metabolismo , Proteínas da Membrana Bacteriana Externa/fisiologia , Cisteína/fisiologia , Proteínas de Escherichia coli , Fator F/fisiologia , Lipoproteínas/fisiologia , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/virologia , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Membrana Celular/metabolismo , Conjugação Genética , Cisteína/química , Lipoproteínas/química , Dados de Sequência Molecular , Mutação , Fagos RNA/crescimento & desenvolvimento , Alinhamento de Sequência
11.
J Biol Chem ; 277(5): 3733-42, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11741897

RESUMO

The ccd addiction system plays a crucial role in the stable maintenance of the Escherichia coli F plasmid. It codes for a stable toxin (CcdB) and a less stable antidote (CcdA). Both are expressed at low levels during normal cell growth. Upon plasmid loss, CcdB outlives CcdA and kills the cell by poisoning gyrase. The interactions between CcdB, CcdA, and its promoter DNA were analyzed. In solution, the CcdA-CcdB interaction is complex, leading to various complexes with different stoichiometry. CcdA has two binding sites for CcdB and vice versa, permitting soluble hexamer formation but also causing precipitation, especially at CcdA:CcdB ratios close to one. CcdA alone, but not CcdB, binds to promoter DNA with high on and off rates. The presence of CcdB enhances the affinity and the specificity of CcdA-DNA binding and results in a stable CcdA*CcdB*DNA complex with a CcdA:CcdB ratio of one. This (CcdA(2)CcdB(2))(n) complex has multiple DNA-binding sites and spirals around the 120-bp promoter region.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Escherichia coli/genética , Fator F/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Citotoxinas/genética , Cinética , Modelos Moleculares , Conformação Proteica , Espectrofotometria Ultravioleta
12.
EMBO J ; 18(13): 3856-67, 1999 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-10393200

RESUMO

In bacteria, plasmids and some DNA viruses, DNA replication is initiated and regulated by binding of initiator proteins to repetitive sequences. To understand the control mechanism we used the plasmid mini-F, whose copy number is stringently maintained in Escherichia coli, mainly by its initiator protein RepE and the incC region. The monomers of RepE protein bound to incC iterons, which exert incompatibility in trans and control the copy number of mini-F plasmid in cis. Many incompatibility defective mutants carrying mutations in their incC iterons had lost the affinity to bind to RepE, while one mutant retained high level binding affinity. The mutated incC mini-F plasmids lost the function to control the copy number. The copy number of the wild-type mini-F plasmid did not increase in the presence of excess RepE. These results suggested that the control of replication by incC iterons does not rely on their capacity to titrate RepE protein. Using a ligation assay, we found that RepE proteins mediated a cross-link structure between ori2 and incC, for which the dimerization domain of RepE and the structure of incC seem to be important. The structure probably causes inhibition of extra rounds of DNA replication initiation on mini-F plasmids, thereby keeping mini-F plasmid at a low copy number.


Assuntos
Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli , Escherichia coli/genética , Fator F/genética , Sequências Reguladoras de Ácido Nucleico/genética , Origem de Replicação/genética , Proteínas Repressoras/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dimerização , Escherichia coli/fisiologia , Fator F/fisiologia , Dosagem de Genes , Expressão Gênica , Modelos Genéticos , Conformação Molecular , Mutação , Fenótipo , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico/fisiologia , Proteínas Repressoras/química , Proteínas Repressoras/genética , Transformação Bacteriana
13.
FEMS Microbiol Lett ; 163(2): 217-22, 1998 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-9673025

RESUMO

There have been various proposals for the pattern of F-plasmid replication during the division cycle. Here we show that the recent studies of Gordon et al. (Cell 90, 1113-1121, 1997) on the duplication and segregation of green fluorescent protein (GFP) labeled replication origins of the Escherichia coli chromosome and the F plasmid during the division cycle support the proposal that the F plasmid replicates with a cell-cycle-specific (artiocyclic) pattern.


Assuntos
Replicação do DNA , Escherichia coli/fisiologia , Fator F/fisiologia , Origem de Replicação , Ciclo Celular/fisiologia , Escherichia coli/genética , Proteínas de Fluorescência Verde , Proteínas Luminescentes
14.
Mol Gen Genet ; 257(4): 392-403, 1998 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9529520

RESUMO

The sopAB operon and the sopC sequence, which acts as a centromere, are essential for stable maintenance of the mini-F plasmid. Immunoprecipitation experiments with purified SopA and SopB proteins have demonstrated that these proteins interact in vitro. Expression studies using the lacZ gene as a reporter revealed that the sopAB operon is repressed by the cooperative action of SopA and SopB. Using immunofluorescence microscopy, we found discrete fluorescent foci of SopA and SopB in cells that produce both SopA and SopB in the presence of the sopC DNA segment, but not in the absence of sopC, suggesting the SopA-SopB complex binds to sopC segments. SopA was exclusively found to colocalize with nucleoids in cells that produced only SopA, while, in the absence of SopA, SopB was distributed in the cytosolic spaces.


Assuntos
Proteínas de Bactérias/genética , DNA Bacteriano/genética , Proteínas de Escherichia coli , Escherichia coli/genética , Fator F/genética , Sequência de Bases , Citosol/química , Escherichia coli/ultraestrutura , Fator F/fisiologia , Microscopia de Fluorescência , Dados de Sequência Molecular , Óperon
15.
Cell ; 90(5): 951-7, 1997 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-9298906

RESUMO

F plasmid is partitioned with fidelity to daughter cells during cell division cycle owing to two trans-acting genes, sopA and sopB, and a cis-acting site, sopC. We visualized the subcellular distribution of mini-F-plasmid molecules by fluorescence in situ hybridization. Mini-F-plasmid molecules having the sopABC segment were localized at midcell in newborn cells. Replicated plasmid molecules migrated to cell positions 1/4 and 3/4 without coupling with cell elongation and were tethered to these positions until completion of cell division. In contrast, molecules of a mini F plasmid lacking the sopABC segment were distributed randomly in spaces not occupied by nucleoids. The sopABC system caused replicated plasmid molecules to be positioned and tethered at the cell quarter sites.


Assuntos
Escherichia coli/citologia , Fator F/análise , Fator F/fisiologia , Divisão Celular/genética , Citosol/química , DNA Bacteriano/análise , Escherichia coli/química , Escherichia coli/genética , Hibridização in Situ Fluorescente , Plasmídeos/análise , Plasmídeos/fisiologia
16.
J Mol Biol ; 274(1): 27-38, 1997 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-9398513

RESUMO

The RepE protein (251 residues, 29 kDa) of mini-F plasmid, mostly found as dimers, plays a key role in mini-F replication. Whereas monomers bind to the origin to initiate replication, dimers bind to the repE operator to repress its own transcription. Among the host factors required for mini-F replication, a set of molecular chaperones (DnaK, DnaJ and GrpE) is thought to facilitate monomerization of RepE dimers. To further understand the structural basis of functional differentiation between the two forms of RepE, we examined the region(s) critical for dimerization by isolation and characterization of RepE mutants that were defective in autogenous repressor function. Such mutations were isolated from two separate regions of RepE, the central region (residues 111 to 161) and the C-terminal region (residues 195 to 208). The central region overlapped the region where the chaperone-independent copy-up mutations were previously isolated (residues 93 to 135). Likewise the mini-F mutant plasmids, carrying the mutations in the central region, could replicate in a dnaK null mutant host. One of them, S111P (111th serine changed to proline), showed a very high origin-binding activity vis-à-vis a severely reduced operator-binding activity, much like the RepE54 (R118P) mutant previously shown to form only monomers. Gel filtration and chemical crosslinking studies with purified RepE revealed that S111P primarily formed monomers, whereas other mutant proteins formed mostly dimers. On the other hand, analysis of deletion mutants revealed that the N-terminal 42 and the C-terminal 57 residues were dispensable for dimerization. Thus, the region spanning residues 93 to 161 of RepE (including Ser111 and Arg118) appeared to be primarily involved in dimerization, contributing to the negative regulation of plasmid replication.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli , Fator F/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Cromatografia em Gel , Reagentes de Ligações Cruzadas , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Dimerização , Fator F/efeitos dos fármacos , Dosagem de Genes , Chaperonas Moleculares/fisiologia , Mutagênese Insercional , Ligação Proteica/genética , Proteínas Repressoras/isolamento & purificação , Proteínas Repressoras/metabolismo , Análise de Sequência de DNA
17.
Mol Microbiol ; 13(6): 939-53, 1994 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-7854127

RESUMO

The effects of defined mutations in the lipopolysaccharide (LPS) and the outer membrane protein OmpA of the recipient cell on mating-pair formation in liquid media by the transfer systems of the F-like plasmids pOX38 (F), ColB2 and R100-1 were investigated. Transfer of all three plasmids was affected differently by mutations in the rfa (LPS) locus of the recipient cell, the F plasmid being most sensitive to mutations that affected rfaP gene expression which is responsible for the addition of pyrophosphorylethanolamine (PPEA) to heptose I of the inner core of the LPS. ColB2 transfer was more strongly affected by mutations in the heptose II-heptose III region of the LPS (rfaF) whereas R100-1 was not strongly affected by any of the rfa mutations tested. ompA but not rfa mutations further decreased the mating efficiency of an F plasmid carrying a mutation in the mating-pair stabilization protein TraN. An F derivative with a chloramphenicol acetyltransferase (CAT) cassette interrupting the traA pilin gene was constructed and pilin genes from F-like plasmids (F, ColB2, R100-1) were used to complement this mutation. Unexpectedly, the results suggested that the differences in the pilin sequences were not responsible for recognizing specific groups in the LPS, OmpA or the TraT surface exclusion protein. Other corroborating evidence is presented suggesting the presence of an adhesin at the F pilus tip.


Assuntos
Proteínas da Membrana Bacteriana Externa/fisiologia , Conjugação Genética/fisiologia , Proteínas de Escherichia coli , Escherichia coli/fisiologia , Fator F/fisiologia , Lipopolissacarídeos/metabolismo , Pili Sexual/fisiologia , Plasmídeos/fisiologia , Salmonella typhimurium/fisiologia , Sequência de Aminoácidos , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Carboidratos , Escherichia coli/genética , Etanolaminas/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Dados de Sequência Molecular , Salmonella typhimurium/genética
18.
New Microbiol ; 17(1): 65-8, 1994 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8127232

RESUMO

Several antimicrobial agents including mitomycin C and molecules belonging to the 4-quinolone, aminoglycoside and beta-lactam groups inhibited plasmid transfer to a varying extent, in actively growing Escherichia coli. In contrast, the same antibiotics did not prevent effective conjugation in nongrowing bacteria with the exception of mitomycin C. These results indicate that the drugs inhibit plasmid transfer by interfering with bacterial host functions rather than by recognizing a specific plasmid-mediated target. Several drugs are therefore capable, in principle, of reducing the spread of plasmid-mediated antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Conjugação Genética/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fator F/efeitos dos fármacos , Resistência Microbiana a Medicamentos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Fator F/fisiologia
19.
Acta andin ; 2(2): 141-60, 1993. tab
Artigo em Espanhol | LILACS | ID: lil-129310

RESUMO

La fecundidad de las mujeres de una sociedad está condicionada por factores culturales, socioeconómicos, religiosos y biológicos. Aquí se enfocarán las variables biomédicas que influencian la fertilidad en la altura. Entre estas variables tenemos la edad de menarquia, la edad de menopausia y el intervalo intergenésico por la lactancia materna. La menarquia está retarda en su presentación en las pobladoras de altura mientras que la menopausia se presenta a edades más tempranas. Esto implica que el período de vida reproductiva es más corto en la altura que a nivel del mar; así la vida reproductiva a nivel del mar tiene una duración de 35.4 años mientras que en Cerro de Pasco (4340 m) 30.6 años. Este hallazgo es sorprendente pues se observa una situación donde la Tasa Global de Fecundidad está grandemente elevada a pesar que la longitud de vida reproductiva está acortada. Una alta Tasa Global de Fecundidad puede deberse tanto a un inicio temprano de la maternidad como a espacios intergenésicos cortos. La tasa de embarazos en adolescentes fue similar en la altura como en nivel del mar por lo que la explicación de la alta Tasa Global de Fecundidad en la altura debe estar en los espacios intergenésicos cortos. Nuestros resultados demuestran que el espacio intergenésico disminuye conforme se incrementa la altitud de la residencia. El espacio intergenésico depende de la duración de la lactancia, sobretodo en aquellas poblaciones como la nuestra que tienen baja cobertura de contracepción postparto. La duración de la lactancia es similar a nivel del mar y en la altura, sin embargo el porcentaje de mujeres que se embarazan durante la lactancia aumenta con la altitud de residencia. Considerando que la edad de inicio de la primera maternidad es similar a nivel del mar en la altura, y que la duración de la lactancia es similar entre ambas poblaciones,y que la paridad es significativamente mayor en la altura, a pesar de que ambas poblaciones estudiadas no usan métodos contraceptivos, se concluye que la fertilidad esté elevada en la altura no sólo por factores culturales o sociales sino también debido a factores biomédicos probablemente influenciados por el medio ambiente, y que determinan una mayor eficiencia reproductiva a un medio adverso, como mecanismo de adaptación a la altura.


Assuntos
Humanos , Gravidez , Feminino , Adulto , Pessoa de Meia-Idade , Altitude , Fator F/fisiologia , Fertilidade/fisiologia , Aleitamento Materno , Menopausa , Menstruação , Peru , Fatores Socioeconômicos
20.
Mol Microbiol ; 6(6): 771-80, 1992 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-1374147

RESUMO

The FinOP system of F-like plasmids consists of an antisense RNA (FinP) and a 22 kDa protein (FinO) which act in concert to prevent the translation of TraJ, the positive regulator of the transfer operon. Earlier studies suggested that two different variants of finO were responsible for differential levels of fertility inhibition among F-like plasmids. We have shown that these variations are due to the presence of an additional open reading frame (orf286) upstream of the finO gene of conjugative plasmids that are highly repressed for transfer. When orf286 and finO are linked in cis, the level of FinO expression is increased because of a rise in the cellular concentration of finO mRNA. orf286 frameshift and deletion mutants also gave the same concentration of finO transcript, suggesting that the effect is due to mRNA stabilization. We suggest that the levels of fertility inhibition exhibited by F-like plasmids are a function of their cellular FinO concentration.


Assuntos
Proteínas de Bactérias/metabolismo , Conjugação Genética/genética , Proteínas de Escherichia coli , Fator F/fisiologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Proteínas Repressoras , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Northern Blotting , Southern Blotting , Clonagem Molecular , DNA Bacteriano , Escherichia coli/genética , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Fases de Leitura Aberta , RNA Bacteriano/metabolismo , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA