Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 34(12): 108891, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33761354

RESUMO

Myeloid lineage cells use TLRs to recognize and respond to diverse microbial ligands. Although unique transcription factors dictate the outcome of specific TLR signaling, whether lineage-specific differences exist to further modulate the quality of TLR-induced inflammation remains unclear. Comprehensive analysis of global gene transcription in human monocytes, monocyte-derived macrophages, and monocyte-derived dendritic cells stimulated with various TLR ligands identifies multiple lineage-specific, TLR-responsive gene programs. Monocytes are hyperresponsive to TLR7/8 stimulation that correlates with the higher expression of the receptors. While macrophages and monocytes express similar levels of TLR4, macrophages, but not monocytes, upregulate interferon-stimulated genes (ISGs) in response to TLR4 stimulation. We find that TLR4 signaling in macrophages uniquely engages transcription factor IRF1, which facilitates the opening of ISG loci for transcription. This study provides a critical mechanistic basis for lineage-specific TLR responses and uncovers IRF1 as a master regulator for the ISG transcriptional program in human macrophages.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , Fator Regulador 1 de Interferon/metabolismo , Interferons/farmacologia , Macrófagos/metabolismo , Monócitos/metabolismo , Sequência de Bases , Linhagem da Célula/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Células Dendríticas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade , Fator Regulador 1 de Interferon/deficiência , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Células Mieloides/citologia , Motivos de Nucleotídeos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais , Células THP-1 , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
2.
Inflammation ; 42(1): 387-403, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30315525

RESUMO

Previously, we demonstrated that neutrophil extracellular traps (NETs) play an essential role in lipopolysaccharide (LPS)-induced acute lung injury. However, the underlying mechanism is unclear. In this study, we showed that knockout of interferon regulatory factor 1 (IRF-1) in mice strongly attenuated the generation of NETs and reactive oxygen species (ROS) production in neutrophils from bronchoalveolar lavage fluid and alleviated LPS-induced lung injury and systemic inflammation. Our in vitro experiments demonstrated that LPS-stimulated platelets induce NET release through two distinct processes: an ROS-independent early/rapid NETosis and a later ROS-dependent classical NETosis. Notably, the classical ROS-dependent pathway plays a dominant role in the generation of NETs. Furthermore, we showed that IRF-1 knockout does not affect the formation of NETs in early/rapid NETosis, but significantly attenuates ROS production and the generation of NETs in classical NETosis, which determines the total levels of NETs released by LPS-stimulated platelets. In conclusion, IRF-1 deficiency plays a key role in moderating the excessive NETs formed via ROS in the classical pathway and retaining the protective role of the low-NET levels generated in early/rapid NETosis, which may serve as a novel target in acute lung injury/acute respiratory distress syndrome.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Armadilhas Extracelulares/metabolismo , Fator Regulador 1 de Interferon/deficiência , Espécies Reativas de Oxigênio/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/prevenção & controle , Animais , Plaquetas/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , Lipopolissacarídeos/efeitos adversos , Camundongos , Camundongos Knockout , Neutrófilos/metabolismo , Fatores de Tempo
3.
Int J Mol Med ; 40(4): 1261-1269, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28849179

RESUMO

Sepsis causes many early deaths; both macrophage mitochondrial damage and oxidative stress responses are key factors in its pathogenesis. Although the exact mechanisms responsible for sepsis-induced mitochondrial damage are unknown, the nuclear transcription factor, interferon regulatory factor-1 (IRF-1) has been reported to cause mitochondrial damage in several diseases. Previously, we reported that in addition to promoting systemic inflammation, IRF-1 promoted the apoptosis of and inhibited autophagy in macrophages. In the present study, we hypothesized that lipopolysaccharide (LPS)-induced IRF-1 activation in macrophages may promote mitochondrial damage and oxidative stress. In vitro, LPS was found to promote IRF-1 activation, reactive oxygen species (ROS) production, adenosine triphosphate (ATP) depletion, superoxide dismutase (SOD) consumption, malondialdehyde (MDA) accumulation and mitochondrial depolarization in macrophages in a time- and dose-dependent manner. These effects were abrogated in cells in which IRF-1 was knocked down. Furthermore, IRF-1 overexpression increased LPS-induced oxidative stress responses and mitochondrial damage. In vivo, peritoneal macrophages obtained from IRF-1 knockout (KO) mice produced less ROS and had less mitochondrial depolarization and damage following the administration of LPS, when compared to their wild-type (WT) counterparts. In addition, IRF-1 KO mice exhibited a decreased release of mitochondrial DNA (mtDNA) following the administration of LPS. Thus, IRF-1 may be a critical factor in augmenting LPS-induced oxidative stress and mitochondrial damage in macrophages.


Assuntos
Fator Regulador 1 de Interferon/genética , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Sepse/genética , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/biossíntese , Animais , Regulação da Expressão Gênica , Fator Regulador 1 de Interferon/deficiência , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Masculino , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo , Cultura Primária de Células , Células RAW 264.7 , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Sepse/induzido quimicamente , Sepse/metabolismo , Sepse/patologia , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
4.
J Neurochem ; 123 Suppl 2: 75-85, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23050645

RESUMO

Preconditioning with a low dose of harmful stimulus prior to injury induces tolerance to a subsequent ischemic challenge resulting in neuroprotection against stroke. Experimental models of preconditioning primarily focus on neurons as the cellular target of cerebral protection, while less attention has been paid to the cerebrovascular compartment, whose role in the pathogenesis of ischemic brain injury is crucial. We have shown that preconditioning with polyinosinic polycytidylic acid (poly-ICLC) protects against cerebral ischemic damage. To delineate the mechanism of poly-ICLC protection, we investigated whether poly-ICLC preconditioning preserves the function of the blood-brain barrier (BBB) in response to ischemic injury. Using an in vitro BBB model, we found that poly-ICLC treatment prior to exposure to oxygen-glucose deprivation maintained the paracellular and transcellular transport across the endothelium and attenuated the drop in transendothelial electric resistance. We found that poly-ICLC treatment induced interferon (IFN) ß mRNA expression in astrocytes and microglia and that type I IFN signaling in brain microvascular endothelial cells was required for protection. Importantly, this implicates a potential mechanism underlying neuroprotection in our in vivo experimental stroke model, where type I IFN signaling is required for poly-ICLC-induced neuroprotection against ischemic injury. In conclusion, we are the first to show that preconditioning with poly-ICLC attenuates ischemia-induced BBB dysfunction. This mechanism is likely an important feature of poly-ICLC-mediated neuroprotection and highlights the therapeutic potential of targeting BBB signaling pathways to protect the brain against stroke.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Carboximetilcelulose Sódica/análogos & derivados , Infarto da Artéria Cerebral Média/prevenção & controle , Fator Regulador 1 de Interferon/metabolismo , Precondicionamento Isquêmico/métodos , Fármacos Neuroprotetores/administração & dosagem , Poli I-C/administração & dosagem , Polilisina/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Análise de Variância , Animais , Animais Recém-Nascidos , Barreira Hematoencefálica/metabolismo , Infarto Encefálico/tratamento farmacológico , Infarto Encefálico/etiologia , Carboximetilcelulose Sódica/administração & dosagem , Carboximetilcelulose Sódica/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Glucose/deficiência , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/genética , Fator Regulador 1 de Interferon/deficiência , Interferon beta/genética , Interferon beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/efeitos dos fármacos , Poli I-C/farmacologia , Polilisina/administração & dosagem , Polilisina/farmacologia , RNA Mensageiro/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/patologia , Fatores de Tempo
5.
J Immunol ; 189(6): 2860-8, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22896628

RESUMO

Type I IFNs are induced by pathogens to protect the host from infection and boost the immune response. We have recently demonstrated that this IFN response is not restricted to pathogens, as the Gram-positive bacterium Lactobacillus acidophilus, a natural inhabitant of the intestine, induces high levels of IFN-ß in dendritic cells. In the current study, we investigate the intracellular pathways involved in IFN-ß upon stimulation of dendritic cells with L. acidophilus and reveal that this IFN-ß induction requires phagosomal uptake and processing but bypasses the endosomal receptors TLR7 and TLR9. The IFN-ß production is fully dependent on the TIR adapter molecule MyD88, partly dependent on IFN regulatory factor (IRF)1, but independent of the TIR domain-containing adapter inducing IFN-ß MyD88 adapter-like, IRF and IRF7. However, our results suggest that IRF3 and IRF7 have complementary roles in IFN-ß signaling. The IFN-ß production is strongly impaired by inhibitors of spleen tyrosine kinase (Syk) and PI3K. Our results indicate that L. acidophilus induces IFN-ß independently of the receptors typically used by bacteria, as it requires MyD88, Syk, and PI3K signaling and phagosomal processing to activate IRF1 and IRF3/IRF7 and thereby the release of IFN-ß.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Fator Regulador 1 de Interferon/fisiologia , Fator Regulador 3 de Interferon/fisiologia , Fator Regulador 7 de Interferon/fisiologia , Interferon beta/metabolismo , Lactobacillus acidophilus/imunologia , Fator 88 de Diferenciação Mieloide/fisiologia , Animais , Células Cultivadas , Células Dendríticas/metabolismo , Endossomos/imunologia , Endossomos/metabolismo , Endossomos/microbiologia , Fator Regulador 1 de Interferon/deficiência , Fator Regulador 3 de Interferon/antagonistas & inibidores , Fator Regulador 3 de Interferon/deficiência , Fator Regulador 7 de Interferon/antagonistas & inibidores , Fator Regulador 7 de Interferon/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fagossomos/imunologia , Fagossomos/metabolismo , Processamento de Proteína Pós-Traducional/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
6.
Rev Neurosci ; 23(2): 145-52, 2012 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-22499673

RESUMO

Oligodendrocyte injury and inflammatory demyelination are key pathological abnormalities of multiple sclerosis (MS), and its animal model, i.e., the experimental autoimmune encephalomyelitis (EAE). Traditionally, they are viewed as destructive processes secondary to a dysregulated autoimmune reaction. New evidence emerged over the last decade indicating that oligodendrocytes are not merely immune targets but rather active participants in the neuroimmune network and, in fact, can regulate the events leading to inflammatory demyelination. In this review, we are discussing the role of interferon regulatory factor 1 (IRF-1) as a master transcription factor orchestrating oligodendrocyte injury and inflammatory demyelination in MS and EAE. We are also discussing the significance of IRF-1 signaling in the induction of oligodendrocyte pyroptosis, a Caspase 1-dependent pro-inflammatory cell death, as a disease-enhancing mechanism. Finally, we are drawing attention to IRF-1 as a potential therapeutic target in MS and to the importance of investigating other oligodendrocyte-dependent disease mechanisms.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Animais , Caspase 1/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Humanos , Fator Regulador 1 de Interferon/deficiência , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Oligodendroglia/imunologia , Oligodendroglia/patologia , Transdução de Sinais
7.
Cardiovasc Res ; 93(1): 190-9, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21979142

RESUMO

AIMS: In this study, the role of retinoic inducible gene I (RIG-I)-mediated signalling in the inflammation of atherosclerosis was investigated to explain the pathology of atherosclerosis. METHODS AND RESULTS: Human and mouse primary cells were exposed to 25-hydroxycholesterol followed by examination of gene expression and activation of the signal pathway with biochemical and molecular biological techniques. A mouse atherosclerotic model was also used. We found that RIG-I was induced in macrophages and endothelium by 25-hydroxycholesterol. Interferon regulatory factor 1 is a key transcription factor for the induction of RIG-I by 25-hydroxycholesterol. The induction of interleukin-8 and growth-regulated protein α, the mouse interleukin-8 homologue, by 25-hydroxycholesterol is mediated by RIG-I signalling. RIG-I transduces the signal to downstream molecules, mitochondrial antiviral-signalling protein, transforming growth factor-ß-activated kinase 1, and mitogen-activated protein kinase, leading to the activation of nuclear factor κB, activator protein-1, and nuclear factor interleukin-6, all of which are required for the expression of interleukin-8. Finally, we observed that RIG-I is highly expressed in atherosclerotic lesions. CONCLUSION: Our data demonstrate that RIG-I signalling mediates atherosclerotic inflammation. Targeting RIG-I signalling should provide a way to inhibit atherosclerotic inflammation, which holds potential for the therapy of atherosclerosis.


Assuntos
Aterosclerose/genética , Aterosclerose/metabolismo , RNA Helicases DEAD-box/metabolismo , Hidroxicolesteróis/farmacologia , Fator Regulador 1 de Interferon/metabolismo , Interleucina-8/biossíntese , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/etiologia , Aterosclerose/patologia , Sequência de Bases , Quimiocina CXCL1/metabolismo , Proteína DEAD-box 58 , RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/genética , Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Fator Regulador 1 de Interferon/deficiência , Fator Regulador 1 de Interferon/genética , Interleucina-8/genética , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Interferente Pequeno/genética , Receptores Imunológicos , Transdução de Sinais/efeitos dos fármacos
8.
J Immunol ; 187(10): 5336-45, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22013119

RESUMO

This study reveals a new complexity in the cellular response to DNA damage: activation of IFN signaling. The DNA damage response involves the rapid recruitment of repair enzymes and the activation of signal transducers that regulate cell-cycle checkpoints and cell survival. To understand the link between DNA damage and the innate cellular defense that occurs in response to many viral infections, we evaluated the effects of agents such as etoposide that promote dsDNA breaks. Treatment of human cells with etoposide led to the induction of IFN-stimulated genes and the IFN-α and IFN-λ genes. NF-κB, known to be activated in response to DNA damage, was shown to be a key regulator of this IFN gene induction. Expression of an NF-κB subunit, p65/RelA, was sufficient for induction of the human IFN-λ1 gene. In addition, NF-κB was required for the induction of IFN regulatory factor-1 and -7 that are able to stimulate expression of the IFN-α and IFN-λ genes. Cells that lack the NF-κB essential modulator lack the ability to induce the IFN genes following DNA damage. Breaks in DNA are generated during normal physiological processes of replication, transcription, and recombination, as well as by external genotoxic agents or infectious agents. The significant finding of IFN production as a stress response to DNA damage provides a new perspective on the role of IFN signaling.


Assuntos
Dano ao DNA/imunologia , Reparo do DNA/imunologia , Regulação da Expressão Gênica/imunologia , Interferons/biossíntese , Animais , Morte Celular/genética , Morte Celular/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Dano ao DNA/genética , Reparo do DNA/genética , Células HeLa , Humanos , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Fator Regulador 1 de Interferon/deficiência , Fator Regulador 1 de Interferon/genética , Fator Regulador 7 de Interferon/deficiência , Fator Regulador 7 de Interferon/genética , Interferons/fisiologia , Camundongos , Camundongos Knockout , Complexos Multiproteicos/biossíntese , Complexos Multiproteicos/genética , Complexos Multiproteicos/fisiologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
9.
PLoS Pathog ; 7(9): e1002230, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21909274

RESUMO

Interferon regulatory factor (IRF)-1 is an immunomodulatory transcription factor that functions downstream of pathogen recognition receptor signaling and has been implicated as a regulator of type I interferon (IFN)-αß expression and the immune response to virus infections. However, this role for IRF-1 remains controversial because altered type I IFN responses have not been systemically observed in IRF-1(-/-) mice. To evaluate the relationship of IRF-1 and immune regulation, we assessed West Nile virus (WNV) infectivity and the host response in IRF-1(-/-) cells and mice. IRF-1(-/-) mice were highly vulnerable to WNV infection with enhanced viral replication in peripheral tissues and rapid dissemination into the central nervous system. Ex vivo analysis revealed a cell-type specific antiviral role as IRF-1(-/-) macrophages supported enhanced WNV replication but infection was unaltered in IRF-1(-/-) fibroblasts. IRF-1 also had an independent and paradoxical effect on CD8(+) T cell expansion. Although markedly fewer CD8(+) T cells were observed in naïve animals as described previously, remarkably, IRF-1(-/-) mice rapidly expanded their pool of WNV-specific cytolytic CD8(+) T cells. Adoptive transfer and in vitro proliferation experiments established both cell-intrinsic and cell-extrinsic effects of IRF-1 on the expansion of CD8(+) T cells. Thus, IRF-1 restricts WNV infection by modulating the expression of innate antiviral effector molecules while shaping the antigen-specific CD8(+) T cell response.


Assuntos
Imunidade Adaptativa/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunidade Inata/efeitos dos fármacos , Fator Regulador 1 de Interferon/fisiologia , Febre do Nilo Ocidental/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Linfócitos B/imunologia , Proliferação de Células , Sistema Nervoso Central/citologia , Fator Regulador 1 de Interferon/deficiência , Fator Regulador 1 de Interferon/imunologia , Interferon beta/fisiologia , Interferon gama/efeitos dos fármacos , Interferon gama/fisiologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Vírus do Nilo Ocidental/imunologia
10.
J Neuroimmunol ; 233(1-2): 147-59, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21257209

RESUMO

The present study provides evidence that interferon regulatory factor 1 (IRF-1) signaling in glial cells is involved in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Using a bone marrow chimera model of EAE, we demonstrated that CNS IRF-1 regulates inflammatory demyelination and disease severity independently of the peripheral immune cells. In addition, we identified Caspase 1, a pro-inflammatory and pro-apoptotic molecule, as an important transcriptional target of IRF-1. The findings of our study indicate that IRF-1 signaling in glial cells serves as a final common pathway of inflammatory demyelination and may have important clinical implications in MS.


Assuntos
Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/imunologia , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/patologia , Imunomodulação/imunologia , Fator Regulador 1 de Interferon/fisiologia , Neuroglia/imunologia , Neuroglia/patologia , Transdução de Sinais/imunologia , Animais , Células Cultivadas , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/fisiopatologia , Evolução Fatal , Feminino , Humanos , Imunomodulação/efeitos dos fármacos , Fator Regulador 1 de Interferon/deficiência , Fator Regulador 1 de Interferon/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/fisiopatologia , Neuroglia/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Am J Transplant ; 11(2): 203-14, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21219575

RESUMO

Foxp3 expression in regulatory T cells (Treg) is required for their development and suppressive function. How different inflammatory signals affect Foxp3 chromatin structure, expression and Tregs plasticity are not completely known. In the present study, the Toll-like receptor 2 (TLR2) ligand peptidoglycan inhibited Foxp3 expression in both natural Treg (nTreg) and TGFß-driven adaptive Treg (aTreg). Inhibition was independent of paracrine Th1, Th2 and Th17 cytokines. PGN-induced T cell-intrinsic TLR2-Myd88-dependent IFR1 expression and induced IRF1 bound to IRF1 response elements (IRF-E) in the Foxp3 promoter and intronic enhancers, and negatively regulated Foxp3 expression. Inflammatory IL-6 and TLR2 signals induced divergent chromatin changes at the Foxp3 locus and regulated Treg suppressor function, and in an islet transplant model resulted in differences in their ability to prolong graft survival. These findings are important for understanding how different inflammatory signals can affect the transplantation tolerance and immunity.


Assuntos
Epigênese Genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Mediadores da Inflamação/fisiologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Fator Regulador 1 de Interferon/deficiência , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/imunologia , Interleucina-6/deficiência , Interleucina-6/genética , Interleucina-6/imunologia , Transplante das Ilhotas Pancreáticas/imunologia , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fatores de Transcrição STAT/deficiência , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/metabolismo , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Fator de Crescimento Transformador beta/farmacologia
12.
J Immunol ; 184(9): 5179-85, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20308629

RESUMO

Viperin is an antiviral protein whose expression is highly upregulated during viral infections via IFN-dependent and/or IFN-independent pathways. We examined the molecular alterations induced by the transcriptional activator IFN regulatory factor (IRF)-1 and found viperin to be among the group of IRF-1 regulated genes. From these data, it was not possible to distinguish genes that are primary targets of IRF-1 and those that are targets of IRF-1-induced proteins, like IFN-beta. In this study, we show that IRF-1 directly binds to the murine viperin promoter to the two proximal IRF elements and thereby induces viperin expression. Infection studies with embryonal fibroblasts from different gene knock-out mice demonstrate that IRF-1 is essential, whereas the type I IFN system is dispensable for vesicular stomatitis virus induced viperin gene transcription. Further, IRF-1, but not IFN type I, mediates the induction of viperin transcription after IFN-gamma treatment. In contrast, IRF-1 is not required for IFN-independent viperin induction by Newcastle disease virus infection and by infection with a vesicular stomatitis virus mutant that is unable to block IFN expression and secretion. We conclude that the IRF-1 mediated type I IFN independent mechanism of enhanced viperin expression provides a redundant mechanism to protect cells from viral infections. This mechanism becomes important when viruses evade innate immunity by antagonizing the induction and function of the IFN system.


Assuntos
Antivirais/farmacologia , Fator Regulador 1 de Interferon/fisiologia , Interferon Tipo I/fisiologia , Proteínas/genética , Ativação Transcricional/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Animais , Antivirais/antagonistas & inibidores , Células Cultivadas , Fator Regulador 1 de Interferon/deficiência , Fator Regulador 1 de Interferon/genética , Interferon Tipo I/antagonistas & inibidores , Camundongos , Camundongos Knockout , Células NIH 3T3 , Regiões Promotoras Genéticas/imunologia , Proteínas/metabolismo , Transdução de Sinais/imunologia , Regulação para Cima/genética , Regulação para Cima/imunologia , Estomatite Vesicular/imunologia , Estomatite Vesicular/prevenção & controle , Replicação Viral/imunologia
13.
Hepatology ; 51(5): 1692-701, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20131404

RESUMO

Interferon regulatory factor-1 (IRF-1) is a transcription factor that regulates gene expression during immunity. We hypothesized that IRF-1 plays a pivotal role in liver transplant (LTx) ischemia/reperfusion (I/R) injury. Mouse orthotopic LTx was conducted after 24 hours cold storage in University of Wisconsin (UW) solution in wildtype (WT) C57BL/6 and IRF-1 knockout (KO) mice. IRF-1 deficiency in liver grafts, but not in recipients, resulted in significant reduction of hepatocyte apoptosis and liver injury, as well as improved survival. IRF-1 mRNA up-regulation was typically seen in graft hepatocytes in WT-->WT LTx. Deficiency of IRF-1 signaling in graft resulted in significantly reduced messenger RNA (mRNA) levels for death ligands and death receptors in hepatocytes, as well as decreased caspase-8 activities, indicating that IRF-1 mediates death ligand-induced hepatocyte death. Further, a smaller but significant IRF-1 mRNA up-regulation was seen in WT graft nonparenchymal cells (NPC) and associated with interferon gamma (IFN-gamma) mRNA up-regulation exclusively in NPC. IFN-gamma mRNA was significantly reduced in IRF-1 KO graft. Thus, IRF-1 in graft hepatocytes and NPC has distinct effects in hepatic I/R injury. However, LTx with chimeric liver grafts showed that grafts lacking hepatocellular IRF-1 had better protection compared with those lacking IRF-1 in NPC. The study identifies a critical role for IRF-1 in liver transplant I/R injury.


Assuntos
Fator Regulador 1 de Interferon/fisiologia , Transplante de Fígado/efeitos adversos , Traumatismo por Reperfusão/fisiopatologia , Animais , Apoptose/fisiologia , Fator Regulador 1 de Interferon/deficiência , Interferon gama/biossíntese , Transplante de Fígado/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Regulação para Cima
14.
J Immunol ; 184(4): 1784-92, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20083668

RESUMO

In myeloid dendritic cells, activation of the IL-27p28 gene is selectively induced by ligands of TLR4 or TLR3, both coupled to the Toll/IL-1R-related domain-containing adaptor-inducing IFN/IFN regulatory factor (IRF)3 pathway. In response to both ligands, autocrine type 1 IFN production was required for optimal IL-27p28 expression. Type I IFN signaling was necessary for sustained IRF1 activation and formation of the IRF9-containing IFN-stimulated gene factor 3 complex. Indeed, we demonstrated that IRF1 and IRF9 are sequentially activated and recruited to the IL-27p28 IFN-stimulated regulatory element site. Involvement of IRF1 and IRF9 in the induction of IL-27p28 was confirmed in vitro and upon in vivo exposure to TLR ligands. Thus, in response to TLR4 or TLR3 ligation, the initial induction of the IL-27p28 gene depends on the recruitment of IRF1 and IRF3, whereas transcriptional amplification requires recruitment of the IFN-stimulated gene factor 3 complex. These results highlight the complex molecular interplay between TLRs and type I IFNs for the control of IL-27 synthesis.


Assuntos
Fator Regulador 3 de Interferon/fisiologia , Interleucinas/genética , Subunidades Proteicas/genética , Receptores Toll-Like/fisiologia , Ativação Transcricional/imunologia , Animais , Linhagem Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Fator Regulador 1 de Interferon/deficiência , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/fisiologia , Fator Regulador 3 de Interferon/deficiência , Fator Regulador 3 de Interferon/genética , Interferon Tipo I/fisiologia , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/deficiência , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/fisiologia , Interleucinas/biossíntese , Interleucinas/metabolismo , Camundongos , Subunidades Proteicas/metabolismo , Receptor Cross-Talk/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
15.
Diabetologia ; 52(11): 2374-2384, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19756487

RESUMO

AIMS/HYPOTHESIS: IFN-gamma, together with other inflammatory cytokines such as IL-1beta and TNF-alpha, contributes to beta cell death in type 1 diabetes. We analysed the role of the transcription factor interferon regulatory factor (IRF)-1, a downstream target of IFN-gamma/signal transducer and activator of transcription (STAT)-1, in immune-mediated beta cell destruction. METHODS: Islets from mice lacking Irf-1 (Irf-1 (-/-)) and control C57BL/6 mice were transplanted in overtly diabetic NOD mice. Viability and functionality of islets were evaluated in vitro. Chemokine expression by Irf-1 (-/-) islets and INS-1E cells transfected with Irf-1 short interfering RNA (siRNA) was measured by real-time PCR as well as in functional assays in vitro. RESULTS: IRF-1 deletion in islets was associated with higher prevalence of primary non-function (63% vs 25%, p

Assuntos
Células Secretoras de Insulina/fisiologia , Fator Regulador 1 de Interferon/metabolismo , Fatores de Transcrição/metabolismo , Animais , Morte Celular , Sobrevivência Celular , Primers do DNA , Glucose/farmacologia , Sobrevivência de Enxerto/imunologia , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/imunologia , Fator Regulador 1 de Interferon/deficiência , Fator Regulador 1 de Interferon/genética , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD/cirurgia , Camundongos Knockout , Reação em Cadeia da Polimerase/métodos , RNA Interferente Pequeno/genética , Transfecção , Transplante Homólogo/imunologia , Transplante Homólogo/fisiologia
16.
Gastroenterology ; 137(1): 285-96, 296.e1-11, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19362089

RESUMO

BACKGROUND & AIMS: The molecular mechanisms of lymphoproliferation associated with the disruption of interferon (IFN) signaling and chronic hepatitis C virus (HCV) infection are poorly understood. Lymphomas are extrahepatic manifestations of HCV infection; we sought to clarify the molecular mechanisms of these processes. METHODS: We established interferon regulatory factor-1-null (irf-1(-/-)) mice with inducible and persistent expression of HCV structural proteins (irf-1/CN2 mice). All the mice (n = 900) were observed for at least 600 days after Cre/loxP switching. Histologic analyses, as well as analyses of lymphoproliferation, sensitivity to Fas-induced apoptosis, colony formation, and cytokine production, were performed. Proteins associated with these processes were also assessed. RESULTS: Irf-1/CN2 mice had extremely high incidences of lymphomas and lymphoproliferative disorders and displayed increased mortality. Disruption of irf-1 reduced the sensitivity to Fas-induced apoptosis and decreased the levels of caspases-3/7 and caspase-9 messenger RNA species and enzymatic activities. Furthermore, the irf-1/CN2 mice showed decreased activation of caspases-3/7 and caspase-9 and increased levels of interleukin (IL)-2, IL-10, and Bcl-2, as well as increased Bcl-2 expression, which promoted oncogenic transformation of lymphocytes. IL-2 and IL-10 were induced by the HCV core protein in splenocytes. CONCLUSIONS: Disruption of IFN signaling resulted in development of lymphoma, indicating that differential signaling occurs in lymphocytes compared with liver. This mouse model, in which HCV expression and disruption of IFN signaling synergize to promote lymphoproliferation, will be an important tool for the development of therapeutic agents that target the lymphoproliferative pathway.


Assuntos
Hepacivirus/metabolismo , Hepatite C Crônica/complicações , Interleucinas/metabolismo , Transtornos Linfoproliferativos/imunologia , Transtornos Linfoproliferativos/virologia , Transdução de Sinais , Proteínas Virais/metabolismo , Receptor fas/metabolismo , Fatores Etários , Animais , Apoptose , Linfócitos B/imunologia , Linfócitos B/virologia , Caspases/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Feminino , Hepacivirus/genética , Hepatite C Crônica/imunologia , Hepatite C Crônica/patologia , Fator Regulador 1 de Interferon/deficiência , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-2/metabolismo , Linfoma/imunologia , Linfoma/virologia , Transtornos Linfoproliferativos/patologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Baço/imunologia , Baço/virologia , Linfócitos T/imunologia , Linfócitos T/virologia , Fatores de Tempo , Proteínas do Core Viral/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/genética
17.
J Immunol ; 181(3): 1673-82, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18641303

RESUMO

Regulatory T (Treg) cells are critical in inducing and maintaining tolerance. Despite progress in understanding the basis of immune tolerance, mechanisms and molecules involved in the generation of Treg cells remain poorly understood. IFN regulatory factor (IRF)-1 is a pleiotropic transcription factor implicated in the regulation of various immune processes. In this study, we report that IRF-1 negatively regulates CD4(+)CD25(+) Treg cell development and function by specifically repressing Foxp3 expression. IRF-1-deficient (IRF-1(-/-)) mice showed a selective and marked increase of highly activated and differentiated CD4(+)CD25(+)Foxp3(+) Treg cells in thymus and in all peripheral lymphoid organs. Furthermore, IRF-1(-/-) CD4(+)CD25(-) T cells showed extremely high bent to differentiate into CD4(+)CD25(+)Foxp3(+) Treg cells, whereas restoring IRF-1 expression in IRF-1(-/-) CD4(+)CD25(-) T cells impaired their differentiation into CD25(+)Foxp3(+) cells. Functionally, both isolated and TGF-beta-induced CD4(+)CD25(+) Treg cells from IRF-1(-/-) mice exhibited more increased suppressive activity than wild-type Treg cells. Such phenotype and functional characteristics were explained at a mechanistic level by the finding that IRF-1 binds a highly conserved IRF consensus element sequence (IRF-E) in the foxp3 gene promoter in vivo and negatively regulates its transcriptional activity. We conclude that IRF-1 is a key negative regulator of CD4(+)CD25(+) Treg cells through direct repression of Foxp3 expression.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/imunologia , Fatores de Transcrição Forkhead/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Subunidade alfa de Receptor de Interleucina-2/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Células Cultivadas , Sequência Consenso , Regulação para Baixo , Fatores de Transcrição Forkhead/genética , Humanos , Fator Regulador 1 de Interferon/deficiência , Fator Regulador 1 de Interferon/genética , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transcrição Gênica/genética
18.
Proc Natl Acad Sci U S A ; 104(8): 2849-54, 2007 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-17293456

RESUMO

A subgroup of genes induced by IFN-gamma requires both STAT1 and IRF1 for transcriptional activation. Using WT, stat1(-/-), or irf1(-/-) cells, we analyzed the changes induced by IFN-gamma in gbp2 promoter chromatin. STAT1 associated with the promoter independently of IRF1 and played an essential role in the ordered recruitment of the coactivator/histone acetyl transferase CREB-binding protein (CBP) and the histone deacetylase HDAC1. Hyperacetylation of histone 4 also required STAT1. Phosphorylation at S727 in the transactivating domain increased transcriptional activity of STAT1. In cells expressing a STAT1S727A-mutant CBP recruitment, histone 4 hyperacetylation and RNA polymerase II association with the gbp2 promoter were strongly reduced. IRF1 association with the gbp2 promoter followed that of STAT1, but STAT1 association with DNA or histone hyperacetylation were not necessary for IRF1 binding. RNA polymerase II association with the gbp2 promoter required both STAT1 and IRF1, suggesting that both proteins mediate essential steps in transcriptional activation. IRF1, but not STAT1, was found to coimmunoprecipitate with RNA polymerase II. Together, the data support the assumption that the main role of STAT1 in activating gbp2 transcription is to provide transcriptionally competent chromatin, whereas the function of IRF1 may lie in directly contacting RNA polymerase II-containing transcriptional complexes.


Assuntos
Proteínas de Ligação ao GTP/genética , Fator Regulador 1 de Interferon/metabolismo , Interferon gama/farmacologia , Fator de Transcrição STAT1/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Animais , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Genes Reguladores , Fator Regulador 1 de Interferon/deficiência , Camundongos , Mutação/genética , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT1/deficiência
19.
J Steroid Biochem Mol Biol ; 103(3-5): 567-71, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17267208

RESUMO

The activated form of vitamin D(3), 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), plays an important role in the immune system. Indeed, receptors for 1,25(OH)(2)D(3) are found on most immune cells, and 1alpha-hydroxylase, the enzyme responsible for final activation of vitamin D(3), is expressed by monocytes/macrophages, resulting in secretion of 1,25(OH)(2)D(3) after immune stimulation. We have previously shown that in murine peritoneal macrophages 1alpha-hydroxylase is highly regulated by immune signals such as IFNgamma and LPS. In the present study we made use of two different knock-out mouse models with disruptions in two key transcription factors in the IFNgamma-signalling cascade (STAT1alpha and IRF1), to evaluate their role in the regulation of 1alpha-hydroxylase. This was performed by culturing peritoneal macrophages from these knock-out mice in the presence of IFNgamma and LPS, and evaluating the impact of the absence of the respective transcription factors on 1alpha-hydroxylase mRNA expression by real-time RT-PCR. In addition also the mRNA expression profiles of the essential transcription factors STAT1alpha, IRF1 and C/EBPbeta were investigated. The data confirm a crucial role for STAT1alpha as well as for C/EBPbeta in the regulation of 1alpha-hydroxylase in monocytes.


Assuntos
Interferon gama/imunologia , Interferon gama/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Oxigenases de Função Mista/imunologia , Oxigenases de Função Mista/metabolismo , Transdução de Sinais/imunologia , Animais , Sequência de Bases , Células Cultivadas , Regulação Enzimológica da Expressão Gênica , Humanos , Fator Regulador 1 de Interferon/deficiência , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Fator Gênico 3 Estimulado por Interferon/deficiência , Fator Gênico 3 Estimulado por Interferon/genética , Fator Gênico 3 Estimulado por Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases de Função Mista/genética , Regiões Promotoras Genéticas/genética
20.
J Exp Med ; 204(1): 141-52, 2007 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-17227910

RESUMO

Interleukin (IL)-27 is the newest member of the IL-12 family of heterodimeric cytokines composed of the Epstein-Barr virus-induced gene 3 and p28 chains. IL-27 not only plays an important role in the regulation of differentiation of naive T helper cells but also possesses antiinflammatory properties. IL-27 is an early product of activated monocytes/macrophages and dendritic cells. However, the mechanisms whereby inflammatory signals stimulate IL-27 production have not been explored. In this study, we investigated the transcriptional regulation of the mouse IL-27 p28 gene in macrophages in response to lipopolysaccharide (LPS) and interferon (IFN)-gamma. We found that LPS-stimulated p28 production was completely dependent on the Toll-like receptor 4/myeloid differentiation factor 88 (MyD88)-mediated pathway but only partially dependent on nuclear factor kappaB c-Rel. IFN-gamma-induced p28 production/secretion was also partially dependent on MyD88 but independent of c-Rel. We then cloned the mouse p28 gene promoter and mapped its multiple transcription initiation sites. Furthermore, we identified critical promoter elements that mediate the inductive effects of LPS and IFN-gamma, separately and synergistically, on p28 gene transcription in a c-Rel- and interferon regulatory factor 1-dependent manner, respectively.


Assuntos
Interferon gama/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Macrófagos/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , DNA Complementar/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Fator Regulador 1 de Interferon/deficiência , Fator Regulador 1 de Interferon/genética , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Subunidades Proteicas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes , Transdução de Sinais , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA