Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.868
Filtrar
1.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720270

RESUMO

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Estresse Oxidativo , Fibrose Pulmonar , Dióxido de Silício , Sinvastatina , Animais , Sinvastatina/farmacologia , Ratos , Masculino , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/prevenção & controle , Fibrose Pulmonar/patologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Dióxido de Silício/toxicidade , Ratos Sprague-Dawley , Modelos Animais de Doenças , Pneumonia/induzido quimicamente , Pneumonia/prevenção & controle , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Pneumonia/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Silicose/tratamento farmacológico , Silicose/patologia , Silicose/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Transdução de Sinais/efeitos dos fármacos , NADPH Oxidases/metabolismo , Ribonucleotídeos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , NADPH Oxidase 4/metabolismo , Acetofenonas/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
2.
Cells ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38727287

RESUMO

Currently, more and more people are suffering from chronic kidney disease (CKD). It is estimated that CKD affects over 10% of the population worldwide. This is a significant issue, as the kidneys largely contribute to maintaining homeostasis by, among other things, regulating blood pressure, the pH of blood, and the water-electrolyte balance and by eliminating unnecessary metabolic waste products from blood. What is more, this disease does not show any specific symptoms at the beginning. The development of CKD is predisposed by certain conditions, such as diabetes mellitus or hypertension. However, these disorders are not the only factors promoting the onset and progression of CKD. The primary purpose of this review is to examine renin-angiotensin-aldosterone system (RAAS) activity, transforming growth factor-ß1 (TGF-ß1), vascular calcification (VC), uremic toxins, and hypertension in the context of their impact on the occurrence and the course of CKD. We firmly believe that a deeper comprehension of the cellular and molecular mechanisms underlying CKD can lead to an enhanced understanding of the disease. In the future, this may result in the development of medications targeting specific mechanisms involved in the decline of kidney function. Our paper unveils the selected processes responsible for the deterioration of renal filtration abilities.


Assuntos
Progressão da Doença , Insuficiência Renal Crônica , Sistema Renina-Angiotensina , Humanos , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Sistema Renina-Angiotensina/fisiologia , Animais , Hipertensão/fisiopatologia , Hipertensão/patologia , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Calcificação Vascular/fisiopatologia , Fator de Crescimento Transformador beta1/metabolismo , Rim/patologia , Rim/metabolismo , Rim/fisiopatologia
3.
J Transl Med ; 22(1): 440, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720358

RESUMO

PURPOSE: To explore the impact of microRNA 146a (miR-146a) and the underlying mechanisms in profibrotic changes following glaucoma filtering surgery (GFS) in rats and stimulation by transforming growth factor (TGF)-ß1 in rat Tenon's capsule fibroblasts. METHODS: Cultured rat Tenon's capsule fibroblasts were treated with TGF-ß1 and analyzed with microarrays for mRNA profiling to validate miR-146a as the target. The Tenon's capsule fibroblasts were then respectively treated with lentivirus-mediated transfection of miR-146a mimic or inhibitor following TGF-ß1 stimulation in vitro, while GFS was performed in rat eyes with respective intraoperative administration of miR-146a, mitomycin C (MMC), or 5-fluorouracil (5-FU) in vivo. Profibrotic genes expression levels (fibronectin, collagen Iα, NF-KB, IL-1ß, TNF-α, SMAD4, and α-smooth muscle actin) were determined through qPCR, Western blotting, immunofluorescence staining and/or histochemical analysis in vitro and in vivo. SMAD4 targeting siRNA was further used to treat the fibroblasts in combination with miR-146a intervention to confirm its role in underlying mechanisms. RESULTS: Upregulation of miR-146a reduced the proliferation rate and profibrotic changes of rat Tenon's capsule fibroblasts induced by TGF-ß1 in vitro, and mitigated subconjunctival fibrosis to extend filtering blebs survival after GFS in vivo, where miR-146a decreased expression levels of NF-KB-SMAD4-related genes, such as fibronectin, collagen Iα, NF-KB, IL-1ß, TNF-α, SMAD4, and α-smooth muscle actin(α-SMA). Additionally, SMAD4 is a key target gene in the process of miR-146a inhibiting fibrosis. CONCLUSIONS: MiR-146a effectively reduced TGF-ß1-induced fibrosis in rat Tenon's capsule fibroblasts in vitro and in vivo, potentially through the NF-KB-SMAD4 signaling pathway. MiR-146a shows promise as a novel therapeutic target for preventing fibrosis and improving the success rate of GFS.


Assuntos
Fibroblastos , Fibrose , Cirurgia Filtrante , Glaucoma , MicroRNAs , Ratos Sprague-Dawley , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Glaucoma/patologia , Glaucoma/genética , Cirurgia Filtrante/efeitos adversos , Fibroblastos/metabolismo , Masculino , Cápsula de Tenon/metabolismo , Cápsula de Tenon/patologia , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Ratos , Proteína Smad4/metabolismo , Proteína Smad4/genética , NF-kappa B/metabolismo , Mitomicina/farmacologia , Mitomicina/uso terapêutico , Regulação da Expressão Gênica
4.
Int J Rheum Dis ; 27(5): e15174, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720423

RESUMO

OBJECTIVES: This study investigates the role of TNF-induced protein 3 (TNFAIP3) and CCAAT/enhancer-binding protein ß (C/EBPß) in alveolar macrophages (AMs) of patients with systemic sclerosis-associated interstitial lung disease (SSc-ILD) and their influence on pulmonary fibrosis. METHODS: Transfection of HEK293T cells and AMs with plasmids carrying TNFAIP3 and C/EBPß was performed, followed by co-culturing AMs with pulmonary fibroblasts. Immunoblotting analysis was then utilized to assess the expression of TNFAIP3, C/EBPß, and collagen type 1 (Col1). Quantitative PCR analysis was conducted to quantify the mRNA levels of C/EBPß, IL-10, and TGF-ß1. STRING database analysis, and immunoprecipitation assays were employed to investigate the interactions between TNFAIP3 and C/EBPß. RESULTS: TNFAIP3 expression was significantly reduced in SSc-ILD AMs, correlating with increased Col1 production in fibroblasts. Overexpression of TNFAIP3 inhibited this pro-fibrotic activity. Conversely, C/EBPß expression was elevated in SSc-ILD AMs, and its reduction through TNFAIP3 restoration decreased pro-fibrotic cytokines IL-10 and TGFß1 levels. Protein-protein interaction studies confirmed the regulatory relationship between TNFAIP3 and C/EBPß. CONCLUSIONS: This study highlights the important role of TNFAIP3 in regulating pulmonary fibrosis in SSc-ILD by modulating C/EBPß expression in AMs. These findings suggest that targeting TNFAIP3 could be a potential therapeutic strategy for managing SSc-ILD patients.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Técnicas de Cocultura , Fibroblastos , Doenças Pulmonares Intersticiais , Macrófagos Alveolares , Escleroderma Sistêmico , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Fibroblastos/metabolismo , Células HEK293 , Interleucina-10/metabolismo , Interleucina-10/genética , Pulmão/metabolismo , Pulmão/patologia , Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/etiologia , Macrófagos Alveolares/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/etiologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/complicações , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Adulto , Idoso
5.
BMC Pulm Med ; 24(1): 229, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730387

RESUMO

BACKGROUND: Since COVID-19 became a global epidemic disease in 2019, pulmonary fibrosis (PF) has become more prevalent among persons with severe infections, with IPF being the most prevalent form. In traditional Chinese medicine, various disorders are treated using Sinomenine (SIN). The SIN's strategy for PF defense is unclear. METHODS: Bleomycin (BLM) was used to induce PF, after which inflammatory factors, lung histological alterations, and the TGF-/Smad signaling pathway were assessed. By administering various dosages of SIN and the TGF- receptor inhibitor SB-431,542 to human embryonic lung fibroblasts (HFL-1) and A549 cells, we were able to examine proliferation and migration as well as the signaling molecules implicated in Epithelial-Mesenchymal Transition (EMT) and Extra-Cellular Matrix (ECM). RESULTS: In vivo, SIN reduced the pathological changes in the lung tissue induced by BLM, reduced the abnormal expression of inflammatory cytokines, and improved the weight and survival rate of mice. In vitro, SIN inhibited the migration and proliferation by inhibiting TGF-ß1/Smad3, PI3K/Akt, and NF-κB pathways, prevented the myofibroblasts (FMT) of HFL-1, reversed the EMT of A549 cells, restored the balance of matrix metalloenzymes, and reduced the expression of ECM proteins. CONCLUSION: SIN attenuated PF by down-regulating TGF-ß/Smad3, PI3K/Akt, and NF-κB signaling pathways, being a potential effective drug in the treatment of PF.


Assuntos
Bleomicina , Regulação para Baixo , Morfinanos , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fibrose Pulmonar , Transdução de Sinais , Proteína Smad3 , Fator de Crescimento Transformador beta1 , Animais , Morfinanos/farmacologia , Morfinanos/uso terapêutico , Camundongos , Transdução de Sinais/efeitos dos fármacos , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Proteína Smad3/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células A549 , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Pulmão/patologia , Pulmão/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
6.
J Cardiothorac Surg ; 19(1): 283, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730417

RESUMO

OBJECTIVE: Myocardial infarction (MI) -induced cardiac dysfunction can be attenuated by aerobic exercises. This study explored the mechanism of interval training (IT) regulating cardiac function in MI rats, providing some theoretical basis for clarifying MI pathogenesis and new ideas for clinically treating MI. METHODS: Rats were subjected to MI modeling, IT intervention, and treatments of the Transforming growth factor-ß1 (TGF-ß1) pathway or the nod-like receptor protein 3 (NLRP3) activators. Cardiac function and hemodynamic indicator alterations were observed. Myocardial pathological damage and fibrosis, reactive oxygen species (ROS) level, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities, MDA content, inflammasome-associated protein levels, and inflammatory factor levels were assessed. The binding between TGF-ß1 and receptor was detected. RESULTS: MI rats exhibited decreased left ventricle ejection fraction (LVEF), left ventricle fractional shortening  (LVFS), left ventricular systolic pressure  (LVSP), positive and negative derivates max/min (dP/dt max/min) and increased left ventricular end-systolic pressure (LVEDP), a large number of scar areas in myocardium, disordered cell arrangement and extensive fibrotic lesions, increased TGF-ß1 and receptor binding, elevated ROS level and MDA content and weakened SOD, CAT and GSH-Px activities, and up-regulated NLRP3, apoptosis-associated speck-like protein containing a CARD  (ASC) and cleaved-caspase-1 levels, while IT intervention caused ameliorated cardiac function. IT inactivated the TGF-ß1 pathway to decrease oxidative stress in myocardial tissues of MI rats and inhibit NLRP3 inflammasome activation. Activating NLRP3 partially reversed IT-mediated improvement on cardiac function in MI rats. CONCLUSION: IT diminished oxidative stress in myocardial tissues and suppressed NLRP3 inflammasome activation via inactivating the TGF-ß1 pathway, thus improving the cardiac function of MI rats.


Assuntos
Inflamassomos , Infarto do Miocárdio , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1 , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Fator de Crescimento Transformador beta1/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Inflamassomos/metabolismo , Masculino , Modelos Animais de Doenças , Transdução de Sinais/fisiologia , Condicionamento Físico Animal/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Função Ventricular Esquerda/fisiologia , Miocárdio/metabolismo , Miocárdio/patologia
7.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732023

RESUMO

The gradual loss of kidney function due to increasing age is accompanied by structural changes such as fibrosis of the tissue. The underlying molecular mechanisms are complex, but not yet fully understood. Non-fibrillar collagen type VIII (COL8) could be a potential factor in the fibrosis processes of the aging kidney. A pathophysiological significance of COL8 has already been demonstrated in the context of diabetic kidney disease, with studies showing that it directly influences both the development and progression of renal fibrosis occurring. The aim of this study was to investigate whether COL8 impacts age-related micro-anatomical and functional changes in a mouse model. The kidneys of wild-type (Col8-wt) and COL8-knockout (Col8-ko) mice of different age and sex were characterized with regard to the expression of molecular fibrosis markers, the development of nephrosclerosis and renal function. The age-dependent regulation of COL8 mRNA expression in the wild-type revealed sex-dependent effects that were not observed with collagen IV (COL4). Histochemical staining and protein analysis of profibrotic cytokines TGF-ß1 (transforming growth factor) and CTGF (connective tissue growth factor) in mouse kidneys showed significant age effects as well as interactions of the factors age, sex and Col8 genotype. There were also significant age and Col8 genotype effects in the renal function data analyzed by urinary cystatin C. In summary, the present study shows, for the first time, that COL8 is regulated in an age- and sex-dependent manner in the mouse kidney and that the expression of COL8 influences the severity of age-induced renal fibrosis and function.


Assuntos
Envelhecimento , Colágeno Tipo VIII , Fator de Crescimento do Tecido Conjuntivo , Fibrose , Rim , Camundongos Knockout , Animais , Camundongos , Envelhecimento/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Feminino , Colágeno Tipo VIII/metabolismo , Colágeno Tipo VIII/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Camundongos Endogâmicos C57BL
8.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732063

RESUMO

Epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) patients treated with EGFR-tyrosine kinase inhibitors (TKIs) inevitably develop resistance through several biological mechanisms. However, little is known on the molecular mechanisms underlying acquired resistance to suboptimal EGFR-TKI doses, due to pharmacodynamics leading to inadequate drug exposure. To evaluate the effects of suboptimal EGFR-TKI exposure on resistance in NSCLC, we obtained HCC827 and PC9 cell lines resistant to suboptimal fixed and intermittent doses of gefitinib and compared them to cells exposed to higher doses of the drug. We analyzed the differences in terms of EGFR signaling activation and the expression of epithelial-mesenchymal transition (EMT) markers, whole transcriptomes byRNA sequencing, and cell motility. We observed that the exposure to low doses of gefitinib more frequently induced a partial EMT associated with an induced migratory ability, and an enhanced transcription of cancer stem cell markers, particularly in the HCC827 gefitinib-resistant cells. Finally, the HCC827 gefitinib-resistant cells showed increased secretion of the EMT inducer transforming growth factor (TGF)-ß1, whose inhibition was able to partially restore gefitinib sensitivity. These data provide evidence that different levels of exposure to EGFR-TKIs in tumor masses might promote different mechanisms of acquired resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Receptores ErbB , Gefitinibe , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Gefitinibe/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo
9.
J Transl Med ; 22(1): 457, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745204

RESUMO

BACKGROUND AND PURPOSE: Interstitial lung disease (ILD) represents a significant complication of rheumatoid arthritis (RA) that lacks effective treatment options. This study aimed to investigate the intrinsic mechanism by which resveratrol attenuates rheumatoid arthritis complicated with interstitial lung disease through the AKT/TMEM175 pathway. METHODS: We established an arthritis model by combining chicken type II collagen and complete Freund's adjuvant. Resveratrol treatment was administered via tube feeding for 10 days. Pathological changes in both the joints and lungs were evaluated using HE and Masson staining techniques. Protein expression of TGF-ß1, AKT, and TMEM175 was examined in lung tissue. MRC-5 cells were stimulated using IL-1ß in combination with TGF-ß1 as an in vitro model of RA-ILD, and agonists of AKT, metabolic inhibitors, and SiRNA of TMEM175 were used to explore the regulation and mechanism of action of resveratrol RA-ILD. RESULTS: Resveratrol mitigates fibrosis in rheumatoid arthritis-associated interstitial lung disease and reduces oxidative stress and inflammation in RA-ILD. Furthermore, resveratrol restored cellular autophagy. When combined with the in vitro model, it was further demonstrated that resveratrol could suppress TGF-ß1 expression, and reduce AKT metamorphic activation, consequently inhibiting the opening of AKT/MEM175 ion channels. This, in turn, lowers lysosomal pH and enhances the fusion of autophagosomes with lysosomes, ultimately ameliorating the progression of RA-ILD. CONCLUSION: In this study, we demonstrated that resveratrol restores autophagic flux through the AKT/MEM175 pathway to attenuate inflammation as well as fibrosis in RA-ILD by combining in vivo and in vitro experiments. It further provides a theoretical basis for the selection of therapeutic targets for RA-ILD.


Assuntos
Artrite Reumatoide , Fibrose , Inflamação , Doenças Pulmonares Intersticiais , Proteínas Proto-Oncogênicas c-akt , Resveratrol , Transdução de Sinais , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Artrite Reumatoide/complicações , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/complicações , Doenças Pulmonares Intersticiais/patologia , Doenças Pulmonares Intersticiais/metabolismo , Humanos , Inflamação/patologia , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Membrana/metabolismo , Autofagia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular , Pulmão/patologia , Pulmão/efeitos dos fármacos , Masculino
10.
Ren Fail ; 46(1): 2350235, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38721924

RESUMO

Increasing evidence suggests that peritoneal fibrosis induced by peritoneal dialysis (PD) is linked to oxidative stress. However, there are currently no effective interventions for peritoneal fibrosis. In the present study, we explored whether adding caffeic acid phenethyl ester (CAPE) to peritoneal dialysis fluid (PDF) improved peritoneal fibrosis caused by PD and explored the molecular mechanism. We established a peritoneal fibrosis model in Sprague-Dawley rats through intraperitoneal injection of PDF and lipopolysaccharide (LPS). Rats in the PD group showed increased peritoneal thickness, submesothelial collagen deposition, and the expression of TGFß1 and α-SMA. Adding CAPE to PDF significantly inhibited PD-induced submesothelial thickening, reduced TGFß1 and α-SMA expression, alleviated peritoneal fibrosis, and improved the peritoneal ultrafiltration function. In vitro, peritoneal mesothelial cells (PMCs) treated with PDF showed inhibition of the AMPK/SIRT1 pathway, mitochondrial membrane potential depolarization, overproduction of mitochondrial reactive oxygen species (ROS), decreased ATP synthesis, and induction of mesothelial-mesenchymal transition (MMT). CAPE activated the AMPK/SIRT1 pathway, thereby inhibiting mitochondrial membrane potential depolarization, reducing mitochondrial ROS generation, and maintaining ATP synthesis. However, the beneficial effects of CAPE were counteracted by an AMPK inhibitor and siSIRT1. Our results suggest that CAPE maintains mitochondrial homeostasis by upregulating the AMPK/SIRT1 pathway, which alleviates oxidative stress and MMT, thereby mitigating the damage to the peritoneal structure and function caused by PD. These findings suggest that adding CAPE to PDF may prevent and treat peritoneal fibrosis.


Assuntos
Proteínas Quinases Ativadas por AMP , Ácidos Cafeicos , Diálise Peritoneal , Fibrose Peritoneal , Álcool Feniletílico , Ratos Sprague-Dawley , Sirtuína 1 , Animais , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/prevenção & controle , Sirtuína 1/metabolismo , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Ratos , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Diálise Peritoneal/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Peritônio/patologia , Peritônio/efeitos dos fármacos , Peritônio/metabolismo , Homeostase/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Soluções para Diálise
12.
Skin Res Technol ; 30(5): e13727, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711343

RESUMO

Wound healing is a complex, intricate, and dynamic process that requires effective therapeutic management. The current study evaluates the wound healing potentials of methanolic extract of Cuminum cyminum L. seeds (CCS) in rats. Sprague Dawley (24) rats were distributed into four cages, wounds produced on the back of the neck, and received two daily topical treatments for 14 days: A, rats received normal saline; B, wounded rats treated with intrasite gel; C and D, rats received 0.2 mL of 250 and 500 mg/kg of CCS, respectively. After that, wound area and closure percentage were evaluated, and wound tissues were dissected for histopathological, immunohistochemical, and biochemical examinations. Acute toxicity trials of methanolic extract of CCS showed the absence of any physiological changes or mortality in rats. CCS application caused a significant reduction in wound size and a statistically elevated percentage of wound contraction than those of vehicle rats. CCS treatment caused significant up-regulation of collagen fiber, fibroblasts, and fewer inflammatory cells (inflammation) in granulation tissues. TGF-ß1 (angiogenetic factor) was significantly more expressed in CCS-treated rats in comparison to normal saline-treated rats; therefore, more fibroblasts transformed into myofibroblasts (angiogenesis). CCS-treated rats showed remarkable antioxidant potentials (higher SOD and CAT enzymes) and decreased MDA (lipid peroxidation) levels in their wound tissue homogenates. Hydroxyproline amino acid (collagen) was significantly up-regulated by CCS treatment, which is commonly related to faster wound closure area. The outcomes suggest CCS as a viable new source of pharmaceuticals for wound treatment.


Assuntos
Cuminum , Extratos Vegetais , Ratos Sprague-Dawley , Sementes , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Sementes/química , Ratos , Extratos Vegetais/farmacologia , Cuminum/química , Masculino , Pele/lesões , Pele/efeitos dos fármacos , Pele/patologia , Fator de Crescimento Transformador beta1/metabolismo
13.
JCI Insight ; 9(9)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716730

RESUMO

Lung cancer is the leading cause of cancer-related deaths in the world, and non-small cell lung cancer (NSCLC) is the most common subset. We previously found that infiltration of tumor inflammatory monocytes (TIMs) into lung squamous carcinoma (LUSC) tumors is associated with increased metastases and poor survival. To further understand how TIMs promote metastases, we compared RNA-Seq profiles of TIMs from several LUSC metastatic models with inflammatory monocytes (IMs) of non-tumor-bearing controls. We identified Spon1 as upregulated in TIMs and found that Spon1 expression in LUSC tumors corresponded with poor survival and enrichment of collagen extracellular matrix signatures. We observed SPON1+ TIMs mediate their effects directly through LRP8 on NSCLC cells, which resulted in TGF-ß1 activation and robust production of fibrillar collagens. Using several orthogonal approaches, we demonstrated that SPON1+ TIMs were sufficient to promote NSCLC metastases. Additionally, we found that Spon1 loss in the host, or Lrp8 loss in cancer cells, resulted in a significant decrease of both high-density collagen matrices and metastases. Finally, we confirmed the relevance of the SPON1/LRP8/TGF-ß1 axis with collagen production and survival in patients with NSCLC. Taken together, our study describes how SPON1+ TIMs promote collagen remodeling and NSCLC metastases through an LRP8/TGF-ß1 signaling axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Monócitos , Transdução de Sinais , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/secundário , Linhagem Celular Tumoral , Colágeno/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/genética , Monócitos/metabolismo , Monócitos/patologia , Metástase Neoplásica , Fator de Crescimento Transformador beta1/metabolismo
14.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 644-651, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38708496

RESUMO

OBJECTIVE: To observe the effect of Shenqi Chongcao (SQCC) Formula on the ASS1/src/STAT3 signaling pathway in a rat model of lung fibrosis and explore its therapeutic mechanism. METHODS: A total of 120 male SD rats were divided equally into 5 groups, including a blank control group with saline treatment and 4 groups of rat models of idiopathic pulmonary fibrosis induced by intratracheal instillation of bleomycin. One day after modeling, the rat models were treated with daily gavage of 10 mL/kg saline, SQCC decoction (0.423 g/kg), pirfenidone (10 mL/kg), or intraperitoneal injection of arginine deiminase (ADI; 2.25 mg/kg, every 3 days) for 28 days. After the treatments, the lung tissues of the rats were collected for calculating the lung/body weight ratio, observing histopathology using HE and Masson staining, and analyzing the inflammatory cells in BALF using Giemsa staining. Serum chemokine ligand 2 (CCL2) and transforming growth factor-ß1 (TGF-ß1) levels were measured with ELISA. The protein expressions of src, p-srcTry529, STAT3, and p-STAT3Try705 and the mRNA expressions of ASS1, src and STAT3 in the lung tissues were detected using Western blotting and RT-qPCR. RESULTS: The neutrophil, macrophage and lymphocyte counts and serum levels of CCL2 and TGF-ß1 were significantly lower in SQCC, pirfenidone and ADI treatment groups than in the model group at each time point of measurement (P < 0.05). P-srcTry529 and p-STAT3Try705 protein expression levels and ASS1, src, and STAT3 mRNA in the lung tissues were also significantly lower in the 3 treatment groups than in the model group (P < 0.05). CONCLUSION: SQCC Formula can alleviate lung fibrosis in rats possibly by activating the ASS1/src/STAT3 signaling pathway in the lung tissues.


Assuntos
Medicamentos de Ervas Chinesas , Fibrose Pulmonar , Ratos Sprague-Dawley , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Fator de Transcrição STAT3/metabolismo , Ratos , Masculino , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Modelos Animais de Doenças , Bleomicina , Quimiocina CCL2/metabolismo , Quinases da Família src/metabolismo
15.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 666-674, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38708499

RESUMO

OBJECTIVE: To investigate the changes of mitochondrial respiratory function during myocardial fibrosis in mice with myocardial infarction (MI) and its correlation with the increase of glycolytic flux. METHODS: Forty C57BL/6N mice were randomized into two equal groups to receive sham operation or ligation of the left anterior descending coronary artery to induce acute MI. At 28 days after the operation, 5 mice from each group were euthanized and left ventricular tissue samples were collected for transcriptomic sequencing. FPKM method was used to calculate gene expression levels to identify the differentially expressed genes (DEGs) in MI mice, which were analyzed using GO and KEGG databases to determine the pathways affecting the disease process. Heat maps were drawn to show the differential expressions of the pathways and the related genes in the enrichment analysis. In primary cultures of neonatal mouse cardiac fibroblasts (CFs), the changes in mitochondrial respiration and glycolysis levels in response to treatment with the pro-fibrotic agonist TGF-ß1 were analyzed using Seahorse experiment. RESULTS: The mouse models of MI showed significantly increased diastolic and systolic left ventricular diameter (P < 0.05) and decreased left ventricular ejection fraction (P < 0.0001). A total of 124 up-regulated and 106 down-regulated DEGs were identified in the myocardial tissues of MI mice, and GO and KEGG enrichment analysis showed that these DEGs were significantly enriched in fatty acid metabolism, organelles and other metabolic pathways and in the mitochondria. Heat maps revealed fatty acid beta oxidation, mitochondrial dysfunction and increased glycolysis levels in MI mice. In the primary culture of CFs, treatment with TGF-ß1 significantly reduced the basal and maximum respiratory levels and increased the basal and maximum glycolysis levels (P < 0.0001). CONCLUSION: During myocardial fibrosis, energy metabolism remodeling occurs in the CFs, manifested by lowered mitochondrial function and increased energy generation through glycolysis.


Assuntos
Metabolismo Energético , Fibrose , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Animais , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Miocárdio/patologia , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Glicólise , Perfilação da Expressão Gênica , Transcriptoma , Fibroblastos/metabolismo , Masculino , Fator de Crescimento Transformador beta1/metabolismo
16.
Ren Fail ; 46(1): 2347446, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38695335

RESUMO

This study is intended to explore the effect of hypoxia-inducible factor-1α (HIF-1α) activation on lipid accumulation in the diabetic kidney. A type 1 diabetic rat model was established by STZ intraperitoneal injection. Cobalt chloride (CoCl2) and YC-1 were used as the HIF-1α activator and antagonist, respectively. CoCl2 treatment significantly increased HIF-1α expression, accelerated lipid deposition, and accelerated tubular injury in diabetic kidneys. In vitro, CoCl2 effectively stabilized HIF-1α and increased its transportation from the cytoplasm to the nucleus, which was accompanied by significantly increased lipid accumulation in HK-2 cells. Furthermore, results obtained in vivo showed that HIF-1α protein expression in the renal tubules of diabetic rats was significantly downregulated by YC-1 treatment. Meanwhile, lipid accumulation in the tubules of the DM + YC-1 group was markedly decreased in comparison to the DM + DMSO group. Accordingly, PAS staining revealed that the pathological injury caused to the tubular epithelial cells was alleviated by YC-1 treatment. Furthermore, the blood glucose level, urine albumin creatinine ratio, and NAG creatinine ratio in the DM + YC-1 group were significantly decreased compared to the DM + DMSO group. Moreover, the protein expression levels of transforming growth factor ß1 (TGF-ß1) and connective tissue growth factor (CTGF) in diabetic kidneys were decreased by YC-1 treatment. Our findings demonstrate that the activation of HIF-1α contributed to interstitial injury in a rat model of diabetic nephropathy and that the underlying mechanism involved the induction of lipid accumulation.


Assuntos
Cobalto , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Subunidade alfa do Fator 1 Induzível por Hipóxia , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ratos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Masculino , Ratos Sprague-Dawley , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Indazóis/farmacologia , Humanos , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Linhagem Celular
17.
Nutrients ; 16(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732588

RESUMO

Nearly every fifth adult in the United States and many older adults worldwide are affected by chronic kidney disease (CKD), which can progress to kidney failure requiring invasive kidney replacement therapy. In this review, we briefly examine the pathophysiology of CKD and discuss emerging mechanisms involving the physiological resolution of kidney injury by transforming growth factor beta 1 (TGFß1) and interleukin-11 (IL-11), as well as the pathological consequences of IL-11 overproduction, which misguides repair processes, ultimately culminating in CKD. Taking these mechanisms into account, we offer an overview of the efficacy of plant-dominant dietary patterns in preventing and managing CKD, while also addressing their limitations in terms of restoring kidney function or preventing kidney failure. In conclusion, this paper outlines novel regeneration strategies aimed at developing a reno-regenerative diet to inhibit IL-11 and promote repair mechanisms in kidneys affected by CKD.


Assuntos
Interleucina-11 , Insuficiência Renal Crônica , Humanos , Interleucina-11/metabolismo , Insuficiência Renal Crônica/dietoterapia , Rim/fisiopatologia , Rim/metabolismo , Dieta , Animais , Fator de Crescimento Transformador beta1/metabolismo
18.
Pak J Pharm Sci ; 37(1): 33-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741398

RESUMO

The objective of this research is to assess how salvianolate impacts inflammation and oxidative stress in a laboratory setting, as well as to investigate the underlying mechanisms. HK-2 cells were subjected to different treatments, including normal glucose, mannitol, high glucose and high glucose plus salvianolate. Cell proliferation, death, MDA levels, IL-1ß, IL-6, TNF-α, MCP-1 concentrations, ROS levels, MMP, MPTP and ATP levels were assessed using various kits. The protein expressions of NOX4, TGF-ß1, P-Smad2, P-Smad3, Smad4 and Smad7 were ascertained through western blot analysis. Our results indicated salvianolate could reduce the release of IL-1ß, IL-6, TNF-α, as well as MCP-1, alleviate the levels of oxidative stress markers NOX4 and MDA, and improve mitochondrial function by increasing MMP and ATP levels while reducing ROS and MPTP opening. Furthermore, salvianolate inhibited the TGF-ß1/Smad2, Smad3 signaling pathway, suppressed Smad4 expression and increased Smad7 expression. Salvianolate seems to mitigate inflammation and oxidative stress through a variety of mechanisms. These discoveries offer valuable understanding into the possible mechanisms by which salvianolate may be employed in the treatment of diabetic nephropathy.


Assuntos
Glucose , Inflamação , Estresse Oxidativo , Transdução de Sinais , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Glucose/metabolismo , Humanos , Linhagem Celular , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Proteínas Smad/metabolismo , Extratos Vegetais/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Anti-Inflamatórios/farmacologia , Proliferação de Células/efeitos dos fármacos
19.
Zhonghua Zhong Liu Za Zhi ; 46(5): 409-418, 2024 May 23.
Artigo em Chinês | MEDLINE | ID: mdl-38742354

RESUMO

Objective: This study aimed to develop a new delivery strategy that utilized metal organic framework (MOF) loaded with small-interfering RNA (siRNA) targeting ITGAV to overcome tumor matrix barrier, and thus enhance drug penetration and immune accessibility in breast cancer. Methods: MOF@siITGAV particles were constructed and characterized. The uptake of MOF@siITGAV in breast cancer cell line 4T1 was observed by the cellular uptake assay. The toxicity of MOF@siITGAV was detected by cell counting kit 8 (CCK-8). The blank control group, naked siITGAV group and MOF@siITGAV group were set. Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) and Western blot were used to detect the expressions of ITGAV. The level of transforming growth factor ß1 (TGF-ß1) in the cell culture medium was detected by enzyme-linked immunosorbent assay (ELISA). The penetration of MOF@siITGAV in 4T1 cells was tested by constructing 3D spheroids. Mouse models of triple negative breast cancer were established. The effect of MOF@siITGAV on the growth of transplanted tumors and main organs was verified. Imminohistochemical (IHC) was used to test the expression of collagen and CD8. Results: MOF@siITGAV particles were constructed with sizes of (198.0±3.3) nm and zeta potential of -(20.2±0.4) mV. MOF@siITGAV could be engulfed by 4T1 cells and triggered to release siRNA. Compared to the blank control group, the expression of ITGAV in the MOF@siITGAV group [(46.5±11.3)%] and the naked siITGAV group [(109.9±19.0)%] was lower. TGF-ß1 in the cell culture medium of the blank control group, naked siITGAV group, and MOF@siITGAV group was (474.5±34.4) pg/ml, (437.2±16.5) pg/ml, and (388.4±14.4) pg/ml, respectively. MOF@siITGAV could better penetrate into 4T1 spheroids and exhibit no obvious toxicity. The cell viability was (99.7±3.5)%, (98.2±5.2)%, (97.3±6.6)%, (92.1±8.1)%, and (92.4±4.1)%, respectively, after MOF@siITGAV treatment with the concentration of 0, 10, 20, 40, 80, and 160 µg/ml, respectively, for 24 h. The tumor growth in the MOF@siITGAV group was suppressed significantly. After 15-day treatment, the tumor volume of the MOF@siITGAV group was (135.3±41.9) mm3, smaller than that of the blank control group [(691.1±193.0) mm3] (P=0.025). The expression of collagen and the number of CD8 positive cells of the MOF@siITGAV group were lower than those of the other two groups. No significant abnormalities were observed in the main organs of mice. Conclusions: Targeting the integrinαv on the surface of cancer cells could destroy extracellular matrix, improve drug delivery, and increase immune infiltration.


Assuntos
Estruturas Metalorgânicas , RNA Interferente Pequeno , Fator de Crescimento Transformador beta1 , Animais , RNA Interferente Pequeno/administração & dosagem , Camundongos , Feminino , Linhagem Celular Tumoral , Estruturas Metalorgânicas/química , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Sistemas de Liberação de Medicamentos , Camundongos Endogâmicos BALB C , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
20.
Eur J Histochem ; 68(2)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38742403

RESUMO

Chronic kidney disease (CKD) is a leading public health issue associated with high morbidity worldwide. However, there are only a few effective therapeutic strategies for CKD. Emodin, an anthraquinone compound from rhubarb, can inhibit fibrosis in tissues and cells. Our study aims to investigate the antifibrotic effect of emodin and the underlying molecular mechanism. A unilateral ureteral obstruction (UUO)-induced rat model was established to evaluate the effect of emodin on renal fibrosis development. Hematoxylin and eosin staining, Masson's trichrome staining, and immunohistochemistry staining were performed to analyze histopathological changes and fibrotic features after emodin treatment. Subsequently, a transforming growth factor-beta 1 (TGF-ß1)-induced cell model was used to assess the inhibition of emodin on cell fibrosis in vitro. Furthermore, Western blot analysis and real-time quantitative reverse transcription-polymerase chain reaction were performed to validate the regulatory mechanism of emodin on renal fibrosis progression. As a result, emodin significantly improved histopathological abnormalities in rats with UUO. The expression of fibrosis biomarkers and mitochondrial biogenesis-related proteins also decreased after emodin treatment. Moreover, emodin blocked TGF-ß1-induced fibrotic phenotype, lipid accumulation, and mitochondrial homeostasis in NRK-52E cells. Conversely, peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α) silencing significantly reversed these features in emodin-treated cells. Collectively, emodin plays an important role in regulating PGC-1α-mediated mitochondria function and energy homeostasis. This indicates that emodin exhibits great inhibition against renal fibrosis and acts as a promising inhibitor of CKD.


Assuntos
Emodina , Fibrose , Mitocôndrias , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Insuficiência Renal Crônica , Animais , Emodina/farmacologia , Emodina/uso terapêutico , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Fibrose/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Homeostase/efeitos dos fármacos , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Obstrução Ureteral/patologia , Obstrução Ureteral/tratamento farmacológico , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA