Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Ther ; 26(4): 287-96, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19035880

RESUMO

The mitochondrial F1F0 ATP synthase is responsible for the majority of ATP production in mammals and does this through a rotary catalytic mechanism. Studies show that the F1F0 ATP synthase can switch to an ATP hydrolase, and this occurs under conditions seen during myocardial ischemia. This ATP hydrolysis causes wasting of ATP that does not produce work. The degree of ATP inefficiently hydrolyzed during ischemia may be as high as 50-90% of the total. A naturally occurring, reversible inhibitor (IF-1) of the hydrolase activity is in the mitochondria, and it has a pH optimum of 6.8. Based on studies with the nonselective (inhibit both synthase and hydrolase activity) inhibitors aurovertin B and oligomycin B reduce the rate of ATP depletion during ischemia, showing that IF-1 does not completely block hydrolase activity. Oligomycin and aurovertin cannot be used for treating myocardial ischemia as they will reduce ATP production in healthy tissue. We generated a focused structure-activity relationship, and several compounds were identified that selectively inhibited the F1F0 ATP hydrolase activity while having no effect on synthase function. One compound, BMS-199264 had no effect on F1F0 ATP synthase function in submitochondrial particles while inhibiting hydrolase function, unlike oligomycin that inhibits both. BMS-199264 selectively inhibited ATP decline during ischemia while not affecting ATP production in normoxic and reperfused hearts. BMS-191264 also reduced cardiac necrosis and enhanced the recovery of contractile function following reperfusion. These data also suggest that the reversal of the synthase and hydrolase activities is not merely a chemical reaction run in reverse.


Assuntos
Inibidores Enzimáticos/farmacologia , Imidazóis , Mitocôndrias , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/enzimologia , Fator de Iniciação 1 em Procariotos/fisiologia , ATPases Translocadoras de Prótons/antagonistas & inibidores , Animais , Aurovertinas/farmacologia , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Oligomicinas/farmacologia , Relação Estrutura-Atividade
2.
Mol Microbiol ; 64(3): 807-21, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17462025

RESUMO

Escherichia coli infA is transcribed from two promoters, P1 and P2, into a longer and a shorter mRNA encoding translation initiation factor IF1. Although P1 is intrinsically stronger than P2, the shorter half-life of its transcripts causes the steady-state level of the P2 transcript to be substantially higher than that of P1 during growth at 37 degrees C. After cold-shock, de novo transcription and translation of infA contribute to the transient increase of the IF1/ribosomes ratio, which is partially responsible for translational bias consisting in the preferential translation of cold-shock mRNAs in the cold. Cold-stress induction of infA expression is mainly due to the high activity of P1 at low temperature, which is further increased by transcriptional stimulation by CspA and by an increased transcript stability. Furthermore, the longer infA mRNA originating from P1 is preferentially translated at low temperature by the translational machinery of cold-shocked cells. The increased level of IF1 during cold adaptation is essential for overcoming the higher stability of the 70S monomers at low temperature and for providing a sufficient pool of dissociated 30S subunits capable of initiating translation.


Assuntos
Temperatura Baixa , Proteínas de Escherichia coli/genética , Fator de Iniciação 1 em Procariotos/genética , Biossíntese de Proteínas , Transcrição Gênica , Adaptação Fisiológica , Northern Blotting , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Cinética , Fator de Iniciação 1 em Procariotos/metabolismo , Fator de Iniciação 1 em Procariotos/fisiologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonuclease III/metabolismo , Proteínas Ribossômicas/metabolismo , Temperatura
3.
J Bacteriol ; 189(11): 4087-93, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17384193

RESUMO

Bacterial translation initiation factor IF1 is an S1 domain protein that belongs to the oligomer binding (OB) fold proteins. Cold shock domain (CSD)-containing proteins such as CspA (the major cold shock protein of Escherichia coli) and its homologues also belong to the OB fold protein family. The striking structural similarity between IF1 and CspA homologues suggests a functional overlap between these proteins. Certain members of the CspA family of cold shock proteins act as nucleic acid chaperones: they melt secondary structures in nucleic acids and act as transcription antiterminators. This activity may help the cell to acclimatize to low temperatures, since cold-induced stabilization of secondary structures in nascent RNA can impede transcription elongation. Here we show that the E. coli translation initiation factor, IF1, also has RNA chaperone activity and acts as a transcription antiterminator in vivo and in vitro. We further show that the RNA chaperone activity of IF1, although critical for transcription antitermination, is not essential for its role in supporting cell growth, which presumably functions in translation. The results thus indicate that IF1 may participate in transcription regulation and that cross talk and/or functional overlap may exist between the Csp family proteins, known to be involved in transcription regulation at cold shock, and S1 domain proteins, known to function in translation.


Assuntos
Transcrição Gênica/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Histidina/genética , Histidina/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/fisiologia , Mutagênese Sítio-Dirigida , Mutação , Fator de Iniciação 1 em Procariotos/genética , Fator de Iniciação 1 em Procariotos/metabolismo , Fator de Iniciação 1 em Procariotos/fisiologia , Ligação Proteica
4.
Mol Cell ; 23(2): 183-93, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16857585

RESUMO

During initiation of bacterial protein synthesis, messenger RNA and fMet-tRNAfMet bind to the 30S ribosomal subunit together with initiation factors IF1, IF2, and IF3. Docking of the 30S preinitiation complex to the 50S ribosomal subunit results in a peptidyl-transfer competent 70S ribosome. Initiation with an elongator tRNA may lead to frameshift and an aberrant N-terminal sequence in the nascent protein. We show how the occurrence of initiation errors is minimized by (1) recognition of the formyl group by the synergistic action of IF2 and IF1, (2) uniform destabilization of the binding of all tRNAs to the 30S subunit by IF3, and (3) an optimal distance between the Shine-Dalgarno sequence and the initiator codon. We suggest why IF1 is essential for E. coli, discuss the role of the G-C base pairs in the anticodon stem of some tRNAs, and clarify gene expression changes with varying IF3 concentration in the living cell.


Assuntos
Proteínas de Bactérias/biossíntese , Fatores de Iniciação em Procariotos/fisiologia , Biossíntese de Proteínas , RNA de Transferência de Metionina/metabolismo , RNA de Transferência de Fenilalanina/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Bactérias/genética , Ligação Competitiva , Cinética , Modelos Biológicos , Fator de Iniciação 1 em Procariotos/fisiologia , Fator de Iniciação 2 em Procariotos/fisiologia , Fator de Iniciação 3 em Procariotos/fisiologia , Fatores de Iniciação em Procariotos/classificação , RNA de Transferência de Metionina/genética , RNA de Transferência de Fenilalanina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA