Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Protein Sci ; 31(9): e4393, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36250475

RESUMO

Protein translation is a foundational attribute of all living cells. The translation function carried out by the ribosome critically depends on an assortment of protein interaction partners, collectively referred to as the translation machinery. Various studies suggest that the diversification of the translation machinery occurred prior to the last universal common ancestor, yet it is unclear whether the predecessors of the extant translation machinery factors were functionally distinct from their modern counterparts. Here we reconstructed the shared ancestral trajectory and subsequent evolution of essential translation factor GTPases, elongation factor EF-Tu (aEF-1A/eEF-1A), and initiation factor IF2 (aIF5B/eIF5B). Based upon their similar functions and structural homologies, it has been proposed that EF-Tu and IF2 emerged from an ancient common ancestor. We generated the phylogenetic tree of IF2 and EF-Tu proteins and reconstructed ancestral sequences corresponding to the deepest nodes in their shared evolutionary history, including the last common IF2 and EF-Tu ancestor. By identifying the residue and domain substitutions, as well as structural changes along the phylogenetic history, we developed an evolutionary scenario for the origins, divergence and functional refinement of EF-Tu and IF2 proteins. Our analyses suggest that the common ancestor of IF2 and EF-Tu was an IF2-like GTPase protein. Given the central importance of the translation machinery to all cellular life, its earliest evolutionary constraints and trajectories are key to characterizing the universal constraints and capabilities of cellular evolution.


Assuntos
Fator Tu de Elongação de Peptídeos , Fator de Iniciação 2 em Procariotos , GTP Fosfo-Hidrolases/metabolismo , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Filogenia , Fator de Iniciação 2 em Procariotos/genética , Fator de Iniciação 2 em Procariotos/metabolismo , Proteínas/metabolismo , Ribossomos/metabolismo
2.
Parasit Vectors ; 15(1): 383, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271393

RESUMO

BACKGROUND: The amino acid transporter protein cationic amino acid transporter 1 (CAT1) is part of the nutrient sensor in the fat body of mosquitoes. A member of the SLC7 family of cationic amino acid transporters, it is paramount for the detection of elevated amino acid levels in the mosquito hemolymph after a blood meal and the subsequent changes in gene expression in the fat body. METHODS: We performed a re-annotation of Aedes aegypti cationic amino acid transporters (CATs) and selected the C-terminal tail of CAT1 to perform a yeast two-hybrid screen to identify putative interactors of this protein. One interesting interacting protein we identified was general control nonderepressible 1 (GCN1). We determined the expression pattern of GCN1 in several adult organs and structures using qRT-PCR and western blots. Finally, we knocked down GCN1 using double-stranded RNA and identified changes in downstream signaling intermediates and the effects of knockdown on vitellogenesis and fecundity. RESULTS: In a screen for Ae. aegypti CAT1-interacting proteins we identified GCN1 as a putative interactor. GCN1 is highly expressed in the ovaries and fat body of the mosquito. We provide evidence that eukaryotic translation initiation factor 2 subunit alpha (eIF2α) phosphorylation changed during vitellogenesis and that RNA interference knockdown of GCN1 in whole mosquitoes reduced egg clutch sizes of treated mosquitoes relative to controls. CONCLUSIONS: Aedes aegypti CAT1 and GCN1 are likely interacting partners and GCN1 is likely necessary for proper egg development. Our data suggest that GCN1 is part of a nutrient sensor mechanism in various mosquito tissues involved in vitellogenesis.


Assuntos
Aedes , Animais , Aedes/genética , Aedes/metabolismo , Transportador 1 de Aminoácidos Catiônicos/genética , Transportador 1 de Aminoácidos Catiônicos/metabolismo , RNA de Cadeia Dupla/metabolismo , Fator de Iniciação 2 em Procariotos/genética , Fator de Iniciação 2 em Procariotos/metabolismo , Saccharomyces cerevisiae/genética , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos/genética , Fertilidade
3.
Pediatr Endocrinol Diabetes Metab ; 28(3): 238-240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36106422

RESUMO

INTRODUCTION: Neonatal diabetes is a rare disease with incidence estimated at 1 in 300,000 to 1 in 400,000 live births. Walcott-Rallison syndrome has been identified as the most common cause of permanent neonatal diabetes in consanguineous families caused by mutations in eukaryotic translation initiation factor 2-α kinase 3 (EIF2AK3), characterized by permanent neonatal diabetes associated with liver dysfunction, multiple epiphyseal dysplasia, and developmental delay. We herein report 3 cases of genetically proven Wolcott-Rallison syndrome with variable phenotype presentation. CASE SERIES: All cases presented with high glucose levels and were treated with insulin. EIF2AK3 homozygous mutation was identified in all 3 on genetic analysis. Initial screening testing for associated comorbidities was normal, including X-ray examination, which did not show any signs of epiphyseal dysplasia in all cases. Case 2 and case 3 were both lost to follow-up and were later found to have expired at the ages of 18 months and 2 years, respectively, due to liver failure associated with intercurrent respiratory illness in hospitals in their native towns. Case one is now 2 years old on regular follow-up in paediatric Endocrine and neurology clinics and doing well so far. CONCLUSIONS: Morbidity, as well as mortality, is high among children with WRS neonatal diabetes. It is crucial to screen for gene mutation in patients with diabetes diagnosed before 6 months. Close therapeutic monitoring is recommended in WRS because of the risk of acute episodes of hypoglycaemia and ketoacidosis.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus , Insulinas , Osteocondrodisplasias , Diabetes Mellitus/etiologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Epífises/anormalidades , Glucose , Humanos , Mutação , Osteocondrodisplasias/complicações , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Fator de Iniciação 2 em Procariotos/genética
4.
Autophagy ; 18(10): 2350-2367, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35130104

RESUMO

Zaire ebolavirus (EBOV) causes a severe hemorrhagic fever in humans and non-human primates with high morbidity and mortality. EBOV infection is dependent on its structural glycoprotein (GP), but high levels of GP expression also trigger cell rounding, detachment, and downregulation of many surface molecules that is thought to contribute to its high pathogenicity. Thus, EBOV has evolved an RNA editing mechanism to reduce its GP expression and increase its fitness. We now report that the GP expression is also suppressed at the protein level in cells by protein disulfide isomerases (PDIs). Although PDIs promote oxidative protein folding by catalyzing correct disulfide formation in the endoplasmic reticulum (ER), PDIA3/ERp57 adversely triggered the GP misfolding by targeting GP cysteine residues and activated the unfolded protein response (UPR). Abnormally folded GP was targeted by ER-associated protein degradation (ERAD) machinery and, unexpectedly, was degraded via the macroautophagy/autophagy-lysosomal pathway, but not the proteasomal pathway. PDIA3 also decreased the GP expression from other ebolavirus species but increased the GP expression from Marburg virus (MARV), which is consistent with the observation that MARV-GP does not cause cell rounding and detachment, and MARV does not regulate its GP expression via RNA editing during infection. Furthermore, five other PDIs also had a similar inhibitory activity to EBOV-GP. Thus, PDIs negatively regulate ebolavirus glycoprotein expression, which balances the viral life cycle by maximizing their infection but minimizing their cellular effect. We suggest that ebolaviruses hijack the host protein folding and ERAD machinery to increase their fitness via reticulophagy during infection.Abbreviations: 3-MA: 3-methyladenine; 4-PBA: 4-phenylbutyrate; ACTB: ß-actin; ATF: activating transcription factor; ATG: autophagy-related; BafA1: bafilomycin A1; BDBV: Bundibugyo ebolavirus; CALR: calreticulin; CANX: calnexin; CHX: cycloheximide; CMA: chaperone-mediated autophagy; ConA: concanamycin A; CRISPR: clusters of regularly interspaced short palindromic repeats; Cas9: CRISPR-associated protein 9; dsRNA: double-stranded RNA; EBOV: Zaire ebolavirus; EDEM: ER degradation enhancing alpha-mannosidase like protein; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; Env: envelope glycoprotein; ER: endoplasmic reticulum; ERAD: ER-associated protein degradation; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; GP: glycoprotein; HA: hemagglutinin; HDAC6: histone deacetylase 6; HMM: high-molecular-mass; HIV-1: human immunodeficiency virus type 1; HSPA5/BiP: heat shock protein family A (Hsp70) member 5; IAV: influenza A virus; IP: immunoprecipitation; KIF: kifenesine; Lac: lactacystin; LAMP: lysosomal associated membrane protein; MAN1B1/ERManI: mannosidase alpha class 1B member 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MARV: Marburg virus; MLD: mucin-like domain; NHK/SERPINA1: alpha1-antitrypsin variant null (Hong Kong); NTZ: nitazoxanide; PDI: protein disulfide isomerase; RAVV: Ravn virus; RESTV: Reston ebolavirus; SARS-CoV: severe acute respiratory syndrome coronavirus; SBOV: Sudan ebolavirus; sGP: soluble GP; SQSTM1/p62: sequestosome 1; ssGP: small soluble GP; TAFV: Taï Forest ebolavirus; TIZ: tizoxanide; TGN: thapsigargin; TLD: TXN (thioredoxin)-like domain; Ub: ubiquitin; UPR: unfolded protein response; VLP: virus-like particle; VSV: vesicular stomatitis virus; WB: Western blotting; WT: wild-type; XBP1: X-box binding protein 1.


Assuntos
Autofagia , Ebolavirus , Actinas/metabolismo , Animais , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/farmacologia , Calnexina/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Calreticulina/farmacologia , Cicloeximida , Cisteína/metabolismo , Dissulfetos , Retículo Endoplasmático/metabolismo , Glicoproteínas/metabolismo , Proteínas de Choque Térmico/metabolismo , Hemaglutininas/metabolismo , Hemaglutininas/farmacologia , Desacetilase 6 de Histona/genética , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mucinas/genética , Mucinas/metabolismo , Mucinas/farmacologia , Fator de Iniciação 2 em Procariotos/genética , Fator de Iniciação 2 em Procariotos/metabolismo , Fator de Iniciação 2 em Procariotos/farmacologia , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/farmacologia , Proteína Sequestossoma-1/metabolismo , Tapsigargina/metabolismo , Tapsigargina/farmacologia , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Tiorredoxinas/farmacologia , Ubiquitinas/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , alfa-Manosidase/genética , alfa-Manosidase/metabolismo , alfa-Manosidase/farmacologia
5.
Curr Stem Cell Res Ther ; 17(8): 750-755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34727865

RESUMO

Eukaryotic translation initiation factor 2 subunit 3 and structural gene Y-linked (Eif2s3y) gene, the gene encoding eIF2γ protein, is located on the mouse Y chromosome short arm. The Eif2s3y gene is globally expressed in all tissues and plays an important role in regulating global and gene-specific mRNA translation initiation. During the process of protein translation initiation, Eif2s3x (its homolog) and Eif2s3y encoded eIF2γ perform similar functions. However, it has been noticed that Eif2s3y plays a crucial role in spermatogenesis, including spermatogonia mitosis, meiosis, and spermiogenesis of spermatids, which may account for infertility. In the period of spermatogenesis, the role of Eif2s3x and Eif2s3y are not equivalent. Importance of Eif2s3y has been observed in ESC and implicated in several aspects, including the pluripotency state and the proliferation rate. Here, we discuss the functional significance of Eif2s3y in mouse spermatogenesis and self-renewal of ESCs.


Assuntos
Fator de Iniciação 2 em Procariotos , Espermatogênese , Animais , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Masculino , Camundongos , Fator de Iniciação 2 em Procariotos/genética , Espermatogênese/genética , Espermatogônias , Fatores de Transcrição/metabolismo , Cromossomo Y/metabolismo
6.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948034

RESUMO

Substitution of the conserved Histidine 448 present in one of the three consensus elements characterizing the guanosine nucleotide binding domain (IF2 G2) of Escherichia coli translation initiation factor IF2 resulted in impaired ribosome-dependent GTPase activity which prevented IF2 dissociation from the ribosome, caused a severe protein synthesis inhibition, and yielded a dominant lethal phenotype. A reduced IF2 affinity for the ribosome was previously shown to suppress this lethality. Here, we demonstrate that also a reduced IF2 affinity for fMet-tRNA can suppress this dominant lethal phenotype and allows IF2 to support faithful translation in the complete absence of GTP hydrolysis. These results strengthen the premise that the conformational changes of ribosome, IF2, and fMet-tRNA occurring during the late stages of translation initiation are thermally driven and that the energy generated by IF2-dependent GTP hydrolysis is not required for successful translation initiation and that the dissociation of the interaction between IF2 C2 and the acceptor end of fMet-tRNA, which represents the last tie anchoring the factor to the ribosome before the formation of an elongation-competent 70S complex, is rate limiting for both the adjustment of fMet-tRNA in a productive P site and the IF2 release from the ribosome.


Assuntos
Escherichia coli/crescimento & desenvolvimento , GTP Fosfo-Hidrolases/metabolismo , Genes Letais , Fator de Iniciação 2 em Procariotos/química , Fator de Iniciação 2 em Procariotos/metabolismo , RNA de Transferência de Metionina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Trifosfato/química , Hidrólise , Modelos Moleculares , Fenótipo , Fator de Iniciação 2 em Procariotos/genética , Conformação Proteica , Domínios Proteicos , Ribossomos/química , Ribossomos/metabolismo
7.
Nucleic Acids Res ; 47(9): 4652-4662, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30916323

RESUMO

Cold-stress in Escherichia coli induces de novo synthesis of translation initiation factors IF1, IF2 and IF3 while ribosome synthesis and assembly slow down. Consequently, the IFs/ribosome stoichiometric ratio increases about 3-fold during the first hours of cold adaptation. The IF1 and IF3 increase plays a role in translation regulation at low temperature (cold-shock-induced translational bias) but so far no specific role could be attributed to the extra copies of IF2. In this work, we show that the extra-copies of IF2 made after cold stress are associated with immature ribosomal subunits together with at least another nine proteins involved in assembly and/or maturation of ribosomal subunits. This finding, coupled with evidence that IF2 is endowed with GTPase-associated chaperone activity that promotes refolding of denatured GFP, and the finding that two cold-sensitive IF2 mutations cause the accumulation of immature ribosomal particles, indicate that IF2 is yet another GTPase protein that participates in ribosome assembly/maturation, especially at low temperatures. Overall, these findings are instrumental in redefining the functional role of IF2, which cannot be regarded as being restricted to its well documented functions in translation initiation of bacterial mRNA.


Assuntos
Adaptação Fisiológica/genética , Resposta ao Choque Frio/genética , Iniciação Traducional da Cadeia Peptídica , Fator de Iniciação 2 em Procariotos/genética , Temperatura Baixa/efeitos adversos , Escherichia coli/genética , Escherichia coli/fisiologia , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Subunidades Ribossômicas/genética , Ribossomos/genética
8.
Nucleic Acids Res ; 47(9): 4638-4651, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30916329

RESUMO

After a 37 to 10°C temperature downshift the level of translation initiation factor IF2, like that of IF1 and IF3, increases at least 3-fold with respect to the ribosomes. To clarify the mechanisms and conditions leading to cold-stress induction of infB expression, the consequences of this temperature shift on infB (IF2) transcription, infB mRNA stability and translation were analysed. The Escherichia coli gene encoding IF2 is part of the metY-nusA-infB operon that contains three known promoters (P-1, P0 and P2) in addition to two promoters P3 and P4 identified in this study, the latter committed to the synthesis of a monocistronic mRNA encoding exclusively IF2. The results obtained indicate that the increased level of IF2 following cold stress depends on three mechanisms: (i) activation of all the promoters of the operon, P-1 being the most cold-responsive, as a likely consequence of the reduction of the ppGpp level that follows cold stress; (ii) a large increase in infB mRNA half-life and (iii) the cold-shock induced translational bias that ensures efficient translation of infB mRNA by the translational apparatus of cold shocked cells. A comparison of the mechanisms responsible for the cold shock induction of the three initiation factors is also presented.


Assuntos
Resposta ao Choque Frio/genética , Fator de Iniciação 2 em Procariotos/genética , Regiões Promotoras Genéticas/genética , Transcrição Gênica , Temperatura Baixa , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Biossíntese de Proteínas/genética , Processamento de Proteína Pós-Traducional/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Ribossomos/genética
9.
Nucleic Acids Res ; 46(21): 11566-11574, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30256973

RESUMO

Living organisms possess two types of tRNAs for methionine. Initiator tRNAs bind directly into the ribosomal P-site to initiate protein synthesis, and the elongators bind to the A-site during the elongation step. Eubacterial initiators (tRNAfMet) are unique in that the methionine attached to them is formylated to facilitate their binding to initiation factor 2 (IF2), and to preclude them from binding to elongation factor Tu (EFTu). However, in mammalian mitochondria, protein synthesis proceeds with a single dual function tRNAMet. Escherichia coli possesses four tRNAfMet (initiator) and two tRNAMet (elongator) genes. Free-living organisms possessing the mitochondrion like system of single tRNAMet are unknown. We characterized mutants of E. coli tRNAfMet that function both as initiators and elongators. We show that some of the tRNAfMet mutants sustain E. coli lacking all four tRNAfMet and both tRNAMet genes, providing a basis for natural occurrence of mitochondria like situation in free living organisms. The tRNA mutants show in vivo binding to both IF2 and EFTu, indicating how they carry out these otherwise mutually exclusive functions by precise regulation of their in vivo formylation. Our results provide insights into how distinct initiator and elongator methionine tRNAs might have evolved from a single 'dual function' tRNA.


Assuntos
Escherichia coli/genética , Mutação , RNA de Transferência de Metionina , Pareamento de Bases , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Iniciação Traducional da Cadeia Peptídica , Fator Tu de Elongação de Peptídeos/genética , Fator de Iniciação 2 em Procariotos/genética
10.
Arch Microbiol ; 200(10): 1427-1437, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30039323

RESUMO

Detailed differentiation, classification, and phylogenetic analysis of the order Lactobacillales are performed using molecular techniques that involve the comparison of whole genomes, multilocus sequence analysis, DNA-DNA hybridisation, and 16S rRNA sequencing. Despite the wide application of the latter two techniques, issues associated with them are extensively discussed. Although complete genomic analyses are the most appropriate for phylogenetic studies, they are time-consuming and require high levels of expertise. Many phylogenetic/identification markers have been proposed for enterococci, lactobacilli, streptococci, and lactobacilli. However, none have been established for vagococci and some genera within the order Lactobacillales. The objective of the study was to find novel alternative housekeeping genes for classification, typing, and phylogenetic analysis of selected genera within the order Lactobacillales. We designed primers flanking variable regions of the infB (504 nt) and rpsB (333 nt) genes and amplified and sequenced them in 56 strains of different genera within the order Lactobacillales. Statistical analysis and characteristics of the gene regions suggested that they could be used for taxonomic purposes. Phylogenetic analyses, including assessment of (in)congruence between individual phylogenetic trees indicated the possibility of using the concatenation of the two genes as an alternative tool for the evaluation of phylogeny compared with the 16S rRNA gene representing the standard phylogenetic marker of prokaryotes. Moreover, infB, rpsB regions and their concatenate were phylogenetically consistent with two widely applied alternative genetic markers in taxonomy of particular Lactobacillales genera encoding the 60 kDa chaperonin protein (GroEL-hsp60) and phenylalanyl-tRNA synthetase, alpha subunit (pheS).


Assuntos
Lactobacillales/classificação , Filogenia , Chaperonina 60/genética , Primers do DNA , DNA Bacteriano/química , Genes Bacterianos , Genes Essenciais , Marcadores Genéticos , Lactobacillales/genética , Tipagem de Sequências Multilocus , Fenilalanina-tRNA Ligase/genética , Fator de Iniciação 2 em Procariotos/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Proc Natl Acad Sci U S A ; 115(18): 4649-4654, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29686090

RESUMO

The interaction between the ribosomal-stalk protein L7/12 (L12) and initiation factor 2 (IF2) is essential for rapid subunit association, but the underlying mechanism is unknown. Here, we have characterized the L12-IF2 interaction on Escherichia coli ribosomes using site-directed mutagenesis, fast kinetics, and molecular dynamics (MD) simulations. Fifteen individual point mutations were introduced into the C-terminal domain of L12 (L12-CTD) at helices 4 and 5, which constitute the common interaction site for translational GTPases. In parallel, 15 point mutations were also introduced into IF2 between the G4 and G5 motifs, which we hypothesized as the potential L12 interaction sites. The L12 and IF2 mutants were tested in ribosomal subunit association assay in a stopped-flow instrument. Those amino acids that caused defective subunit association upon substitution were identified as the molecular determinants of L12-IF2 interaction. Further, MD simulations of IF2 docked onto the L12-CTD pinpointed the exact interacting partners-all of which were positively charged on L12 and negatively charged on IF2, connected by salt bridges. Lastly, we tested two pairs of charge-reversed mutants of L12 and IF2, which significantly restored the yield and the rate of formation of the 70S initiation complex. We conclude that complementary charge-based interaction between L12-CTD and IF2 is the key for fast subunit association. Considering the homology of the G domain, similar mechanisms may apply for L12 interactions with other translational GTPases.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Iniciação Traducional da Cadeia Peptídica , Fator de Iniciação 2 em Procariotos/química , Proteínas Ribossômicas/química , Motivos de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação , Fator de Iniciação 2 em Procariotos/genética , Fator de Iniciação 2 em Procariotos/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
12.
RNA Biol ; 15(4-5): 604-613, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28914580

RESUMO

Translation begins at AUG, GUG, or UUG codons in bacteria. Start codon recognition occurs in the P site, which may help explain this first-position degeneracy. However, the molecular basis of start codon specificity remains unclear. In this study, we measured the codon dependence of 30S•mRNA•tRNAfMet and 30S•mRNA•tRNAMet complex formation. We found that complex stability varies over a large range with initiator tRNAfMet, following the same trend as reported previously for initiation rate in vivo (AUG > GUG, UUG > CUG, AUC, AUA > ACG). With elongator tRNAMet, the codon dependence of binding differs qualitatively, with virtually no discrimination between GUG and CUG. A unique feature of initiator tRNAfMet is a series of three G-C basepairs in the anticodon stem, which are known to be important for efficient initiation in vivo. A mutation targeting the central of these G-C basepairs causes the mRNA binding specificity pattern to change in a way reminiscent of elongator tRNAMet. Unexpectedly, for certain complexes containing fMet-tRNAfMet, we observed mispositioning of mRNA, such that codon 2 is no longer programmed in the A site. This mRNA mispositioning is exacerbated by the anticodon stem mutation and suppressed by IF2. These findings suggest that both IF2 and the unique anticodon stem of fMet-tRNAfMet help constrain mRNA positioning to set the correct reading frame during initiation.


Assuntos
Escherichia coli/genética , Iniciação Traducional da Cadeia Peptídica , Fator de Iniciação 2 em Procariotos/genética , RNA Mensageiro/genética , RNA de Transferência de Metionina/genética , Fases de Leitura , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Códon de Iniciação , Escherichia coli/metabolismo , Cinética , Mutação , Conformação de Ácido Nucleico , Fator de Iniciação 2 em Procariotos/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/metabolismo
13.
Biomed Res Int ; 2017: 1762162, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29159175

RESUMO

Thirteen Corynebacterium pseudotuberculosis biotype ovis strains isolated from clinical cases of caseous lymphadenitis in Hungary were characterised using multilocus sequencing and their phylogenetic comparison was carried out on the basis of four housekeeping genes (groEL1, infB, dnaK, and leuA). The in silico analysis of the 16 frequently studied housekeeping genes showed that C. pseudotuberculosis strains could be readily distinguished from C. diphtheriae and C. ulcerans strains; however, sequences of the same genes in the two biotypes of the C. pseudotuberculosis were highly similar; the heterogeneity values were low. Genes dnaK, infB, groEL1, and leuA showed marked genetic variation within C. pseudotuberculosis, and strains of the two biotypes of C. pseudotuberculosis could be differentiated. Analysis of the individual genes showed a fairly conservative nature of C. pseudotuberculosis biotype ovis strains. The greatest genetic differentiation was seen in the dnaK and infB genes and concatenations of these two genes were very useful in the genetic separation of the studied strains.


Assuntos
Corynebacterium diphtheriae/genética , Corynebacterium pseudotuberculosis/genética , Genes Essenciais/genética , Linfadenite/genética , Adenosina Trifosfatases/genética , Animais , Bacteriocinas/genética , Chaperonina 60/genética , Corynebacterium diphtheriae/patogenicidade , Corynebacterium pseudotuberculosis/patogenicidade , Variação Genética , Humanos , Hungria/epidemiologia , Linfadenite/epidemiologia , Linfadenite/microbiologia , Filogenia , Fator de Iniciação 2 em Procariotos/genética , Ovinos/genética , Ovinos/microbiologia
14.
BMC Microbiol ; 16(1): 256, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27809767

RESUMO

BACKGROUND: The prevalence of Helicobacter pylori antibiotic susceptibility in the Nepalese strains is untracked. We determined the antibiotic susceptibility for H. pylori and analyzed the presence of genetic mutations associated with antibiotic resistance in Nepalese strains. RESULTS: This study included 146 consecutive patients who underwent gastroduodenal endoscopy in Kathmandu, Nepal. Among 42 isolated H. pylori, there was no resistance to amoxicillin and tetracycline. In contrast, similar with typical South Asian patterns; metronidazole resistance rate in Nepalese strains were extremely high (88.1 %, 37/42). Clarithromycin resistance rate in Nepalese strains were modestly high (21.4 %, 9/42). Most of metronidazole resistant strains had highly distributed rdxA and frxA mutations, but were relative coincidence without a synergistic effect to increase the minimum inhibitory concentration (MIC). Among strains with the high MIC, 63.6 % (7/11) were associated with frameshift mutation at position 18 of frxA with or without rdxA involvement. However, based on next generation sequencing data we found that one strain with the highest MIC value had a novel mutation in the form of amino acid substituted at Ala-212, Gln-382, Ile-485 of dppA and Leu-145, Thr-168, Glu-117, Val-121, Arg-221 in dapF aside from missense mutations in full-length rdxA. Mutations at Asn-87 and/or Asp-91 of the gyrA were predominantly in levofloxacin-resistant strains. The gyrB mutation had steady relationship with the gyrA 87-91 mutations. Although three (44.4 %) and two (22.2 %) of clarithromycin resistant strains had point mutation on A2143G and A2146G, we confirmed the involvement of rpl22 and infB in high MIC strains without an 23SrRNA mutation. CONCLUSIONS: The rates of resistance to clarithromycin, metronidazole and levofloxacin were high in Nepalese strains, indicating that these antibiotics-based triple therapies are not useful as first-line treatment in Nepal. Bismuth or non-bismuth-based quadruple regimens, furazolidone-based triple therapy or rifabutin-based triple therapy may become alternative strategy in Nepal.


Assuntos
Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Infecções por Helicobacter/epidemiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , Levofloxacino/farmacologia , Mutação , Adolescente , Adulto , Idoso , Amoxicilina/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Sequência de Bases , Claritromicina/farmacologia , DNA Girase/genética , DNA Bacteriano/genética , Endoscopia , Feminino , Genes Bacterianos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Helicobacter pylori/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Metronidazol/farmacologia , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Nepal/epidemiologia , Nitrorredutases/genética , Mutação Puntual , Prevalência , Fator de Iniciação 2 em Procariotos/genética , RNA Ribossômico 23S/genética , Tetraciclina/farmacologia , Adulto Jovem
15.
PLoS One ; 11(1): e0146596, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26800121

RESUMO

A bacterial isolate (SCU-B244T) was obtained in China from crickets (Teleogryllus occipitalis) living in cropland deserted for approximately 10 years. The isolated bacteria were Gram-negative, facultatively anaerobic, oxidase-negative rods. A preliminary analysis of the 16S rRNA gene sequence indicated that the strain belongs to either the genus Erwinia or Pantoea. Analysis of multilocus sequence typing based on concatenated partial atpD, gyrB and infB gene sequences and physiological and biochemical characteristics indicated that the strain belonged to the genus Erwinia, as member of a new species as it was distinct from other known Erwinia species. Further analysis of the 16S rRNA gene showed SCU-B244T to have 94.71% identity to the closest species of that genus, Erwinia oleae (DSM 23398T), which is below the threshold of 97% used to discriminate bacterial species. DNA-DNA hybridization results (5.78±2.52%) between SCU-B244T and Erwinia oleae (DSM 23398T) confirmed that SCU-B244T and Erwinia oleae (DSM 23398T) represent different species combined with average nucleotide identity values which range from 72.42% to 74.41. The DNA G+C content of SCU-B244T was 55.32 mol%, which also differs from that of Erwinia oleae (54.7 to 54.9 mol%). The polyphasic taxonomic approach used here confirmed that the strain belongs to the Erwinia group and represents a novel species. The name Erwinia teleogrylli sp. nov. is proposed for this novel taxon, for which the type strain is SCU-B244T (= CGMCC 1.12772T = DSM 28222T = KCTC 42022T).


Assuntos
Clorpirifos/farmacologia , Resistência a Medicamentos/genética , Erwinia/isolamento & purificação , Erwinia/metabolismo , Gryllidae/efeitos dos fármacos , Gryllidae/microbiologia , Inseticidas/farmacologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases/genética , China , Clorpirifos/metabolismo , DNA Girase/genética , DNA Bacteriano/genética , DNA Ribossômico/genética , Erwinia/classificação , Erwinia/genética , Inseticidas/metabolismo , Tipagem de Sequências Multilocus , Fator de Iniciação 2 em Procariotos/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética
16.
Syst Appl Microbiol ; 39(1): 1-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26597455

RESUMO

A beige pigmented bacterial strain (JM-387(T)), isolated from field-grown corn root tissue, Tallassee, Alabama, was studied for its taxonomic allocation. A comparison of the 16S rRNA gene sequence with those of the type strains of most closely related species of the family Enterobacteriaceae showed highest sequence similarities to the type strain of Kosakonia sacchari (99.5%), "Enterobacter oryzendophyticus" (98.8%), and Kosakonia radicincitans (98.6%). Construction of phylogenetic trees based on the 16S rRNA gene and partial sequences of four protein-coding genes, rpoB, gyrB, infB, and atpD (multilocus sequence analysis, MLSA) showed a distinct clustering of strain JM-387(T) with Kosakonia sacchari. DNA-DNA hybridizations between JM-387(T) and the type strains of most similar Kosakonia/"Enterobacter" species including K. sacchari LMG 26783(T), "E. oryzendophyticus" LMG 26432(T), K. radicincitans D5/23(T), K. oryzae LMG 24251(T), E. cancerogenus LMG 2693(T), and E. cloacae subsp. dissolvens CCUG 25230(T) were in the range of 14.4-60.2%. The average nucleotide identity (ANI) of the genome sequence of the new strain to K. sacchari SP1(T) was 94.47%. Strain JM-387(T) had a typical enterobacterial fatty acid pattern consisting of the major fatty acids C16:0, C16:1 ω7c/C16:1 ω6c/C15:0 2OH, C18:1 ω7c/C18:1 ω6c with C14:0 3-OH as hydroxylated fatty acid. Genotypic data and the differentiating biochemical and chemotaxonomic properties showed that strain JM-387(T) represents a novel species of the genus Kosakonia, for which the name Kosakonia pseudosacchari sp. nov. (type strain JM-387(T)=CIP 110597(T)=DSM 27151(T)) is proposed.


Assuntos
Enterobacteriaceae/classificação , Enterobacteriaceae/isolamento & purificação , Raízes de Plantas/microbiologia , Zea mays/microbiologia , Alabama , Sequência de Bases , DNA Girase/genética , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/genética , Endófitos , Enterobacteriaceae/genética , Tipagem de Sequências Multilocus , Filogenia , Fator de Iniciação 2 em Procariotos/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética
17.
J Mol Biol ; 427(9): 1819-34, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25596426

RESUMO

Joining of the large, 50S, ribosomal subunit to the small, 30S, ribosomal subunit initiation complex (IC) during bacterial translation initiation is catalyzed by the initiation factor (IF) IF2. Because the rate of subunit joining is coupled to the IF, transfer RNA (tRNA), and mRNA codon compositions of the 30S IC, the subunit joining reaction functions as a kinetic checkpoint that regulates the fidelity of translation initiation. Recent structural studies suggest that the conformational dynamics of the IF2·tRNA sub-complex forming on the intersubunit surface of the 30S IC may play a significant role in the mechanisms that couple the rate of subunit joining to the IF, tRNA, and codon compositions of the 30S IC. To test this hypothesis, we have developed a single-molecule fluorescence resonance energy transfer signal between IF2 and tRNA that has enabled us to monitor the conformational dynamics of the IF2·tRNA sub-complex across a series of 30S ICs. Our results demonstrate that 30S ICs undergoing rapid subunit joining display a high affinity for IF2 and an IF2·tRNA sub-complex that primarily samples a single conformation. In contrast, 30S ICs that undergo slower subunit joining exhibit a decreased affinity for IF2 and/or a change in the conformational dynamics of the IF2·tRNA sub-complex. These results strongly suggest that 30S IC-driven changes in the stability of IF2 and the conformational dynamics of the IF2·tRNA sub-complex regulate the efficiency and fidelity of subunit joining during translation initiation.


Assuntos
Fator de Iniciação 2 em Procariotos/metabolismo , Biossíntese de Proteínas , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Ribossomos/metabolismo , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Conformação Molecular , Fator de Iniciação 2 em Procariotos/química , Fator de Iniciação 2 em Procariotos/genética , RNA Mensageiro/genética , RNA de Transferência de Metionina/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química
18.
J Mol Biol ; 427(9): 1801-18, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25308340

RESUMO

Ribosomal subunit joining is a key checkpoint in the bacterial translation initiation pathway during which initiation factors (IFs) regulate association of the 30S initiation complex (IC) with the 50S subunit to control formation of a 70S IC that can enter into the elongation stage of protein synthesis. The GTP-bound form of IF2 accelerates subunit joining, whereas IF3 antagonizes subunit joining and plays a prominent role in maintaining translation initiation fidelity. The molecular mechanisms through which IF2 and IF3 collaborate to regulate the efficiency of 70S IC formation, including how they affect the dynamics of subunit joining, remain poorly defined. Here, we use single-molecule fluorescence resonance energy transfer to monitor the interactions between IF2 and the GTPase-associated center (GAC) of the 50S subunit during real-time subunit joining reactions in the absence and presence of IF3. In the presence of IF3, IF2-mediated subunit joining becomes reversible, and subunit joining events cluster into two distinct classes corresponding to formation of shorter- and longer-lifetime 70S ICs. Inclusion of IF3 within the 30S IC was also found to alter the conformation of IF2 relative to the GAC, suggesting that IF3's regulatory effects may stem in part from allosteric modulation of IF2-GAC interactions. The results are consistent with a model in which IF3 can exert control over the efficiency of subunit joining by modulating the conformation of the 30S IC, which in turn influences the formation of stabilizing intersubunit contacts and thus the reaction's degree of reversibility.


Assuntos
Fator de Iniciação 2 em Procariotos/metabolismo , Fator de Iniciação 3 em Procariotos/metabolismo , Biossíntese de Proteínas , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Ribossomos/metabolismo , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Conformação Molecular , Fator de Iniciação 2 em Procariotos/química , Fator de Iniciação 2 em Procariotos/genética , Fator de Iniciação 3 em Procariotos/química , Fator de Iniciação 3 em Procariotos/genética , RNA Mensageiro/genética , RNA de Transferência de Metionina/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química
19.
Protein Expr Purif ; 104: 14-9, 2014 12.
Artigo em Inglês | MEDLINE | ID: mdl-25260712

RESUMO

Human cystatin C (CYSC) is a 13-kDa endogenous cysteine proteinase inhibitor and was investigated as a replacement for creatinine as a marker of renal function. However, expressing recombinant CYSC is difficult in Escherichia coli because of resulting low yield and insufficient purity and insolubility. Here, we cloned and fused CYSC to the C-terminus of three soluble partners - maltose-binding protein (MBP), glutathione S-transferase (GST) and translation initiation factor 2 domain I (IF2) - to screen for their ability to improve the solubility of recombinant CYSC when expressed in E. coli. MBP was best at enhancing the soluble expression of CYSC, with soluble fractions accounting for 92.8±3.11% of all proteins. For scaled production, we purified the de-tagged CYSC by using a 3C protease-cleaved MBP-T3-CYSC fused protein with immobilized metal affinity chromatography and cation-affinity purification. The molecular weights of the de-tagged CYSC and human natural CYSC were similar, and the former could react specifically with CYSC polyclonal antibody. Moreover, the de-tagged CYSC displayed full biological activity against papain and cathepsin B, which was very similar to that of the human natural CYSC protein standard. We provide a method to produce large amounts of soluble recombinant human CYSC in E. coli.


Assuntos
Cistatina C/biossíntese , Proteínas Ligantes de Maltose/genética , Proteínas Recombinantes de Fusão/biossíntese , Catepsina B/metabolismo , Cromatografia de Afinidade , Cistatina C/genética , Cistatina C/isolamento & purificação , Escherichia coli , Glutationa Transferase/genética , Humanos , Papaína/metabolismo , Fator de Iniciação 2 em Procariotos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Solubilidade
20.
J Vet Diagn Invest ; 26(4): 488-495, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24842288

RESUMO

Streptococcus spp. were recovered from diseased tilapia in Thailand during 2009-2010 ( n = 33), and were also continually collected from environmental samples (sediment and water) from tilapia farms for 9 months in 2011 ( n = 25). The relative percent recovery of streptococci from environmental samples was 13-67%. All streptococcal isolates were identified as S. agalactiae (group B streptococci [GBS]) by a species-specific polymerase chain reaction. In molecular characterization assays, 4 genotypic categories comprised of 1) molecular serotypes, 2) the infB allele, 3) virulence gene profiling patterns ( cylE, hylB, scpB, lmb, cspA, dltA, fbsA, fbsB, bibA, gap, and pili backbone-encoded genes), and 4) randomly amplified polymorphic DNA (RAPD) fingerprinting patterns, were used to describe the genotypic diversity of the GBS isolates. There was only 1 isolate identified as molecular serotype III, while the others were serotype Ia. Most GBS serotype Ia isolates had an identical infB allele and virulence gene profiling patterns, but a large diversity was established by RAPD analysis with diversity tending to be geographically dependent. Experimental infection of Nile tilapia ( Oreochromis niloticus) revealed that the GBS serotype III isolate was nonpathogenic in the fish, while all 5 serotype Ia isolates (3 fish and 2 environmental isolates) were pathogenic, with a median lethal dose of 6.25-7.56 log10 colony-forming units. In conclusion, GBS isolates from tilapia farms in Thailand showed a large genetic diversity, which was associated with the geographical origins of the bacteria.


Assuntos
Ciclídeos , Doenças dos Peixes/microbiologia , Variação Genética , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/fisiologia , Streptococcus agalactiae/patogenicidade , Animais , Aquicultura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genótipo , Fator de Iniciação 2 em Procariotos/genética , Fator de Iniciação 2 em Procariotos/metabolismo , Análise de Sequência de DNA , Sorogrupo , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/genética , Tailândia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA