Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 31(12): 1232-1245, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32293990

RESUMO

Yeast cells, when exposed to stress, can enter a protective state in which cell division, growth, and metabolism are down-regulated. They remain viable in this state until nutrients become available again. How cells enter this protective survival state and what happens at a cellular and subcellular level are largely unknown. In this study, we used electron tomography to investigate stress-induced ultrastructural changes in the cytoplasm of yeast cells. After ATP depletion, we observed significant cytosolic compaction and extensive cytoplasmic reorganization, as well as the emergence of distinct membrane-bound and membraneless organelles. Using correlative light and electron microscopy, we further demonstrated that one of these membraneless organelles was generated by the reversible polymerization of eukaryotic translation initiation factor 2B, an essential enzyme in the initiation of protein synthesis, into large bundles of filaments. The changes we observe are part of a stress-induced survival strategy, allowing yeast cells to save energy, protect proteins from degradation, and inhibit protein functionality by forming assemblies of proteins.


Assuntos
Citoplasma/fisiologia , Metabolismo Energético/fisiologia , Estresse Fisiológico/fisiologia , Trifosfato de Adenosina/metabolismo , Citoplasma/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Fator de Iniciação 2B em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/fisiologia , Organelas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Biol Cell ; 30(8): 942-958, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30726166

RESUMO

Eukaryotic initiation factor 2 (eIF2) is a G protein critical for translation. It is tightly regulated in the integrated stress response (ISR) via phosphorylation of eIF2α and the subsequent control of eukaryotic initiation factor 2B (eIF2B), a multisubunit guanine nucleotide exchange factor. Through studying the localization of eIF2B subunits, we identified cytoplasmic eIF2B bodies in mammalian cells. We highlight a relationship between body size and the eIF2B subunits localizing to them; larger bodies contain all subunits and smaller bodies contain predominantly catalytic subunits. eIF2 localizes to eIF2B bodies and shuttles within these bodies in a manner that correlates with eIF2B activity. On stress, eIF2α-P localizes predominately to larger bodies and results in a decreased shuttling of eIF2. Interestingly, drugs that inhibit the ISR can rescue eIF2 shuttling in a manner correlating to levels of eIF2α-P. In contrast, smaller bodies show increased eIF2 shuttling in response to stress, which is accompanied by the localization of eIF2Bδ to these bodies, suggesting the formation of a novel trimeric complex of eIF2B. This response is mimicked by ISR-inhibiting drugs, providing insight into their potential mechanism of action. This study provides evidence that the composition and function of mammalian eIF2B bodies are regulated by the ISR and the drugs that control it.


Assuntos
Fator de Iniciação 2B em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/fisiologia , Estresse Fisiológico/fisiologia , Animais , Células CHO , Cricetulus , Fator de Iniciação 2 em Eucariotos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Fosforilação , Estresse Fisiológico/efeitos dos fármacos
3.
Wiley Interdiscip Rev RNA ; 9(6): e1491, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29989343

RESUMO

Phosphorylation of the translation initiation factor eIF2 is one of the most widely used and well-studied mechanisms cells use to respond to diverse cellular stresses. Known as the integrated stress response (ISR), the control pathway uses modulation of protein synthesis to reprogram gene expression and restore homeostasis. Here the current knowledge of the molecular mechanisms of eIF2 activation and its control by phosphorylation at a single-conserved phosphorylation site, serine 51 are discussed with a major focus on the regulatory roles of eIF2B and eIF5 where a current molecular view of ISR control of eIF2B activity is presented. How genetic disorders affect eIF2 or eIF2B is discussed, as are syndromes where excess signaling through the ISR is a component. Finally, studies into the action of recently identified compounds that modulate the ISR in experimental systems are discussed; these suggest that eIF2B is a potential therapeutic target for a wide range of conditions. This article is categorized under: Translation > Translation Regulation.


Assuntos
Fator de Iniciação 2B em Eucariotos/fisiologia , Estresse Fisiológico , Animais , Humanos , Biossíntese de Proteínas
4.
Sci Rep ; 8(1): 3773, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491431

RESUMO

Vanishing white matter (VWM) is a genetic childhood white matter disorder, characterized by chronic as well as episodic, stress provoked, neurological deterioration. Treatment is unavailable and patients often die within a few years after onset. VWM is caused by recessive mutations in the eukaryotic initiation factor 2B (eIF2B). eIF2B regulates protein synthesis rates in every cell of the body. In normal cells, various types of cellular stress inhibit eIF2B activity and induce the integrated stress response (ISR). We have developed a VWM mouse model homozygous for the pathogenic Arg191His mutation in eIF2Bε (2b5 ho ), representative of the human disease. Neuropathological examination of VWM patient and mouse brain tissue suggests that astrocytes are primarily affected. We hypothesized that VWM astrocytes are selectively hypersensitive to ISR induction, resulting in a heightened response. We cultured astrocytes from wildtype and VWM mice and investigated the ISR in assays that measure transcriptional induction of stress genes, protein synthesis rates and cell viability. We investigated the effects of short- and long-term stress as well as stress recovery. We detected congruent results amongst the various assays and did not detect a hyperactive ISR in VWM mouse astrocytes.


Assuntos
Astrócitos/patologia , Encéfalo/patologia , Modelos Animais de Doenças , Fator de Iniciação 2B em Eucariotos/fisiologia , Leucoencefalopatias/patologia , Estresse Fisiológico , Resposta a Proteínas não Dobradas , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Humanos , Técnicas In Vitro , Leucoencefalopatias/genética , Leucoencefalopatias/metabolismo , Camundongos , Camundongos Knockout , Mutação
5.
Biochem Biophys Res Commun ; 436(1): 41-6, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23707720

RESUMO

Eukaryotic initiation factor 2Bε (eIF2Bε) plays a critical role in the initiation of mRNA translation and its expression and guanine nucleotide exchange activity are major determinants of the rate of protein synthesis. In this work we provide evidence that the catalytic epsilon subunit of eIF2B is subject to ubiquitination and proteasome-mediated degradation. Lysates of C2C12 myoblasts treated with proteasome inhibitor were subjected to sequential immunoprecipitations for eIF2Bε followed by ubiquitin. Tandem mass spectrometry (LC-MS/MS) analysis of immunoprecipitated proteins resulted in the identification of five peptides containing ubiquitin (diglycine) modifications on eIF2Bε. The specific lysine residues containing the ubiquitin modifications were localized as Lys-56, Lys-98, Lys-136, Lys-212 and Lys-500 (corresponding to the rat protein sequence). In addition three novel phosphorylation sites were identified including Ser-22, Ser-125, and Thr-317. Moreover, peptides corresponding to the amino acid sequence of the E3 ligase NEDD4 were also detected in the LC-MS/MS analysis, and an interaction between endogenous eIF2Bε with NEDD4 was confirmed by co-immunoprecipitation.


Assuntos
Fator de Iniciação 2B em Eucariotos/fisiologia , Lisina/química , Ubiquitina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Linhagem Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Epitopos/química , Fator de Iniciação 2B em Eucariotos/química , Humanos , Camundongos , Dados de Sequência Molecular , Ubiquitina-Proteína Ligases Nedd4 , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Ratos , Homologia de Sequência de Aminoácidos , Serina/química , Treonina/química , Ubiquitina-Proteína Ligases/metabolismo
6.
J Neurosci ; 33(17): 7165-74, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23616526

RESUMO

Axonal protein synthesis is a complex process involving selective mRNA localization and translational regulation. In this study, using in situ hybridization and metabolic labeling, we show that the mRNAs encoding eukaryotic translation initiation factors eIF2B2 and eIF4G2 are present in the axons of rat sympathetic neurons and are locally translated. We also report that a noncoding microRNA, miR16, modulates the axonal expression of eIF2B2 and eIF4G2. Transfection of axons with precursor miR16 and anti-miR16 showed that local miR16 levels modulated axonal eIF2B2 and eIF4G2 mRNA and protein levels, as well as axon outgrowth. siRNA-mediated knock-down of axonal eIF2B2 and eIF4G2 mRNA also resulted in a significant decrease in axonal eIF2B2 and eIF4G2 protein. Moreover, results of metabolic labeling studies showed that downregulation of axonal eIF2B2 and eIF4G2 expression also inhibited local protein synthesis and axon growth. Together, these data provide evidence that miR16 mediates axonal growth, at least in part, by regulating the local protein synthesis of eukaryotic translation initiation factors eIF2B2 and eIF4G2 in the axon.


Assuntos
Fibras Adrenérgicas/metabolismo , Axônios/metabolismo , Fator de Iniciação 2B em Eucariotos/biossíntese , Fator de Iniciação Eucariótico 4G/biossíntese , Biossíntese de Proteínas/fisiologia , Fibras Adrenérgicas/fisiologia , Animais , Axônios/fisiologia , Células Cultivadas , Regulação para Baixo/fisiologia , Fator de Iniciação 2B em Eucariotos/antagonistas & inibidores , Fator de Iniciação 2B em Eucariotos/fisiologia , Fator de Iniciação Eucariótico 4G/antagonistas & inibidores , Fator de Iniciação Eucariótico 4G/fisiologia , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Gânglio Cervical Superior/metabolismo , Gânglio Cervical Superior/fisiologia
7.
PLoS One ; 6(10): e26992, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22073122

RESUMO

BACKGROUND: Mutations in eukaryotic translation initiation factor 2B (eIF2B) cause Childhood Ataxia with CNS Hypomyelination (CACH), also known as Vanishing White Matter disease (VWM), which is associated with a clinical pathology of brain myelin loss upon physiological stress. eIF2B is the guanine nucleotide exchange factor (GEF) of eIF2, which delivers the initiator tRNA(Met) to the ribosome. We recently reported that a R132H mutation in the catalytic subunit of this GEF, causing a 20% reduction in its activity, leads under normal conditions to delayed brain development in a mouse model for CACH/VWM. To further explore the effect of the mutation on global gene expression in the brain, we conducted a wide-scale transcriptome analysis of the first three critical postnatal weeks. METHODOLOGY/PRINCIPAL FINDINGS: Genome-wide mRNA expression of wild-type and mutant mice was profiled at postnatal (P) days 1, 18 and 21 to reflect the early proliferative stage prior to white matter establishment (P1) and the peak of oligodendrocye differentiation and myelin synthesis (P18 and P21). At each developmental stage, between 441 and 818 genes were differentially expressed in the mutant brain with minimal overlap, generating unique time point-specific gene expression signatures. CONCLUSIONS: The current study demonstrates that a point mutation in eIF2B, a key translation initiation factor, has a massive effect on global gene expression in the brain. The overall changes in expression patterns reflect multiple layers of indirect effects that accumulate as the brain develops and matures. The differentially expressed genes seem to reflect delayed waves of gene expression as well as an adaptation process to cope with hypersensitivity to cellular stress.


Assuntos
Biomarcadores/metabolismo , Encéfalo/metabolismo , Fator de Iniciação 2B em Eucariotos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Leucoencefalopatias/genética , Mutação Puntual/genética , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Encéfalo/citologia , Ciclo Celular , Células Cultivadas , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
9.
Curr Biol ; 18(14): 1025-33, 2008 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-18635357

RESUMO

BACKGROUND: Cell-size-control systems, coupled with apoptotic- and cell-proliferation-regulatory mechanisms, determine the overall dimensions of organs and organisms, and their dysregulation can lead to tumor formation. The interrelationship between cell-growth-regulatory mechanisms and apoptosis during normal development and cancer is not understood. The TRK-fused gene (TFG) promotes tumorigenesis when present in chromosomal rearrangements from various human-cancer types by unknown mechanisms. Apaf1/CED-4 is essential for apoptosis but has not been shown to function in cell-growth control. RESULTS: We found that loss of TFG-1, the TFG ortholog in Caenorhabditis elegans, results in supernumerary apoptotic corpses, whereas its overexpression is sufficient to inhibit developmentally programmed cell death. TFG-1 is also required for cells and nuclei to grow to normal size. Furthermore, we found that CED-4 is required for cell-growth inhibition in animals lacking TFG-1. However, caspases, the downstream effectors of CED-4-mediated apoptosis, are not required in TFG-1- or CED-4-regulated cell-size control. CED-4 acts to inhibit cell growth by antagonizing the effects of other conserved cell-size-regulating proteins, including cAMP response element binding (CREB) protein, translation-initiation factor eIF2B, and the nucleolar p53-interacting protein nucleostemin. CONCLUSIONS: These findings show that TFG-1 suppresses apoptosis and is essential for normal cell-size control, suggesting that abnormalities in the cell-growth-promoting and apoptosis-inhibiting functions of TFG might be responsible for its action in tumorigenesis. Also, they reveal that CED-4 plays a pivotal role in activating apoptosis and restricting cell and nuclear size, thereby determining the appropriate overall size of an animal. Thus, these findings reveal links between the control mechanisms for apoptosis and cell growth.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Ligação ao Cálcio/genética , Animais , Apoptose/genética , Apoptose/fisiologia , Tamanho Corporal/genética , Tamanho Corporal/fisiologia , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/fisiologia , Tamanho Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Fator de Iniciação 2B em Eucariotos/antagonistas & inibidores , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/fisiologia , Genes de Helmintos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Proto-Oncogene Mas , Proto-Oncogenes , Interferência de RNA
10.
Lancet Neurol ; 5(5): 413-23, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16632312

RESUMO

Vanishing white matter disease (VWM) is one of the most prevalent inherited childhood leucoencephalopathies. The classical phenotype is characterised by early childhood onset of chronic neurological deterioration, dominated by cerebellar ataxia. VWM is unusual because of its clinically evident sensitivity to febrile infections, minor head trauma, and acute fright, which may cause rapid neurological deterioration and unexplained coma. Most patients die a few years after onset. The phenotypic variation is extremely wide, including antenatal onset and early demise and adult-onset, slowly progressive disease. MRI findings are diagnostic in almost all patients and are indicative of vanishing of the cerebral white matter. The basic defect of this striking disease resides in either one of the five subunits of eukaryotic translation initiation factor eIF2B. eIF2B is essential in all cells of the body for protein synthesis and its regulation under different stress conditions. Although the defect is in housekeeping genes, oligodendrocytes and astrocytes are predominantly affected, whereas other cell types are surprisingly spared. Recently, undue activation of the unfolded-protein response has emerged as important in the pathophysiology of VWM, but the selective vulnerability of glia for defects in eIF2B is poorly understood.


Assuntos
Encefalopatias/fisiopatologia , Ataxia Cerebelar/etiologia , Idade de Início , Encefalopatias/genética , Ataxia Cerebelar/genética , Ataxia Cerebelar/fisiopatologia , Criança , Pré-Escolar , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/fisiologia , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Fenótipo , Prognóstico , Dobramento de Proteína , Estresse Psicológico
11.
Trends Mol Med ; 12(4): 159-66, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16545608

RESUMO

Leukoencephalopathy with vanishing white matter (VWM) is one of the most prevalent inherited white-matter disorders, especially in Caucasian populations. VWM is unusual because of its sensitivity to febrile infections and minor head trauma. The basic defect of this enigmatic brain disease resides in the regulation of initiation of protein synthesis. Recently, undue activation of the unfolded-protein response has emerged as an important factor in the pathophysiology of VWM. Here, we discuss the mechanisms that might be responsible for the selective involvement of the brain white matter in VWM. At present, VWM research is in need of an animal model to study disease mechanisms and therapeutic interventions.


Assuntos
Encefalopatias/metabolismo , Córtex Cerebral/metabolismo , Fator de Iniciação 2B em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Animais , Encefalopatias/fisiopatologia , Córtex Cerebral/patologia , Fator de Iniciação 2 em Eucariotos/fisiologia , Fator de Iniciação 2B em Eucariotos/fisiologia , Humanos , Modelos Biológicos , Biossíntese de Proteínas
12.
Hum Mutat ; 25(4): 411, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15776425

RESUMO

Autosomal recessive inherited mutations in each of the five eukaryotic initiation factor 2B (eIF2B) subunits are known to cause white matter abnormalities with a wide continuum of clinical signs and severity leading to the concept of eIF2B-related disorders. The clinical spectrum extends from fatal infantile forms to adult forms with slow or absent neurological deterioration. In this study 15 well-characterised patients with the classical form of leukoencephalopathy with vanishing white matter (VWM) or with phenotypic variants like ovarioleukodystrophy were investigated for mutations in the genes EIF2B1, EIF2B2, EIF2B3, EIF2B4, and EIF2B5 encoding eIF2B. We identified one novel nonsense mutation (EIF2B4, c.625C>T, p.Arg209X), one novel frameshift mutation (EIF2B5, c.453_454del, p.Tyr152fsX12), eight novel missense muations (EIF2B1, c.547G>T, p.Val183Phe; EIF2B2, c. 586C>T, p.Pro196Ser; EIF2B4, c.806T>G, p.Leu269Arg; EIF2B5, c.203T>C, p.Leu68Ser; EIF2B5, c.220G>A, p.Ala74Thr; EIF2B5, c.805C>G, p.Arg269Gly; EIF2B5, c.929G>T, p.Cys310Phe; EIF2B5, c.1003T>C, p.Cys335Arg), and eight previously described alterations.


Assuntos
Encefalopatias/genética , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/fisiologia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Leucoencefalite Hemorrágica Aguda/genética , Mutação , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Progressão da Doença , Feminino , Humanos , Lactente , Masculino
13.
Mol Cell Biol ; 25(8): 3063-75, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15798194

RESUMO

Four stress-responsive protein kinases, including GCN2 and PKR, phosphorylate eukaryotic translation initiation factor 2alpha (eIF2alpha) on Ser51 to regulate general and gene-specific protein synthesis. Phosphorylated eIF2 is an inhibitor of its guanine nucleotide exchange factor, eIF2B. Mutations that block translational regulation were isolated throughout the N-terminal OB-fold domain in Saccharomyces cerevisiae eIF2alpha, including those at residues flanking Ser51 and around 20 A away in the conserved motif K79GYID83. Any mutation at Glu49 or Asp83 blocked translational regulation; however, only a subset of these mutations impaired Ser51 phosphorylation. Substitution of Ala for Asp83 eliminated phosphorylation by GCN2 and PKR both in vivo and in vitro, establishing the critical contributions of remote residues to kinase-substrate recognition. In contrast, mutations that blocked translational regulation but not Ser51 phosphorylation impaired the binding of eIF2B to phosphorylated eIF2alpha. Thus, two structurally distinct effectors of eIF2 function, eIF2alpha kinases and eIF2B, have evolved to recognize the same surface and overlapping determinants on eIF2alpha.


Assuntos
Fator de Iniciação 2B em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Iniciação Traducional da Cadeia Peptídica/genética , Proteínas Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , eIF-2 Quinase/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência Conservada , Análise Mutacional de DNA , Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/fisiologia , Dados de Sequência Molecular , Mutação/genética , Iniciação Traducional da Cadeia Peptídica/fisiologia , Fosforilação , Conformação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Serina/genética , Serina/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
14.
Nat Med ; 11(3): 277-83, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15723074

RESUMO

Vanishing white matter disease (VWM) is a heritable leukodystrophy linked to mutations in translation initiation factor 2B (eIF2B). Although the clinical course of this disease has been relatively well described, the cellular consequences of EIF2B mutations on neural cells are unknown. Here we have established cell cultures from the brain of an individual with VWM carrying mutations in subunit 5 of eIF2B (encoded by EIF2B5). Despite the extensive demyelination apparent in this VWM patient, normal-appearing oligodendrocytes were readily generated in vitro. In contrast, few GFAP-expressing (GFAP+) astrocytes were present in primary cultures, induction of astrocytes was severely compromised, and the few astrocytes generated showed abnormal morphologies and antigenic phenotypes. Lesions in vivo also lacked GFAP+ astrocytes. RNAi targeting of EIF2B5 severely compromised the induction of GFAP+ cells from normal human glial progenitors. This raises the possibility that a deficiency in astrocyte function may contribute to the loss of white matter in VWM leukodystrophy.


Assuntos
Astrócitos/citologia , Encefalopatias/genética , Fator de Iniciação 2B em Eucariotos/genética , Proteína Glial Fibrilar Ácida/biossíntese , Doenças Neurodegenerativas/genética , Sequência de Bases , Encefalopatias/fisiopatologia , Diferenciação Celular , Células Cultivadas , Criança , Doenças Desmielinizantes/patologia , Fator de Iniciação 2B em Eucariotos/fisiologia , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Mutação , Doenças Neurodegenerativas/fisiopatologia
15.
Semin Cell Dev Biol ; 16(1): 3-12, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15659334

RESUMO

Eukaryotic initiation factor eIF2 and its 'exchange factor' eIF2B play a key role in the regulation of protein synthesis in eukaryotes from yeast to mammals. Phosphorylation of eIF2 inhibits eIF2B and thus translation initiation. Four eIF2 kinases are now known in mammalian cells and these are activated in response to specific stress conditions. While phosphorylation of eIF2 serves to impair general protein synthesis, it causes upregulation of the translation of certain specific mRNAs that encode transcription factors. It can, therefore, exert effects on gene expression at multiple levels. The importance of correct control of eIF2 and eIF2B for normal physiology is exemplified by data from transgenic mice carrying knock-in or knock-out mutations and by the fact that mutations in the genes for the eIF2 kinase PERK or for eIF2B give rise to serious human diseases.


Assuntos
Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/fisiologia , Animais , Apoptose , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/química , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/fisiologia , Humanos , Camundongos , Doenças Neurodegenerativas/etiologia , Fosforilação , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Transcrição Gênica , eIF-2 Quinase/metabolismo
16.
J Biol Chem ; 280(9): 7570-80, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15591312

RESUMO

The contribution of mammalian target of rapamycin (mTOR) signaling to the resistance exercise-induced stimulation of skeletal muscle protein synthesis was assessed by administering rapamycin to Sprague-Dawley rats 2 h prior to a bout of resistance exercise. Animals were sacrificed 16 h postexercise, and gastrocnemius protein synthesis, mTOR signaling, and biomarkers of translation initiation were assessed. Exercise stimulated the rate of protein synthesis; however, this effect was prevented by pretreatment with rapamycin. The stimulation of protein synthesis was mediated by an increase in translation initiation, since exercise caused an increase in polysome aggregation that was abrogated by rapamycin administration. Taken together, the data suggest that the effect of rapamycin was not mediated by reduced phosphorylation of eukaryotic initiation factor 4E (eIF4E) binding protein 1 (BP1), because exercise did not cause a significant change in 4E-BP1(Thr-70) phosphorylation, 4E-BP1-eIF4E association, or eIF4F complex assembly concomitant with increased protein synthetic rates. Alternatively, there was a rapamycin-sensitive decrease in relative eIF2Bepsilon(Ser-535) phosphorylation that was explained by a significant increase in the expression of eIF2Bepsilon protein. The proportion of eIF2Bepsilon mRNA in polysomes was increased following exercise, an effect that was prevented by rapamycin treatment, suggesting that the increase in eIF2Bepsilon protein expression was mediated by an mTOR-dependent increase in translation of the mRNA encoding the protein. The increase in eIF2Bepsilon mRNA translation and protein abundance occurred independent of similar changes in other eIF2B subunits. These data suggest a novel link between mTOR signaling and eIF2Bepsilon mRNA translation that could contribute to the stimulation of protein synthesis following acute resistance exercise.


Assuntos
Fator de Iniciação 2B em Eucariotos/fisiologia , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Proteínas Quinases/metabolismo , Animais , Western Blotting , Proteínas de Transporte/metabolismo , Fator de Iniciação 2B em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Músculo Esquelético/patologia , Fosfoproteínas/metabolismo , Fosforilação , Condicionamento Físico Animal , Polirribossomos/química , RNA Mensageiro/metabolismo , RNA Ribossômico/química , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína S6 Ribossômica/química , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Curr Top Microbiol Immunol ; 279: 215-44, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14560960

RESUMO

Protein synthesis requires nutrients both as precursors (amino acids) and as a source of energy, since this process consumes a high proportion of cellular metabolic energy. Recent work has shown that both types of nutrients directly influence the activities of components of the translational machinery in mammalian cells. Amino acids positively regulate signalling through the mammalian target of the rapamycin (mTOR) pathway, although the degree of dependency on external amino acids varies between cell types. mTOR signalling modulates several key components involved in mRNA translation, in particular (via repressor proteins) the cap-binding initiation factor eIF4E, the ribosomal protein S6 kinases, and elongation factor eEF2. The branched-chain amino acid leucine is the most effective one in most cell types. It is currently unclear how mammalian cells sense prevailing amino acid levels, although this may involve intracellular amino acids. Cellular ATP levels can also influence mTOR activity. The activities of some translation factors are modulated by mTOR-independent mechanisms. Examples include the regulation of eEF2 by cellular energy levels, which may be controlled via the AMP-activated protein kinase, and the activity of the guanine nucleotide-exchange factor eIF2B, which is modulated by amino acids and metabolic fuels.


Assuntos
Aminoácidos/metabolismo , Biossíntese de Proteínas/fisiologia , Proteínas Quinases/metabolismo , Animais , Cricetinae , Fator de Iniciação 2B em Eucariotos/fisiologia , Regulação da Expressão Gênica/fisiologia , Humanos , Fator 2 de Elongação de Peptídeos/fisiologia , Proteínas Quinases/fisiologia , Ratos , Proteínas Quinases S6 Ribossômicas/fisiologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR
18.
FEBS Lett ; 543(1-3): 81-6, 2003 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-12753910

RESUMO

Our data show that in hamster fibroblasts transformed by Rous sarcoma virus (RSV), the phosphoinositide 3'-kinase (PI-3K)/Akt/glycogen synthase kinase 3 antiapoptotic pathway is upregulated and involved in increased protein synthesis through activation of initiation factor eIF2B. Upon inhibition of PI-3K by wortmannin, phosphorylation of 70-kDa ribosomal protein S6 kinase (p70 S6k) and its physiological substrate, ribosomal protein S6, decreased in the non-transformed cells but not in RSV-transformed cells. Thus PI-3K, which is thought to be involved in regulation of p70 S6k, signals to p70 S6k in normal fibroblasts, but it does not appear to be an upstream effector of p70 S6k in fibroblasts transformed by v-src oncogene, suggesting that changes in the PI-3K signalling pathway upstream of p70 S6k are induced by RSV transformation.


Assuntos
Fator de Iniciação 2B em Eucariotos/fisiologia , Proteína Oncogênica pp60(v-src)/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Quinases S6 Ribossômicas 70-kDa/fisiologia , Transdução de Sinais , Androstadienos/farmacologia , Animais , Vírus do Sarcoma Aviário/genética , Vírus do Sarcoma Aviário/patogenicidade , Linhagem Celular , Linhagem Celular Transformada , Transformação Celular Viral , Cricetinae , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Wortmanina
20.
Nat Genet ; 29(4): 383-8, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11704758

RESUMO

Leukoencephalopathy with vanishing white matter (VWM) is an inherited brain disease that occurs mainly in children. The course is chronic-progressive with additional episodes of rapid deterioration following febrile infection or minor head trauma. We have identified mutations in EIF2B5 and EIF2B2, encoding the epsilon- and beta-subunits of the translation initiation factor eIF2B and located on chromosomes 3q27 and 14q24, respectively, as causing VWM. We found 16 different mutations in EIF2B5 in 29 patients from 23 families. We also found two distantly related individuals who were homozygous with respect to a missense mutation in EIF2B2, affecting a conserved amino acid. Three other patients also had mutations in EIF2B2. As eIF2B has an essential role in the regulation of translation under different conditions, including stress, this may explain the rapid deterioration of people with VWM under stress. Mutant translation initiation factors have not previously been implicated in disease.


Assuntos
Encefalopatias/genética , Fator de Iniciação 2B em Eucariotos/genética , Biossíntese de Proteínas/fisiologia , Sequência de Bases , Encefalopatias/patologia , Cromossomos Humanos Par 14 , Cromossomos Humanos Par 3 , Fator de Iniciação 2B em Eucariotos/fisiologia , Humanos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA