Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 126(1): 147-59, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25630975

RESUMO

Initiation is a key control point for the regulation of translation in prokaryotes and prokaryotic-like translation systems such as those in plant chloroplasts. Genome sequencing and biochemical studies are increasingly demonstrating differences in many aspects of translation between well-studied microbes such as Escherichia coli and lesser studied groups such as cyanobacteria. Analyses of chloroplast translation have revealed its prokaryotic origin but also uncovered many unique aspects that do not exist in E. coli. Recently, a novel form of posttranscriptional regulation by light color was discovered in the filamentous cyanobacterium Fremyella diplosiphon that requires a putative stem-loop and involves the use of two different prokaryotic translation initiation factor 3s (IF3s). Multiple (up to five) putative IF3s have now been found to be encoded in 22 % of sequenced cyanobacterial genomes and 26 % of plant nuclear genomes. The lack of similar light-color regulation of gene expression in most of these species suggests that IF3s play roles in regulating gene expression in response to other environmental and developmental cues. In the plant Arabidopsis, two nuclear-encoded IF3s have been shown to localize to the chloroplasts, and the mRNA levels encoding these vary significantly in certain organ and tissue types and during several phases of development. Collectively, the accumulated data suggest that in about one quarter of photosynthetic prokaryotes and eukaryotes, IF3 gene families are used to regulate gene expression in addition to their traditional roles in translation initiation. Models for how this might be accomplished in prokaryotes versus eukaryotic plastids are presented.


Assuntos
Cianobactérias/genética , Regulação Bacteriana da Expressão Gênica , Genes de Cloroplastos , Fator de Iniciação 3 em Procariotos/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Cianobactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Iniciação Traducional da Cadeia Peptídica/fisiologia
2.
Genes Cells ; 14(2): 271-80, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19170772

RESUMO

The canonical ribosome cycle in bacteria consists of initiation, elongation, termination, and recycling stages. After the recycling stage, initiation factor 3 (IF3) stabilizes ribosomal dissociation by binding to 30S subunits for the next round of translation. On the other hand, during the stationary growth phase, it has been elucidated that Escherichia coli ribosomes are dimerized (100S ribosome formation) by binding ribosome modulation factor (RMF) and hibernation promoting factor (HPF), leading to a hibernation stage. This indicates that 100S ribosomes are formed after these factors are scrambled for ribosomes concomitantly with transition from the log phase to the stationary phase. In this study, to elucidate the ribosomal events before 100S ribosome formation, the relationships between protein factors (RMF and HPF) involved in 100S ribosome formation and IF3 involved in initiation complex formation were examined. As a result of in vitro assays, it was found that ribosomal dissociation activity by IF3 fell, and that ribosomal dimerization activity by RMF and HPF was elevated more when using stationary-phase ribosomes than when using log-phase ribosomes. This suggests that ribosomes change into forms which are hard to bind with IF3 and easy to form 100S ribosomes by RMF and HPF concomitantly with transition from the log phase to the stationary phase.


Assuntos
Proliferação de Células , Proteínas de Escherichia coli/fisiologia , Escherichia coli/crescimento & desenvolvimento , Fator de Iniciação 3 em Procariotos/fisiologia , Proteínas Ribossômicas/fisiologia , Ribossomos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Poliaminas/farmacologia , Fator de Iniciação 3 em Procariotos/metabolismo , Ligação Proteica , Estabilidade Proteica/efeitos dos fármacos , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Ribossomos/efeitos dos fármacos
3.
J Mol Biol ; 380(3): 451-64, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18565340

RESUMO

Translating ribosomes often stall during elongation. The stalled ribosomes are known to be recycled by tmRNA (SsrA)-mediated trans-translation. Another process that recycles the stalled ribosomes is characterized by peptidyl-tRNA release. However, the mechanism of peptidyl-tRNA release from the stalled ribosomes is not well understood. We used a defined system of an AGA-minigene containing a small open reading frame (ATG AGA AGA). Translation of the AGA-minigene mRNA is toxic to Escherichia coli because it stalls ribosomes during elongation and sequesters tRNA(Arg4) as a short-chain peptidyl-tRNA(Arg4) in the ribosomal P-site. We show that a ribosome recycling factor (RRF)-mediated process rescues the host from the AGA-minigene toxicity by releasing the peptidyl-tRNA(Arg4) from the ribosomes. The growth phenotypes of E. coli strains harboring mutant alleles of RRF and initiation factor 3 (IF3) genes and their consequences on lambdaimmP22 phage replication upon AGA-minigene expression reveal that IF3 facilitates the RRF-mediated processing of the stalled ribosomes. Additionally, we have designed a uracil DNA glycosylase gene construct, ung-stopless, whose expression is toxic to E. coli. We show that the RRF-mediated process also alleviates the ung-stopless construct-mediated toxicity to the host by releasing the ung mRNA from the ribosomes harboring long-chain peptidyl-tRNAs.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Alelos , Escherichia coli/crescimento & desenvolvimento , Plasmídeos , Fator de Iniciação 3 em Procariotos/genética , Fator de Iniciação 3 em Procariotos/fisiologia , RNA Bacteriano/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
4.
Mol Cell ; 23(2): 183-93, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16857585

RESUMO

During initiation of bacterial protein synthesis, messenger RNA and fMet-tRNAfMet bind to the 30S ribosomal subunit together with initiation factors IF1, IF2, and IF3. Docking of the 30S preinitiation complex to the 50S ribosomal subunit results in a peptidyl-transfer competent 70S ribosome. Initiation with an elongator tRNA may lead to frameshift and an aberrant N-terminal sequence in the nascent protein. We show how the occurrence of initiation errors is minimized by (1) recognition of the formyl group by the synergistic action of IF2 and IF1, (2) uniform destabilization of the binding of all tRNAs to the 30S subunit by IF3, and (3) an optimal distance between the Shine-Dalgarno sequence and the initiator codon. We suggest why IF1 is essential for E. coli, discuss the role of the G-C base pairs in the anticodon stem of some tRNAs, and clarify gene expression changes with varying IF3 concentration in the living cell.


Assuntos
Proteínas de Bactérias/biossíntese , Fatores de Iniciação em Procariotos/fisiologia , Biossíntese de Proteínas , RNA de Transferência de Metionina/metabolismo , RNA de Transferência de Fenilalanina/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Bactérias/genética , Ligação Competitiva , Cinética , Modelos Biológicos , Fator de Iniciação 1 em Procariotos/fisiologia , Fator de Iniciação 2 em Procariotos/fisiologia , Fator de Iniciação 3 em Procariotos/fisiologia , Fatores de Iniciação em Procariotos/classificação , RNA de Transferência de Metionina/genética , RNA de Transferência de Fenilalanina/genética
5.
Mol Cell ; 20(4): 623-32, 2005 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-16307925

RESUMO

Three consecutive G-C pairs in the anticodon stem are a key discriminatory feature of initiator tRNA and are required for its selection by IF3. Here, we have mutated two 16S rRNA nucleotides, G1338 and A1339, which provide the sole contact to the G-C pairs of tRNA(fMet) bound to the ribosomal P site. We have tested their effects on translational activities in vivo and have affinity-purified mutant 30S subunits for functional analysis in vitro. Our results are consistent with the formation of Type II and I minor interactions, respectively, between G1338 and A1339 and the anticodon stem of tRNA and suggest that these interactions play a role in tRNA(fMet) discrimination by IF3. Moreover, our findings indicate that discrimination also involves recognition of at least one additional feature of the tRNA(fMet) anticodon stem loop.


Assuntos
Adenina/metabolismo , Guanina/metabolismo , RNA Ribossômico 16S/metabolismo , RNA de Transferência de Metionina/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica/fisiologia , Mutação , Fator de Iniciação 2 em Procariotos/fisiologia , Fator de Iniciação 3 em Procariotos/fisiologia , Biossíntese de Proteínas/genética , RNA Ribossômico 16S/genética , Ribossomos/genética , Ribossomos/metabolismo
6.
Nucleic Acids Res ; 33(17): 5591-601, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16199751

RESUMO

Specific interactions between ribosome recycling factor (RRF) and elongation factor-G (EFG) mediate disassembly of post-termination ribosomal complexes for new rounds of initiation. The interactions between RRF and EFG are also important in peptidyl-tRNA release from stalled pre-termination complexes. Unlike the post-termination complexes (harboring deacylated tRNA), the pre-termination complexes (harboring peptidyl-tRNA) are not recycled by RRF and EFG in vitro, suggesting participation of additional factor(s) in the process. Using a combination of biochemical and genetic approaches, we show that, (i) Inclusion of IF3 with RRF and EFG results in recycling of the pre-termination complexes; (ii) IF3 overexpression in Escherichia coli LJ14 rescues its temperature sensitive phenotype for RRF; (iii) Transduction of infC135 (which encodes a functionally compromised IF3) in E.coli LJ14 generates a 'synthetic severe' phenotype; (iv) The infC135 and frr1 (containing an insertion in the RRF gene promoter) alleles synergistically rescue a temperature sensitive mutation in peptidyl-tRNA hydrolase in E.coli; and (v) IF3 facilitates ribosome recycling by Thermus thermophilus RRF and E.coli EFG in vivo and in vitro. These lines of evidence clearly demonstrate the physiological importance of IF3 in the overall mechanism of ribosome recycling in E.coli.


Assuntos
Proteínas de Escherichia coli/fisiologia , Escherichia coli/genética , Iniciação Traducional da Cadeia Peptídica , Fator de Iniciação 3 em Procariotos/fisiologia , Ribossomos/metabolismo , Alelos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Mutação , Terminação Traducional da Cadeia Peptídica , Fator G para Elongação de Peptídeos/metabolismo , Fenótipo , Fator de Iniciação 3 em Procariotos/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/fisiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA