Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 923: 171349, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438030

RESUMO

Benzo(a)pyrene as a pervasive environmental contaminant is characterized by its substantial genotoxicity, and epidemiological investigations have established a correlation between benzo(a)pyrene exposure and the susceptibility to human lung cancer. Notably, much research has focused on the link between epigenetic alterations and lung cancer induced by chemicals, although circRNAs are also emerging as relevant contributors to the carcinogenic process of benzo(a)pyrene. In this study, we identified circ_0067716 as being significantly upregulated in response to stress injury and downregulated during malignant transformation induced by benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE) in human bronchial epithelial cells. The observed differential expression of circ_0067716 in cells treated with BPDE for varying durations suggests a strong correlation between this circRNA and BPDE exposure. The tissue samples of lung cancer patients also suggest that a lower circ_0067716 expression is associated with BPDE-DNA adduct levels. Remarkably, we demonstrate that EIF4A3, located in the nucleus, interacts with the flanking sequences of circ_0067716 and inhibits its biogenesis. Conversely, circ_0067716 is capable of sequestering EIF4A3 in the cytoplasm, thereby preventing its translocation into the nucleus. EIF4A3 and circ_0067716 can form a double-negative feedback loop that could be affected by BPDE. During the initial phase of BPDE exposure, the expression of circ_0067716 was increased in response to stress injury, resulting in cell apoptosis through the involvement of miR-324-5p/DRAM1/BAX axis. Subsequently, as cellular adaptation progressed, long-term induction due to BPDE exposure led to an elevated EIF4A3 and a reduced circ_0067716 expression, which facilitated the proliferation of cells by stabilizing the PI3K/AKT pathway. Thus, our current study describes the effects of circ_0067716 on the genotoxicity and carcinogenesis induced by benzo(a)pyrene and puts forwards to the possible regulatory mechanism on the occurrence of smoking-related lung cancer, providing a unique insight based on epigenetics.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , Benzo(a)pireno/metabolismo , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Células Epiteliais , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/farmacologia , Retroalimentação , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
2.
Gene ; 893: 147917, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37866664

RESUMO

Imatinib is the current gold standard for patients with chronic myeloid leukemia (CML). However, the primary and acquired drug resistance seriously limits the efficacy. To identify novel therapeutic target in Imatinib-resistant CML is of crucial clinical significance. CircRNAs have been demonstrated the essential regulatory roles in the progression and drug resistance of cancers. In this study, we identified a novel circRNA (circ_SIRT1), derived from the SIRT1, which is up-regulated in CML. The high expression of circ_SIRT1 is correlated with drug resistance in CML. Knockdown of circ_SIRT1 regulated K562/R cells viability, invasion and apoptosis. Besides, the inhibition of circ_SIRT1 attenuated autophagy level and reduced IC50 to Imatinib of K562/R cells. Mechanistically, circ_SIRT1 directly binds to the transcription factor Eukaryotic Translation Initiation Factor 4A3(EIF4A3) and regulated EIF4A3-mediated transcription of Autophagy Related 12 (ATG12), thereby affecting Imatinib resistance and autophagy level. Overexpression of ATG12 reversed the regulative effects induced by knockdown of circ_SIRT1. Taken together, our findings revealed circ_SIRT1 acted as a potential tumor regulator in CML and unveiled the underlying mechanism on regulating Imatinib resistance. circ_SIRT1 may serve as a novel therapeutic target and provide crucial clinical implications for Imatinib-resistant CML treatment.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Antineoplásicos/farmacologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Células K562 , Apoptose , Proteína 12 Relacionada à Autofagia , Fator de Iniciação 4A em Eucariotos/farmacologia , RNA Helicases DEAD-box
3.
Curr Med Sci ; 43(3): 560-571, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37142816

RESUMO

OBJECTIVE: Cisplatin (CDDP)-based chemotherapy is a first-line, drug regimen for muscle-invasive bladder cancer (BC) and metastatic bladder cancer. Clinically, resistance to CDDP restricts the clinical benefit of some bladder cancer patients. AT-rich interaction domain 1A (ARID1A) gene mutation occurs frequently in bladder cancer; however, the role of CDDP sensitivity in BC has not been studied. METHODS: We established ARID1A knockout BC cell lines using CRISPR/Cas9 technology. IC50 determination, flow cytometry analysis of apoptosis, and tumor xenograft assays were performed to verify changes in the CDDP sensitivity of BC cells losing ARID1A. qRT-PCR, Western blotting, RNA interference, bioinformatic analysis, and ChIP-qPCR analysis were performed to further explore the potential mechanism of ARID1A inactivation in CDDP sensitivity in BC. RESULTS: It was found that ARID1A inactivation was associated with CDDP resistance in BC cells. Mechanically, loss of ARID1A promoted the expression of eukaryotic translation initiation factor 4A3 (EIF4A3) through epigenetic regulation. Increased expression of EIF4A3 promoted the expression of hsa_circ_0008399 (circ0008399), a novel circular RNA (circRNA) identified in our previous study, which, to some extent, showed that ARID1A deletion caused CDDP resistance through the inhibitory effect of circ0008399 on the apoptosis of BC cells. Importantly, EIF4A3-IN-2 specifically inhibited the activity of EIF4A3 to reduce circ0008399 production and restored the sensitivity of ARID1A inactivated BC cells to CDDP. CONCLUSION: Our research deepens the understanding of the mechanisms of CDDP resistance in BC and elucidates a potential strategy to improve the efficacy of CDDP in BC patients with ARID1A deletion through combination therapy targeting EIF4A3.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética
4.
Proc Natl Acad Sci U S A ; 106(28): 11623-8, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19556547

RESUMO

Stem cell self-renewal is controlled by concerted actions of extrinsic niche signals and intrinsic factors in a variety of systems. Drosophila ovarian germline stem cells (GSCs) have been one of the most productive systems for identifying the factors controlling self-renewal. The differentiation factor BAM is necessary and sufficient for GSC differentiation, but it still remains expressed in GSCs at low levels. However, it is unclear how its function is repressed in GSCs to maintain self-renewal. Here, we report the identification of the translation initiation factor eIF4A for its essential role in self-renewal by directly inactivating BAM function. eIF4A can physically interact with BAM in Drosophila S2 cells and yeast cells. eIF4A exhibits dosage-specific interactions with bam in the regulation of GSC differentiation. It is required intrinsically for controlling GSC self-renewal and proliferation but not survival. In addition, it is required for maintaining E-cadherin expression but not BMP signaling activity. Furthermore, BAM and BGCN together repress translation of E-cadherin through its 3' UTR in S2 cells. Therefore, we propose that BAM functions as a translation repressor by interfering with translation initiation and eIF4A maintains self-renewal by inhibiting BAM function and promoting E-cadherin expression.


Assuntos
Proteínas de Drosophila/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Células Germinativas/metabolismo , Ovário/metabolismo , Células-Tronco/metabolismo , Animais , Caderinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Fator de Iniciação 4A em Eucariotos/farmacologia , Feminino , Células Germinativas/efeitos dos fármacos , Imuno-Histoquímica , Células-Tronco/efeitos dos fármacos , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA