Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3671-3682, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37294427

RESUMO

Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, with a high recurrence rate and heterogeneity. We aimed to examine the effect of corosolic acid (CRA) on HCC. We employed transcriptomics to validate the target molecules in CRA-treated HCC cells and conducted enrichment analyses that revealed their involvement in the regulation of endoplasmic reticulum (ER) stress and apoptosis. Our experimental data indicated that CRA markedly induced apoptosis in human HCC cell lines through the mitochondrial apoptosis pathway. We also revealed that the pro-apoptotic effects of CRA depended on ER stress, as pretreatment with selective ERS inhibitor salubrinal effectively reversed CRA-induced cell apoptosis. Furthermore, the knockdown of the unfolded protein response (UPR) protein CHOP remarkably abrogated CRA-induced expression of ER stress-associated proteins. Collectively, our results suggest that CRA triggers ER stress-mediated apoptosis in HCC cells via activation of the PERK-eIF2a-ATF4 pathway. Our findings provide novel insights into the potential therapeutic strategies for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Farmacologia em Rede , Estresse do Retículo Endoplasmático , Apoptose , Modelos Teóricos , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/farmacologia , Fator de Transcrição CHOP/uso terapêutico , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/farmacologia
2.
Biol Trace Elem Res ; 201(11): 5368-5378, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36746883

RESUMO

The purpose of this research was to explore the effect of selenium on mercury-mediated apoptosis of follicular granulosa cells in laying hens. Moreover, the ATF6/CHOP pathway was investigated to explore the mechanism in this progress. Hg, Se, and 4-phenyl butyric acid were used alone or in combination to treat the cells. Our results showed that the nuclear in cells became condensate after Hg exposure, while Se addition significantly alleviated this change. Hg exposure significantly induced the apoptosis and the reduction of mitochondrial membrane potential in cells (P < 0.05). Nevertheless, co-treatment of Se significantly inhibited these effects (P < 0.05). Additionally, Hg exposure dramatically elevated the gene expressions of Bax/Bcl-2 (P < 0.05), caspase-3 (P < 0.05), caspase-9 (P < 0.05), protein kinase RNA-like endoplasmic reticulum kinase (P < 0.05), activating transcription factor 6 (P < 0.05), C/EBP homologous protein (CHOP; P < 0.05), inositol-requiring enzyme 1α (P < 0.05), tumor necrosis factor-associated factor 2 (P < 0.05), activating transcription factor 6 (ATF6; P < 0.05), and apoptosis signal-regulating kinase 1 (P < 0.05) in cells, whereas Se addition avoided these changes. The exposure to Hg considerably boosted the expression of ATF6 and CHOP protein (P < 0.05), while Se addition significantly alleviated the above-mentioned enhancements (P < 0.05). In summary, Hg exposure induced apoptosis, which was considerably reduced alleviated by Se addition, which was linked to the ATF6/CHOP pathway in follicular granulosa cells in laying hens.


Assuntos
Selênio , Animais , Feminino , Selênio/farmacologia , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Galinhas/metabolismo , Apoptose , Células da Granulosa , Estresse do Retículo Endoplasmático , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/farmacologia
3.
Zhonghua Xue Ye Xue Za Zhi ; 44(12): 1001-1009, 2023 Dec 14.
Artigo em Chinês | MEDLINE | ID: mdl-38503523

RESUMO

Objective: This study aimed to explore the synergistic effect and underlying mechanism of azacitidine (AZA) in combination with homoharringtonine (HHT) in acute myeloid leukemia (AML) . Methods: The synergistic effects of AZA and HHT were examined by cell proliferation, apoptosis, and colony formation assays. The synergistic effects were calculated using the combination index (CI) , and the underlying mechanisms were explored using RNA sequencing, pathway inhibitors, and gene knockdown approaches. Results: Compared with the single-drug controls, AZA and HHT combination significantly induced cell proliferation arrest and showed a synergistic effect with CI < 0.9 in AML cells. In the combination group versus the single-drug controls, colony formation was significantly decreased, whereas apoptosis was significantly increased in U937 (P<0.001) and MV4-11 (P<0.001) cells. AZA and HHT combination activated the integrated stress response (ISR) signaling pathway and induced DDIT3-PUMA-dependent apoptosis in cells. Furthermore, it remarkably downregulated the expression of c-MYC. The combination also activated c-MYC/DDIT3/PUMA-mediated ISR signaling to induce synergy on apoptosis. The synergy of AZA+HHT on apoptosis was induced by activating c-MYC/DDIT3/PUMA-mediated ISR signaling. Conclusion: The combination of AZA and HHT exerts synergistic anti-AML effects by inhibiting cellular proliferation and promoting apoptosis through activation of the ISR signaling pathway via the c-MYC/DDIT3/PUMA axis.


Assuntos
Azacitidina , Leucemia Mieloide Aguda , Humanos , Mepesuccinato de Omacetaxina , Azacitidina/farmacologia , Proteínas Reguladoras de Apoptose/farmacologia , Apoptose , Leucemia Mieloide Aguda/genética , Linhagem Celular Tumoral , Fator de Transcrição CHOP/farmacologia
4.
Exp Lung Res ; 48(4-6): 187-197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35924334

RESUMO

Background: Insulin-like growth factor-1 (IGF-1), a member of the insulin family, has a high degree of homology with insulin and exhibits anti-inflammatory and anti-oxidative stress properties. However, the potential protective effect of IGF-1 on hyperoxia-induced lung injury remains unknown. In this study, we aimed to explore the effects and mechanism of action of IGF-1 in hyperoxia-induced lung injury in neonatal rats. Materials and Methods: Hematoxylin-eosin staining was used to observe pathological changes in lung tissue; transmission electron microscopy was used to examine the ultrastructure, and ELISA was used to detect the level of pro-inflammatory cytokines in bronchoalveolar lavage fluid. Further, malondialdehyde, glutathione, and superoxide dismutase activities in lung tissue were evaluated. TUNEL staining was used to detect cell apoptosis, and western blot analysis was used to detect the expression of Bax, Bcl-2, Caspase-3, p-PERK, p-eIF2α, ATF4, and CHOP in the lung tissue. Moreover, the wet/dry weight ratio of lung tissue was determined. Results: Intraperitoneal injection of IGF-1 effectively reduced lung tissue damage induced by hyperoxia; production of inflammatory cells and release of pro-inflammatory cytokines, oxidative stress, and cell apoptosis. Further, IGF-1 down-regulated the expression of ATF4, CHOP, and Bax/Bcl-2, and inhibited the phosphorylation of PERK and eIF2α. Conclusion: The results suggest that IGF-1 reduces hyperoxia-induced lung inflammation and oxidative stress in neonatal rats through the PERK/eIF2α/ATF4/CHOP signaling pathway and inhibits cell apoptosis.


Assuntos
Hiperóxia , Insulinas , Lesão Pulmonar , Pneumonia , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/farmacologia , Animais , Apoptose , Citocinas/metabolismo , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/farmacologia , Hiperóxia/complicações , Hiperóxia/tratamento farmacológico , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Insulinas/metabolismo , Insulinas/farmacologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Transdução de Sinais , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/farmacologia , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , eIF-2 Quinase/metabolismo , eIF-2 Quinase/farmacologia
5.
Biometals ; 35(4): 699-710, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35513732

RESUMO

Zearalenone (ZEL)-induced apoptosis in different cells is mediated by various molecular mechanisms, including endoplasmic reticulum (ER) stress. Selenium, an inorganic micronutrient, has several cytoprotective properties, but its potential protective action against ZEL-induced apoptosis in trophoblast cells and the precise mechanisms remain unclear. In this study, we investigated the effects of sodium selenite, a predominant chemical form of selenium, on cell viability, apoptosis, and progesterone (P4) production in ZEL-treated goat trophoblast cell line and explored the underlying molecular mechanisms. ZEL treatment repressed cell viability and promoted apoptosis, which was accompanied by an enhancement of the activity of caspase 3, a key executioner of apoptosis. ZEL treatment was involved in the upregulation of malonaldehyde (MDA) levels and was implicated in the reduction of the protein expression of selenoprotein S (SELS), thereby triggering protein expression of ER stress biomarkers (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP)). However, sodium selenite attenuates these adverse effects, including increases in apoptotic rate, caspase 3 activity, MDA, GRP78, and CHOP expression and decreases in SELS expression in cells treated with ZEL or Thapsigargin (Tg, an ER stress agonist). Simultaneously, 4-phenylbutyric acid (4-PBA, an ER stress antagonist) treatment significantly alleviated the ZEL-induced deleterious effects on cells in response to ZEL, similarly to sodium selenite. In addition, sodium selenite supplementation effectively rescued the ZEL-induced decrease in P4 production in ZEL-treated cells. In summary, these findings suggest that ZEL triggers apoptosis in goat trophoblast cells by downregulating SELS expression and activating the ER stress signaling pathway and that sodium selenite protects against these detrimental effects. This study provides novel insights into the benefits of using selenium against ZEL-induced apoptosis and cellular damage.


Assuntos
Selênio , Zearalenona , Animais , Apoptose , Caspase 3 , Estresse do Retículo Endoplasmático/fisiologia , Cabras/metabolismo , Selênio/farmacologia , Selenito de Sódio/farmacologia , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/farmacologia , Trofoblastos/metabolismo , Zearalenona/farmacologia
6.
J Microbiol Biotechnol ; 32(5): 645-656, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35283426

RESUMO

Gossypol, a natural phenolic aldehyde present in cotton plants, was originally used as a means of contraception, but is currently being studied for its anti-proliferative and anti-metastatic effects on various cancers. However, the intracellular mechanism of action regarding the effects of gossypol on pancreatic cancer cells remains unclear. Here, we investigated the anti-cancer effects of gossypol on human pancreatic cancer cells (BxPC-3 and MIA PaCa-2). Cell counting kit-8 assays, annexin V/propidium iodide staining assays, and transmission electron microscopy showed that gossypol induced apoptotic cell death and apoptotic body formation in both cell lines. RNA sequencing analysis also showed that gossypol increased the mRNA levels of CCAAT/enhancer-binding protein homologous protein (CHOP) and activating transcription factor 3 (ATF3) in pancreatic cancer cell lines. In addition, gossypol facilitated the cleavage of caspase-3 via protein kinase RNA-like ER kinase (PERK), CHOP, and Bax/Bcl-2 upregulation in both cells, whereas the upregulation of ATF was limited to BxPC-3 cells. Finally, a three-dimensional culture experiment confirmed the successful suppression of cancer cell spheroids via gossypol treatment. Taken together, our data suggest that gossypol may trigger apoptosis in pancreatic cancer cells via the PERK-CHOP signaling pathway. These findings propose a promising therapeutic approach to pancreatic cancer treatment using gossypol.


Assuntos
Gossipol , Neoplasias Pancreáticas , Apoptose , Estresse do Retículo Endoplasmático , Gossipol/farmacologia , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Transdução de Sinais , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/farmacologia
7.
Ocul Immunol Inflamm ; 30(6): 1341-1346, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33793349

RESUMO

BACKGROUND: Under various physiological conditions, endoplasmic reticulum stress can induce apoptotic cell death, leading to brain and retinal neuronal cell death, but the relations of ER stress-induced apoptosis and the nerve growth factor's therapeutic effect in Glaucoma optic neuropathy still unclear. METHODS: An endoplasmic reticulum stress model was established in ganglion cells using TG, the endoplasmic reticulum stress inducer. MTT assay and flow cytometry were used to detect the protective effect of NGF on retinal ganglion cells. Western blot was used to detect apoptosis-related proteins Bcl-2, Bad and endoplasmic reticulum stress-related proteins GRP78, IRE1, JNK and CHOP. RESULTS: MTT assay and flow cytometry showed NGF can protect the apoptosis of ganglion cells. Western blot analysis showed the level of pro-apoptotic protein Bad was decreased and anti-apoptotic protein Bcl-2 was increased after NGF treatment. Endoplasmic reticulum stress-induced proteins GRP78, IRE1, JNK and CHOP are counter- acted by NGF. CONCLUSION: NGF protects retinal ganglion cells related to inhibiting endoplasmic reticulum stress by inhibiting IRE1-JNK-CHOP signaling pathway.


Assuntos
Estresse do Retículo Endoplasmático , Fator de Crescimento Neural , Humanos , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/farmacologia , Fator de Crescimento Neural/farmacologia , Células Ganglionares da Retina , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Proteínas Reguladoras de Apoptose , Proteínas Serina-Treonina Quinases , Transdução de Sinais
8.
Biol Trace Elem Res ; 200(5): 2312-2320, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34345953

RESUMO

Heat stress leads to oxidative stress and induces apoptosis in various cells. Endoplasmic reticulum (ER) stress is an important apoptosis pathway. Manganese (Mn) has been shown to enhance the activity of manganese superoxide dismutase (MnSOD). To explore the potential effect of Mn on ER stress and apoptosis induced by heat stress, we examined crucial factors associated with heat stress, ER stress, and apoptosis in cultured primary chick embryonic myocardial cells that had been pretreated with 20 µM Mn for 24 h and then subjected to 4 h of heat stress. The results showed that Mn decreased (P < 0.05) heat stress-induced reactive oxygen species (ROS) production and exerted antiapoptotic effects by increasing MnSOD enzymatic activity. The heat stress-induced accumulation of intracellular calcium was dramatically reduced (P < 0.05). Mn treatment significantly decreased (P < 0.05) the expression levels of the apoptosis-related gene Bax and ER stress markers glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP) in primary chick embryonic myocardial cells. Additionally, Mn reduced oxidative stress by activating the nuclear factor E2-related factor 2 (NRF2)/SOD2 signaling pathway. Taken together, our findings indicate that Mn attenuates heat stress-induced apoptosis by inhibiting ROS generation, intracellular calcium accumulation, and the ER stress pathway and activating the NRF2/SOD2 signaling pathway to protect myocardial cells from oxidative stress during chick embryonic development.


Assuntos
Estresse do Retículo Endoplasmático , Fator 2 Relacionado a NF-E2 , Antioxidantes/farmacologia , Apoptose , Cálcio/farmacologia , Resposta ao Choque Térmico , Manganês/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/farmacologia
9.
J Clin Oncol ; 39(11): 1203-1213, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33444079

RESUMO

PURPOSE: The prognosis of elderly patients with diffuse large B-cell lymphoma (DLBCL) is worse than that of young patients. An attenuated dose of chemotherapy-cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab (R-miniCHOP)-is a good compromise between efficacy and safety in very elderly patients. In combination with R-CHOP (R2-CHOP), lenalidomide has an acceptable level of toxicity and may mitigate the negative prognosis of the non-germinal center B-cell-like phenotype. The Lymphoma Study association conducted a multicentric, phase III, open-label, randomized trial to compare R-miniCHOP and R2-miniCHOP. PATIENTS AND METHODS: Patients of age 80 years or older with untreated DLBCL were randomly assigned into the R-miniCHOP21 group or the R2-miniCHOP21 group for six cycles and stratified according to CD10 expression and age. The first cycle of rituximab was delivered by IV on D1 after a prephase and then delivered subcutaneously on D1 of cycles 2-6. Lenalidomide was delivered at a dose of 10 mg once daily on D1-D14 of each cycle. The primary end point was overall survival (OS). RESULTS: A total of 249 patients with new DLBCL were randomly assigned (127 R-miniCHOP and 122 R2-miniCHOP). The median age was 83 years (range, 80-96), and 55% of the patients were classified as non-GCB. The delivered dose for each R-miniCHOP compound was similar in both arms. Over a median follow-up of 25.1 months, the intention-to-treat analysis revealed that R2-miniCHOP did not improve OS (2-year OS 66% in R-miniCHOP and 65.7% in R2-miniCHOP arm, P = .98) in the overall population or in the non-GCB population. Grade 3-4 adverse events occurred in 53% of patients with R-miniCHOP and in 81% of patients with R2-miniCHOP. CONCLUSION: The addition of lenalidomide to R-miniCHOP does not improve OS. Rituximab delivered subcutaneously was safe in this population.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Lenalidomida/uso terapêutico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Rituximab/uso terapêutico , Fator de Transcrição CHOP/uso terapêutico , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Humanos , Injeções Subcutâneas , Lenalidomida/farmacologia , Masculino , Prognóstico , Rituximab/farmacologia , Fator de Transcrição CHOP/farmacologia
10.
Diabetologia ; 58(10): 2307-16, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26099855

RESUMO

AIMS/HYPOTHESIS: Proinflammatory cytokines contribute to beta cell damage in type 1 diabetes in part through activation of endoplasmic reticulum (ER) stress. In rat beta cells, cytokine-induced ER stress involves NO production and consequent inhibition of the ER Ca(2+) transporting ATPase sarco/endoplasmic reticulum Ca(2+) pump 2 (SERCA2B). However, the mechanisms by which cytokines induce ER stress and apoptosis in mouse and human pancreatic beta cells remain unclear. The purpose of this study is to elucidate the role of ER stress on cytokine-induced beta cell apoptosis in these three species and thus solve ongoing controversies in the field. METHODS: Rat and mouse insulin-producing cells, human pancreatic islets and human EndoC-ßH1 cells were exposed to the cytokines IL-1ß, TNF-α and IFN-γ, with or without NO inhibition. A global comparison of cytokine-modulated gene expression in human, mouse and rat beta cells was also performed. The chemical chaperone tauroursodeoxycholic acid (TUDCA) and suppression of C/EBP homologous protein (CHOP) were used to assess the role of ER stress in cytokine-induced apoptosis of human beta cells. RESULTS: NO plays a key role in cytokine-induced ER stress in rat islets, but not in mouse or human islets. Bioinformatics analysis indicated greater similarity between human and mouse than between human and rat global gene expression after cytokine exposure. The chemical chaperone TUDCA and suppression of CHOP or c-Jun N-terminal kinase (JNK) protected human beta cells against cytokine-induced apoptosis. CONCLUSIONS/INTERPRETATION: These observations clarify previous results that were discrepant owing to the use of islets from different species, and confirm that cytokine-induced ER stress contributes to human beta cell death, at least in part via JNK activation.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Ratos , Ratos Wistar , Ácido Tauroquenodesoxicólico/farmacologia , Fator de Transcrição CHOP/farmacologia , ômega-N-Metilarginina/farmacologia
11.
J Mol Med (Berl) ; 90(3): 309-19, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22008998

RESUMO

RU486 (Mifepristone) has been known as antiprogesterone and antiglucocorticoid agent. RU486 is also used for treatment of several cancers, such as breast, ovarian, prostate, and glaucoma. Here, we investigated the effect of RU486 on TRAIL-induced apoptosis in human renal carcinoma Caki cells. Low dose of RU486 (30-50 µM) alone had no effect on apoptosis, but RU486 markedly sensitized Caki cells to TRAIL-induced apoptosis. We found that up-regulation of death receptor 5 (DR5; receptor for TRAIL ligand), and down-regulation of Bcl-2 and c-FLIP (caspase regulator) contributes to RU-486 induced TRAIL sensitization. Down-regulation of DR5 by siRNA also blocked RU486 induced TRAIL sensitization. Furthermore, overexpression of Bcl-1 or c-FLIP(L) inhibited the cell death induced by the combined treatment with RU486 and TRAIL. RU486 increased DR5 expression at the transcriptional levels through induction of CHOP expression. By contrast, RU486 did not sensitize normal human mesangial cells to TRAIL-mediated apoptosis. Effect of RU486 on TRAIL-induced cancer cell apoptosis was independent of glucocorticoid receptor and progesterone receptor. Taken together, RU486 enhances TRAIL-mediated apoptosis through down-regulation of Bcl-2 and c-FLIP(L) as well as CHOP-mediated DR5 up-regulation.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/efeitos dos fármacos , Carcinoma de Células Renais/metabolismo , Mifepristona/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/efeitos dos fármacos , Fator de Transcrição CHOP/efeitos dos fármacos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular , Regulação para Baixo , Células HT29 , Humanos , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/farmacologia , Regulação para Cima
12.
Exp Cell Res ; 312(11): 1983-8, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16687140

RESUMO

Nogo-B/ASY has been characterized as a novel human apoptosis-inducing protein without any known apoptosis-related motifs. However, the validity of Nogo-B/ASY as a physiological apoptotic protein was recently questioned. In present research, we demonstrate that ASY overexpression contributes to ER stress and induces apoptosis through ER Ca2+ depletion and ER-specific pathways. ER stress and the disorder of intracellular calcium trigger the apoptosis induced by ASY overexpression. At the same time, stable transfectants overexpressing high levels of ASY are resistant to ER-stress-associated stimuli, which implies that ASY overexpression activates protective response in response to ER stress. Our results provide a direct apoptotic pathway that ASY overexpression induces apoptosis through ER stress and ER-specific signal pathways.


Assuntos
Apoptose/fisiologia , Retículo Endoplasmático/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas da Mielina/metabolismo , Regulação para Cima , Adaptação Fisiológica , Cálcio/metabolismo , Caspase 12 , Caspases/metabolismo , Caspases/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Inibidores do Crescimento/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas da Mielina/genética , NF-kappa B/metabolismo , Proteínas Nogo , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/farmacologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA