Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Med Rep ; 29(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38516772

RESUMO

Remifentanil­induced hyperalgesia (RIH) is characterized by the emergence of stimulation­induced pain, including phenomena such as allodynia and thermal hyperalgesia following remifentanil infusion. As a sequence­specific DNA binding transcription factor, PAX6 positively and negatively regulates transcription and is expressed in multiple cell types in the developing and adult central nervous system. It was hypothesized that puerarin could relieve RIH via targeting PAX6 to regulate transcription of transient receptor potential cation channel subfamily V Member 1 (TRPV1). A total of 32 rats were randomly divided into five groups, namely control group, RI group, RI + 10 mg/kg puerarin group (RI + puerarin10), RI + 20 mg/kg puerarin group (RI + puerarin20), and RI + 40 mg/kg puerarin group (RI + puerarin40). Mechanical and thermal hyperalgesia were tested at ­24, 2, 6, 24 and 48 h after remifentanil infusion. Following the sacrifice of rats after the last behavioral test, western blot was used to detect the expression levels of TRPV1 in the tissues; Immunofluorescence staining and western blotting were used to detect the expression of PAX6 in the spinal cord. PharmMapper and JASPAR were used to predict the binding sites of puerarin/PAX6/TRPV1. Chromatin immunoprecipitation­PCR and dual luciferase reporter assay were used to verify the targeting relationship between PAX6 and TRPV1. Immunofluorescence was used to detect the expression levels of TRPV1 and p­NR2B. The results revealed that puerarin (10, 20, 40 mg/kg) dose­dependently reduced thermal and mechanical hyperalgesia from 2 to 48 h after remifentanil infusion. Remifentanil infusion remarkably stimulated the expression of phosphorylated (p­)NR2B. Nevertheless, the increased amount of p­NR2B by RIH was dose­dependently suppressed by puerarin in rats. In conclusion, puerarin was revealed to attenuate postoperative RIH via targeting PAX6 to regulate the transcription of TRPV1.


Assuntos
Hiperalgesia , Isoflavonas , Animais , Ratos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/genética , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/etiologia , Piperidinas/farmacologia , Ratos Sprague-Dawley , Remifentanil/efeitos adversos , Fator de Transcrição PAX6/efeitos dos fármacos , Fator de Transcrição PAX6/metabolismo , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
2.
Clin Transl Med ; 11(8): e503, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34459131

RESUMO

Intrinsic resistance to CDK4/6 inhibitors hinders their clinical utility in cancer treatment. Furthermore, the predictive markers of CDK4/6 inhibitors in gastric cancer (GC) remain incompletely described. Here, we found that PAX6 expression was negatively correlated with the response to palbociclib in vitro and in vivo in GC. We observed that the PAX6 expression level was negatively correlated with the overall survival of GC patients and further showed that PAX6 can promote GC cell proliferation and the cell cycle. The cell cycle is regulated by the interaction of cyclins with their partner serine/threonine cyclin-dependent kinases (CDKs), and the G1/S-phase transition is the main target of CDK4/6 inhibitors. Therefore, we tested whether PAX6 expression was correlated with the GC response to palbociclib. We found that PAX6 hypermethylates the promoter of LATS2 and inactivates the Hippo pathway, which upregulates cyclin D1 (CCND1) expression. This results in a suppressed response to palbociclib in GC. Furthermore, we found that the induction of the Hippo signaling pathway or treatment with a DNA methylation inhibitor could overcome PAX6-induced palbociclib resistance in GC. These findings uncover a tumor promoter function of PAX6 in GC and establish overexpressed PAX6 as a mechanism of resistance to palbociclib.


Assuntos
Quinase 4 Dependente de Ciclina/efeitos dos fármacos , Quinase 6 Dependente de Ciclina/efeitos dos fármacos , Via de Sinalização Hippo/efeitos dos fármacos , Fator de Transcrição PAX6/efeitos dos fármacos , Piperazinas/farmacologia , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Piridinas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Proteínas Supressoras de Tumor/efeitos dos fármacos , Idoso , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , China , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Modelos Animais de Doenças , Feminino , Via de Sinalização Hippo/genética , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Oncogenes/efeitos dos fármacos , Oncogenes/genética , Fator de Transcrição PAX6/genética , Proteínas Serina-Treonina Quinases/genética , Neoplasias Gástricas/genética , Proteínas Supressoras de Tumor/genética
3.
Int J Neuropsychopharmacol ; 23(4): 257-267, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32124922

RESUMO

BACKGROUND: Although the action mechanism of antineoplastic agents is different, oxaliplatin, paclitaxel, or bortezomib as first-line antineoplastic drugs can induce painful neuropathy. In rodents, mechanical allodynia is a common phenotype of painful neuropathy for 3 chemotherapeutics. However, whether there is a common molecular involved in the different chemotherapeutics-induced painful peripheral neuropathy remains unclear. METHODS: Mechanical allodynia was tested by von Frey hairs following i.p. injection of vehicle, oxaliplatin, paclitaxel, or bortezomib in Sprague-Dawley rats. Reduced representation bisulfite sequencing and methylated DNA immunoprecipitation were used to detect the change of DNA methylation. Western blot, quantitative polymerase chain reaction, chromatin immunoprecipitation, and immunohistochemistry were employed to explore the molecular mechanisms. RESULTS: In 3 chemotherapeutic models, oxaliplatin, paclitaxel, or bortezomib accordantly upregulated the expression of transient receptor potential cation channel, subfamily C6 (TRPC6) mRNA and protein without affecting the DNA methylation level of TRPC6 gene in DRG. Inhibition of TRPC6 by using TRPC6 siRNA (i.t., 10 consecutive days) relieved mechanical allodynia significantly following application of chemotherapeutics. Furthermore, the downregulated recruitment of DNA methyltransferase 3 beta (DNMT3b) at paired box protein 6 (PAX6) gene led to the hypomethylation of PAX6 gene and increased PAX6 expression. Finally, the increased PAX6 via binding to the TPRC6 promoter contributes to the TRPC6 increase and mechanical allodynia following chemotherapeutics treatment. CONCLUSIONS: The TRPC6 upregulation through DNMT3b-mediated PAX6 gene hypomethylation participated in mechanical allodynia following application of different chemotherapeutic drugs.


Assuntos
Antineoplásicos/farmacologia , DNA (Citosina-5-)-Metiltransferases/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Neuralgia/induzido quimicamente , Fator de Transcrição PAX6/efeitos dos fármacos , Canais de Cátion TRPC/efeitos dos fármacos , Animais , Bortezomib/farmacologia , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Masculino , Neuralgia/complicações , Oxaliplatina/farmacologia , Paclitaxel/farmacologia , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPC/antagonistas & inibidores , Regulação para Cima/efeitos dos fármacos , DNA Metiltransferase 3B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA