Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Mol Microbiol ; 121(5): 895-911, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38372210

RESUMO

The site-specific recombination pathway of bacteriophage λ encompasses isoenergetic but highly directional and tightly regulated integrative and excisive reactions that integrate and excise the vial chromosome into and out of the bacterial chromosome. The reactions require 240 bp of phage DNA and 21 bp of bacterial DNA comprising 16 protein binding sites that are differentially used in each pathway by the phage-encoded Int and Xis proteins and the host-encoded integration host factor and factor for inversion stimulation proteins. Structures of higher-order protein-DNA complexes of the four-way Holliday junction recombination intermediates provided clarifying insights into the mechanisms, directionality, and regulation of these two pathways, which are tightly linked to the physiology of the bacterial host cell. Here we review our current understanding of the mechanisms responsible for regulating and executing λ site-specific recombination, with an emphasis on key studies completed over the last decade.


Assuntos
Bacteriófago lambda , Recombinação Genética , Bacteriófago lambda/genética , Bacteriófago lambda/fisiologia , DNA Viral/genética , DNA Viral/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , Sítios de Ligação , Fatores Hospedeiros de Integração/metabolismo , Fatores Hospedeiros de Integração/genética
2.
Genet. mol. res. (Online) ; 4(4): 783-789, 2005. graf
Artigo em Inglês | LILACS | ID: lil-444843

RESUMO

We examined general aspects of the DNA-protein interaction between the integration host factor (IHF) global regulator and its regulatory binding sites in the Escherichia coli K12 genome. Two models were developed with distinct weight matrices for the regulatory binding sites recognized by IHF. Using these matrices we performed a genome scale scan and built a set of computationally predicted binding sites for each of the models. The sites found by the model associated with repetitive sequences had a higher score in the sequence to matrix alignment. They were also more rare than the other sites. The sites not associated with repeats rapidly tended to become undistinguishable from the background as statistical stringency was relaxed. We compared our results to the known sites documented in RegulonDB and found new members of the IHF Regulon. The two models exhibit clearly distinct affinity patterns (scores in the sequence to matrix alignments and in the number of regulatory sites), as we vary the stringency of the statistical confidence parameters. We suggest that these differences may play an important role in the dynamics of the network. We concluded that IHF may regulate two genes encoding ATP-dependent RNA helicases. This interaction is not described in RegulonDB, even as a computational prediction. IHF may also regulate RNA modification processes.


Assuntos
/genética , Fatores Hospedeiros de Integração/genética , Genoma Bacteriano , Regulon/genética , Modelos Genéticos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Sítios de Ligação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA