Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 349
Filtrar
1.
Nature ; 615(7950): 158-167, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36634707

RESUMO

Despite the success of PD-1 blockade in melanoma and other cancers, effective treatment strategies to overcome resistance to cancer immunotherapy are lacking1,2. Here we identify the innate immune kinase TANK-binding kinase 1 (TBK1)3 as a candidate immune-evasion gene in a pooled genetic screen4. Using a suite of genetic and pharmacological tools across multiple experimental model systems, we confirm a role for TBK1 as an immune-evasion gene. Targeting TBK1 enhances responses to PD-1 blockade by decreasing the cytotoxicity threshold to effector cytokines (TNF and IFNγ). TBK1 inhibition in combination with PD-1 blockade also demonstrated efficacy using patient-derived tumour models, with concordant findings in matched patient-derived organotypic tumour spheroids and matched patient-derived organoids. Tumour cells lacking TBK1 are primed to undergo RIPK- and caspase-dependent cell death in response to TNF and IFNγ in a JAK-STAT-dependent manner. Taken together, our results demonstrate that targeting TBK1 is an effective strategy to overcome resistance to cancer immunotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Evasão da Resposta Imune , Imunoterapia , Proteínas Serina-Treonina Quinases , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Imunoterapia/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Organoides , Fatores de Necrose Tumoral/imunologia , Interferon gama/imunologia , Esferoides Celulares , Caspases , Janus Quinases , Fatores de Transcrição STAT
2.
Sci Immunol ; 6(65): eabi8823, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797693

RESUMO

TNF and IL-17 are two cytokines that drive dysregulated keratinocyte activity, and their targeting is highly efficacious in patients with psoriasis, but whether these molecules act with other inflammatory factors is not clear. Here, we show that mice having a keratinocyte-specific deletion of Fn14 (Tnfrsf12a), the receptor for the TNF superfamily cytokine TWEAK (Tnfsf12), displayed reduced imiquimod-induced skin inflammation, including diminished epidermal hyperplasia and less expression of psoriasis signature genes. This corresponded with Fn14 being expressed in keratinocytes in human psoriasis lesions and TWEAK being found in several subsets of skin cells. Transcriptomic studies in human keratinocytes revealed that TWEAK strongly overlaps with IL-17A and TNF in up-regulating the expression of CXC chemokines, along with cytokines such as IL-23 and inflammation-associated proteins like S100A8/9 and SERPINB1/B9, all previously found to be highly expressed in the lesional skin of patients with psoriasis. TWEAK displayed strong synergism with TNF or IL-17A in up-regulating messenger RNA for many psoriasis-associated genes in human keratinocytes, including IL23A, IL36G, and multiple chemokines, implying that TWEAK acts with TNF and IL-17 to enhance feedback inflammatory activity. Correspondingly, therapeutic treatment of mice with anti-TWEAK was equally as effective as antibodies to IL-17A or TNF in reducing clinical and immunological features of psoriasis-like skin inflammation and combination targeting of TWEAK with either cytokine had no greater inhibitory effect, reinforcing the conclusion that all three cytokines function together. Thus, blocking TWEAK could be comparable to targeting TNF or IL-17 and might be considered as an alternate therapeutic treatment for psoriasis.


Assuntos
Citocina TWEAK/imunologia , Interleucina-17/imunologia , Queratinócitos/imunologia , Psoríase/imunologia , Fatores de Necrose Tumoral/imunologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Psoríase/terapia
3.
Mol Immunol ; 137: 238-246, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34293591

RESUMO

GITRL/GITR signaling pathway plays an important role in allergy, inflammation, transplantation and autoimmunity. However, its role in asthma remains unclear. Thus, the present study aimed to investigate changes in this pathway and observe the therapeutic effect of its blocking on asthma. By using house dust mite-induced asthma model, changes of GITRL/GITR and its downstream molecules MAPKs (e.g., p38 MAPK, JNK and Erk) and NF-κB were observed. After that, GITRL in lung of mice was knocked down by recombinant adeno-associated virus to observe the impact on its downstream molecules and assess the therapeutic effect on asthma. These results showed that GITRL/GITR and its downstream molecules MAPKs/NF-κB were activated in asthmatic mice. This activation was suppressed after GITRL knockdown, and allergic airway inflammation and airway hyperresponsiveness were alleviated. These results demonstrate that GITRL/GITR-MAPKs/NF-κB signaling pathway participates in the pathogenesis of asthma. Blockade of GITRL/GITR signaling pathway exhibits protective effects in a mouse model of house dust mite-induced allergic asthma.


Assuntos
Asma/imunologia , Proteína Relacionada a TNFR Induzida por Glucocorticoide/imunologia , Hipersensibilidade/imunologia , Proteínas Quinases Ativadas por Mitógeno/imunologia , NF-kappa B/imunologia , Pyroglyphidae/imunologia , Fatores de Necrose Tumoral/imunologia , Animais , Dermatophagoides pteronyssinus/imunologia , Modelos Animais de Doenças , Feminino , Inflamação/imunologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Hipersensibilidade Respiratória/imunologia , Transdução de Sinais/imunologia
4.
J Immunol ; 207(1): 175-188, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34145063

RESUMO

Tuberculosis (TB) is the leading infectious cause of death among people living with HIV. People living with HIV are more susceptible to contracting Mycobacterium tuberculosis and often have worsened TB disease. Understanding the immunologic defects caused by HIV and the consequences it has on M. tuberculosis coinfection is critical in combating this global health epidemic. We previously showed in a model of SIV and M. tuberculosis coinfection in Mauritian cynomolgus macaques (MCM) that SIV/M. tuberculosis-coinfected MCM had rapidly progressive TB. We hypothesized that pre-existing SIV infection impairs early T cell responses to M. tuberculosis infection. We infected MCM with SIVmac239, followed by coinfection with M. tuberculosis Erdman 6 mo later. Although similar, TB progression was observed in both SIV+ and SIV-naive animals at 6 wk post-M. tuberculosis infection; longitudinal sampling of the blood (PBMC) and airways (bronchoalveolar lavage) revealed a significant reduction in circulating CD4+ T cells and an influx of CD8+ T cells in airways of SIV+ animals. At sites of M. tuberculosis infection (i.e., granulomas), SIV/M. tuberculosis-coinfected animals had a higher proportion of CD4+ and CD8+ T cells expressing PD-1 and TIGIT. In addition, there were fewer TNF-producing CD4+ T cells in granulomas of SIV/M. tuberculosis-coinfected animals. Taken together, we show that concurrent SIV infection alters T cell phenotypes in granulomas during the early stages of TB disease. As it is critical to establish control of M. tuberculosis replication soon postinfection, these phenotypic changes may distinguish the immune dysfunction that arises from pre-existing SIV infection, which promotes TB progression.


Assuntos
Granuloma/imunologia , Mycobacterium tuberculosis/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Linfócitos T/imunologia , Tuberculose/imunologia , Fatores de Necrose Tumoral/imunologia , Animais , Biomarcadores/análise , Linfócitos T CD8-Positivos/imunologia , Macaca , Vírus da Imunodeficiência Símia/imunologia
5.
Folia Neuropathol ; 59(1): 20-31, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33969675

RESUMO

The middle cerebral artery occlusion (MCAO) model has been extensively applied to study ischaemic stroke. This study attempted to clarify effect of bone marrow stromal cells (BMSCs) on infarct injury of MCAO rats. BMSCs were isolated and identified by staining CD29/CD44 and CD31/CD45. CX3CL1 silencing vector (pLVX-shRNA-CX3CL1) was generated and infected to BMSCs. pLVX-shRNA-CX3CL1 infected BMSCs were transplanted into brain tissue of MCAO rats. Real-time PCR was used to determine CX3CL1 expression. Infarct areas were stained with TTC to evaluate infarct size. Double-staining immunofluorescence was conducted to determine anti-inflammatory type CD206 and pro-inflammatory type tumour necrosis factor a (TNF-a) microglia. Isolated BMSCs were positively presented for CD29/CD44, and negatively for CD31/CD45. CX3CL1 was significantly lower in the BMSC + pLVX-shRNA2-CX3-CL1 group compared to the BMSCs + pLVX group (p < 0.05). According to TTC and neurological scores, MCAO rats were successfully generated. BMSCs transplantation significantly increased CD206 microglia and decreased TNF-a microglia. However, shRNA-CX3CL1-infected BMSCs remarkably reduced CD206 microglia and enhanced TNF-a microglia compared to the MCAO + BMSCs group. In conclusion, BMSCs reverse microglia from pro-inflammatory type TNF-a microglia to anti-inflammatory type CD206 microglia in the infarct region of MCAO rats (3rd to 7th days post BMSC transplantation), through triggering of CX3CL1 secretion. Therefore, the potential effects of CX3CL1 secreted by BMSCs would provide an insight for stem cell-dependent therapeutic strategies in treating ischaemic stroke-associated disorders.


Assuntos
Quimiocina CX3CL1/genética , Infarto da Artéria Cerebral Média , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Microglia/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/terapia , Receptor de Manose , Células-Tronco Mesenquimais/imunologia , Microglia/imunologia , Ratos , Ratos Sprague-Dawley , Fatores de Necrose Tumoral/imunologia , Fatores de Necrose Tumoral/metabolismo
6.
Cell Mol Life Sci ; 78(6): 2709-2727, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33386888

RESUMO

Psoriasis is a chronic inflammatory disease of the skin that affects about 2-3% of the population and greatly impairs the quality of life of affected individuals. Psoriatic skin is characterized by excessive proliferation and aberrant differentiation of keratinocytes, as well as redness caused by increased dilation of the dermal blood vessels and infiltration of immune cells. Although the pathogenesis of psoriasis has not yet been completely elucidated, it is generally believed to arise from a complex interplay between hyperproliferating keratinocytes and infiltrating, activated immune cells. So far, the exact triggers that elicit this disease are still enigmatic, yet, it is clear that genetic predisposition significantly contributes to the development of psoriasis. In this review, we summarize current knowledge of important cellular and molecular mechanisms driving the initiation and amplification stages of psoriasis development, with a particular focus on cytokines and emerging evidence illustrating keratinocyte-intrinsic defects as key drivers of inflammation. We also discuss mouse models that have contributed to a better understanding of psoriasis pathogenesis and the preclinical development of novel therapeutics, including monoclonal antibodies against specific cytokines or cytokine receptors that have revolutionized the treatment of psoriasis. Future perspectives that may have the potential to push basic research and open up new avenues for therapeutic intervention are provided.


Assuntos
Psoríase/patologia , Anticorpos Monoclonais/uso terapêutico , Citocinas/genética , Citocinas/metabolismo , Estudo de Associação Genômica Ampla , Antígenos HLA-C/genética , Humanos , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucina-23/imunologia , Interleucina-23/metabolismo , Psoríase/tratamento farmacológico , Psoríase/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Necrose Tumoral/imunologia , Fatores de Necrose Tumoral/metabolismo
7.
Front Immunol ; 11: 588682, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33163004

RESUMO

Glucocorticoid-induced TNFR-related protein (GITR) is a member of the TNFR superfamily which is expressed in various cells, including T cells, natural killer cells and some myeloid cells. GITR is activated by its ligand, GITRL, mainly expressed on antigen presenting cells and endothelial cells. It has been acknowledged that the engagement of GITR can modulate both innate and adaptive immune responses. Accumulated evidence suggests GITR/GITRL interaction is involved in the pathogenesis of tumor, inflammation and autoimmune diseases. In this review, we describe the effects of GITR/GITRL activation on effector T cells, regulatory T cells (Tregs) and myeloid cells; summarize its role and the underlying mechanisms in modulating autoimmune diseases.


Assuntos
Doenças Autoimunes/imunologia , Proteína Relacionada a TNFR Induzida por Glucocorticoide/imunologia , Fatores de Necrose Tumoral/imunologia , Animais , Humanos , Células Mieloides/imunologia , Linfócitos T/imunologia
8.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105656

RESUMO

The advent of immunotherapy has had a major impact on the outcome and overall survival in many types of cancer. Current immunotherapeutic strategies typically aim to (re)activate anticancer T cell immunity, although the targeting of macrophage-mediated anticancer innate immunity has also emerged in recent years. Neutrophils, although comprising ≈ 60% of all white blood cells in the circulation, are still largely overlooked in this respect. Nevertheless, neutrophils have evident anticancer activity and can induce phagocytosis, trogocytosis, as well as the direct cytotoxic elimination of cancer cells. Furthermore, therapeutic tumor-targeting monoclonal antibodies trigger anticancer immune responses through all innate Fc-receptor expressing cells, including neutrophils. Indeed, the depletion of neutrophils strongly reduced the efficacy of monoclonal antibody treatment and increased tumor progression in various preclinical studies. In addition, the infusion of neutrophils in murine cancer models reduced tumor progression. However, evidence on the anticancer effects of neutrophils is fragmentary and mostly obtained in in vitro assays or murine models with reports on anticancer neutrophil activity in humans lagging behind. In this review, we aim to give an overview of the available knowledge of anticancer activity by neutrophils. Furthermore, we will describe strategies being explored for the therapeutic activation of anticancer neutrophil activity.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Neutrófilos/imunologia , Animais , Antineoplásicos Imunológicos/farmacologia , Membrana Celular/patologia , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Imunidade Inata , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/metabolismo , Camundongos , Neoplasias/imunologia , Neutrófilos/fisiologia , Fagocitose/imunologia , Fatores de Necrose Tumoral/imunologia , Fatores de Necrose Tumoral/metabolismo
9.
J Immunol ; 205(9): 2511-2518, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32967931

RESUMO

Microglia are phagocytic cells involved in homeostasis of the brain and are key players in the pathogenesis of multiple sclerosis (MS). A hallmark of MS diagnosis is the presence of IgG Abs, which appear as oligoclonal bands in the cerebrospinal fluid. In this study, we demonstrate that myelin obtained post mortem from 8 out of 11 MS brain donors is bound by IgG Abs. Importantly, we show that IgG immune complexes strongly potentiate activation of primary human microglia by breaking their tolerance for microbial stimuli, such as LPS and Poly I:C, resulting in increased production of key proinflammatory cytokines, such as TNF and IL-1ß. We identified FcγRI and FcγRIIa as the two main responsible IgG receptors for the breaking of immune tolerance of microglia. Combined, these data indicate that IgG immune complexes potentiate inflammation by human microglia, which may play an important role in MS-associated inflammation and the formation of demyelinating lesions.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Tolerância Imunológica/imunologia , Imunoglobulina G/imunologia , Microglia/imunologia , Adulto , Idoso , Encéfalo/imunologia , Humanos , Inflamação/imunologia , Interleucina-1beta/imunologia , Pessoa de Meia-Idade , Esclerose Múltipla/imunologia , Bainha de Mielina/imunologia , Poli I-C/imunologia , Receptores de IgG/imunologia , Fatores de Necrose Tumoral/imunologia
10.
Biochem Pharmacol ; 178: 114110, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32569630

RESUMO

The tumor necrosis factor (TNF) superfamily (TNFSF) includes about thirty structurally related receptors (TNFSFRs) and about twenty protein ligands that bind to one or more of these receptors. Receptors of the tumor necrosis factor (TNF) superfamily (TNFSFRs) are pharmacological targets for treatment of inflammatory and autoimmune diseases. Currently, drugs targeting TNFSFR signaling are biological drugs (monoclonal antibodies, decoy receptors) aimed at binding and sequestering TNFSFR ligands. The glucocorticoid-induced tumor necrosis factor receptor-related gene (GITR) signaling is involved in a series of inflammatory and autoimmune diseases, such as rheumatoid arthritis and Crohn's disease. Our study aimed at repurposing FDA approved small molecules as protein-protein disruptors at the GITR ligand (GITRL) trimer, in order to inhibit the binding of GITRL to its receptor (GITR). A structure based molecular modeling approach was carried out to identify, through high throughput virtual screening, GITRL monomer-monomer disruptors. We used a database of ~8,000 FDA approved drugs, and after virtual screening, we focused on two hit compounds, minocycline and oxytetracycline. These two compounds were tested for their capability to modulate IL-17, IL-21 and RORγT expression in T lymphocytes, isolated from wild-type and GITR knock-out (GITR-/-) mice. Minocycline showed immunomodulatory effects specific to GITR activation and could represent a novel pharmacological tool to treat inflammatory diseases.


Assuntos
Anti-Inflamatórios/química , Proteína Relacionada a TNFR Induzida por Glucocorticoide/antagonistas & inibidores , Minociclina/química , Oxitetraciclina/química , Fatores de Necrose Tumoral/química , Animais , Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais/farmacologia , Sítios de Ligação , Complexo CD3/antagonistas & inibidores , Complexo CD3/imunologia , Regulação da Expressão Gênica , Proteína Relacionada a TNFR Induzida por Glucocorticoide/química , Proteína Relacionada a TNFR Induzida por Glucocorticoide/deficiência , Proteína Relacionada a TNFR Induzida por Glucocorticoide/imunologia , Ensaios de Triagem em Larga Escala , Interleucina-17/genética , Interleucina-17/imunologia , Interleucinas/genética , Interleucinas/imunologia , Masculino , Camundongos , Camundongos Knockout , Minociclina/farmacologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Oxitetraciclina/farmacologia , Cultura Primária de Células , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Fatores de Necrose Tumoral/imunologia
11.
J Bacteriol ; 202(14)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32366588

RESUMO

Francisella tularensis is an intracellular pathogen and the causative agent of tularemia. The F. tularensis type six secretion system (T6SS) is required for a number of host-pathogen interactions, including phagolysosomal escape and invasion of erythrocytes. One known effector of the T6SS, OpiA, has recently been shown to be a phosphatidylinositol-3 kinase. To investigate the role of OpiA in erythrocyte invasion, we constructed an opiA-null mutant in the live vaccine strain, F. tularensis LVS. OpiA was not required for erythrocyte invasion; however, deletion of opiA affected growth of F. tularensis LVS in broth cultures in a medium-dependent manner. We also found that opiA influenced cell size, gentamicin sensitivity, bacterial viability, and the lipid content of F. tularensis A fluorescently tagged OpiA (OpiA-emerald-green fluorescent protein [EmGFP]) accumulated at the cell poles of F. tularensis, which is consistent with the location of the T6SS. However, OpiA-EmGFP also exhibited a highly dynamic localization, and this fusion protein was detected in erythrocytes and THP-1 cells in vitro, further supporting that OpiA is secreted. Similar to previous reports with F. novicida, our data demonstrated that opiA had a minimal effect on intracellular replication of F. tularensis in host immune cells in vitro However, THP-1 cells infected with the opiA mutant produced modestly (but significantly) higher levels of the proinflammatory cytokine tumor necrosis factor alpha compared to these host cells infected with wild-type bacteria. We conclude that, in addition to its role in host-pathogen interactions, our results reveal that the function of opiA is central to the biology of F. tularensis bacteria.IMPORTANCEF. tularensis is a pathogenic intracellular pathogen that is of importance for public health and strategic defense. This study characterizes the opiA gene of F. tularensis LVS, an attenuated strain that has been used as a live vaccine but that also shares significant genetic similarity to related Francisella strains that cause human disease. The data presented here provide the first evidence of a T6SS effector protein that affects the physiology of F. tularensis, namely, the growth, cell size, viability, and aminoglycoside resistance of F. tularensis LVS. This study also adds insight into our understanding of OpiA as a determinant of virulence. Finally, the fluorescence fusion constructs presented here will be useful tools for dissecting the role of OpiA in infection.


Assuntos
Proteínas de Bactérias/metabolismo , Francisella tularensis/crescimento & desenvolvimento , Francisella tularensis/metabolismo , Tularemia/microbiologia , Sistemas de Secreção Tipo V/metabolismo , Animais , Proteínas de Bactérias/genética , Polaridade Celular , Embrião de Galinha , Galinhas , Francisella tularensis/genética , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Viabilidade Microbiana , Transporte Proteico , Células THP-1 , Tularemia/genética , Tularemia/imunologia , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/imunologia , Sistemas de Secreção Tipo V/genética
12.
Vet Immunol Immunopathol ; 221: 110012, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31978678

RESUMO

Alterations in serum cytokine levels and profiles have been reported in association with a variety of disease conditions (e.g., allergic, immune-mediated, etc.) in both humans and animals. In comparison to serum cytokine measurements, tear cytokine measurements might be expected to more accurately reflect the inflammatory milieu associated with periocular disease. The purpose of this study was to use a multiplexed assay to compare the cytokine profile of tears in healthy dogs to those with inflammatory skin and periocular disease. We were able to detect IL-2, IL-6, IL-8, and TNF-α in >47 % of tear samples from both healthy canine patients and those with inflammatory dermatologic disease (with or without concurrent periocular involvement). In contrast, IL-7, IL-10 and IFN-γ were rarely detected. Dogs with both dermatologic and periocular disease (but not dermatologic disease alone) had higher levels of IL-8 (P < 0.001, P > 0.05, respectively) relative to healthy dogs. Patients with concurrent dermatologic and periocular disease also demonstrated significantly greater variability in IL-8 concentrations between eyes than did healthy dogs (P < 0.0001). Our findings suggest that tear cytokine analysis may prove to be a useful tool to investigate the role and interactions of the local ocular immune response in patients with inflammatory periocular disease.


Assuntos
Citocinas/imunologia , Doenças do Cão/imunologia , Oftalmopatias/veterinária , Dermatopatias/veterinária , Lágrimas/imunologia , Animais , Cães , Olho/imunologia , Oftalmopatias/imunologia , Feminino , Interleucina-2/imunologia , Interleucina-6/imunologia , Interleucina-8/imunologia , Masculino , Dermatopatias/imunologia , Fatores de Necrose Tumoral/imunologia
14.
Front Immunol ; 10: 2761, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849955

RESUMO

In human tuberculosis (TB) neutrophils represent the most commonly infected phagocyte but their role in protection and pathology is highly contradictory. Moreover, a subset of low-density neutrophils (LDNs) has been identified in TB, but their functions remain unclear. Here, we have analyzed total neutrophils and their low-density and normal-density (NDNs) subsets in patients with active TB disease, in terms of frequency, phenotype, functional features, and gene expression signature. Full-blood counts from Healthy Donors (H.D.), Latent TB infected, active TB, and cured TB patients were performed. Frequency, phenotype, burst activity, and suppressor T cell activity of the two different subsets were assessed by flow cytometry while NETosis and phagocytosis were evaluated by confocal microscopy. Expression analysis was performed by using the semi-quantitative RT-PCR array technology. Elevated numbers of total neutrophils and a high neutrophil/lymphocyte ratio distinguished patients with active TB from all the other groups. PBMCs of patients with active TB disease contained elevated percentages of LDNs compared with those of H.D., with an increased expression of CD66b, CD33, CD15, and CD16 compared to NDNs. Transcriptomic analysis of LDNs and NDNs purified from the peripheral blood of TB patients identified 12 genes differentially expressed: CCL5, CCR5, CD4, IL10, LYZ, and STAT4 were upregulated, while CXCL8, IFNAR1, NFKB1A, STAT1, TICAM1, and TNF were downregulated in LDNs, as compared to NDNs. Differently than NDNs, LDNs failed to phagocyte live Mycobacterium tuberculosis (M. tuberculosis) bacilli, to make oxidative burst and NETosis, but caused significant suppression of antigen-specific and polyclonal T cell proliferation which was partially mediated by IL-10. These insights add a little dowel of knowledge in understanding the pathogenesis of human TB.


Assuntos
Mycobacterium tuberculosis/fisiologia , Neutrófilos/citologia , Tuberculose/sangue , Adulto , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Feminino , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Fagocitose , Receptores CCR5/genética , Receptores CCR5/imunologia , Linfócitos T/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/imunologia , Adulto Jovem
15.
Front Immunol ; 10: 1323, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244859

RESUMO

Microfold (M) cells residing in the follicle-associated epithelium of mucosa-associated lymphoid tissues are specialized for sampling luminal antigens to initiate mucosal immune responses. In the past decade, glycoprotein 2 (GP2) and Tnfaip2 were identified as reliable markers for M cells in the Peyer's patches of the intestine. Furthermore, RANKL-RANK signaling, as well as the canonical and non-canonical NFκB pathways downstream, is essential for M-cell differentiation from the intestinal stem cells. However, the molecular characterization and differentiation mechanisms of M cells in the lower respiratory tract, where organized lymphoid tissues exist rarely, remain to be fully elucidated. Therefore, this study aimed to explore M cells in the lower respiratory tract in terms of their specific molecular markers, differentiation mechanism, and functions. Immunofluorescence analysis revealed a small number of M cells expressing GP2, Tnfaip2, and RANK is present in the lower respiratory tract of healthy mice. The intraperitoneal administration of RANKL in mice effectively induced M cells, which have a high capacity to take up luminal substrates, in the lower respiratory epithelium. The airway M cells associated with lymphoid follicles were frequently detected in the pathologically induced bronchus-associated lymphoid tissue (iBALT) in the murine models of autoimmune disease as well as pulmonary emphysema. These findings demonstrate that RANKL is a common inducer of M cells in the airway and digestive tracts and that M cells are associated with the respiratory disease. We also established a two-dimensional culture method for airway M cells from the tracheal epithelium in the presence of RANKL successfully. This model may be useful for functional studies of M cells in the sampling of antigens at airway mucosal surfaces.


Assuntos
Imunidade nas Mucosas , Ligante RANK/imunologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Doenças Respiratórias/imunologia , Doenças Respiratórias/patologia , Animais , Bronquíolos/imunologia , Bronquíolos/patologia , Técnicas de Cultura de Células , Fumar Cigarros/efeitos adversos , Fumar Cigarros/imunologia , Fumar Cigarros/patologia , Modelos Animais de Doenças , Enfisema/imunologia , Enfisema/patologia , Feminino , Proteínas Ligadas por GPI/imunologia , Tecido Linfoide/imunologia , Tecido Linfoide/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/patologia , Receptor Ativador de Fator Nuclear kappa-B/imunologia , Transdução de Sinais/imunologia , Fatores de Necrose Tumoral/imunologia
16.
Lupus ; 28(5): 575-582, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30952199

RESUMO

Systemic lupus erythematosus (SLE) is a chronic inflammatory disease with immune system disorder mediated through complex autoimmune pathways that involve immune cells, nonimmune cells, cytokines, chemokines, as well as costimulatory molecules. Costimulatory signals play a critical role in initiating, maintaining and regulating immune reactions, and these include ligands and receptors and their interactions involving multiple types of signal information. Dysfunction of costimulatory factors results in complicated abnormal immune responses, with biological effects and eventually, clinical autoimmune diseases. Here we outline what is known about various roles that costimulatory families including the B7 family and tumor necrosis factor super family play in SLE. The aim of this review is to understand the possible association of costimulation with autoimmune diseases, especially SLE, and to explore possible therapeutic target(s) of costimulatory molecules and pathways that might be used to develop therapeutic approaches for patients with these conditions.


Assuntos
Antígenos B7/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Transdução de Sinais , Fatores de Necrose Tumoral/imunologia , Comunicação Celular/imunologia , Humanos , Ativação Linfocitária
17.
J Biol Chem ; 294(13): 5228-5229, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926761

RESUMO

Poxviruses have evolved efficient proteins that bind mammalian cytokines and chemokines to suppress host immunity. Here Pontejo et al. examine in detail how one such poxviral protein, CrmD, that has activity against both mammalian tumor necrosis factor and chemokines, interacts with its host targets. They apply their findings to refine a human anti-cytokine therapeutic and increase its specificity, providing an elegant example of the benefits of mining viral proteins for therapeutically useful information.


Assuntos
Anti-Inflamatórios/imunologia , Anti-Inflamatórios/farmacologia , Citocinas/antagonistas & inibidores , Poxviridae/imunologia , Proteínas Virais/imunologia , Proteínas Virais/farmacologia , Animais , Anti-Inflamatórios/química , Citocinas/imunologia , Descoberta de Drogas , Humanos , Poxviridae/química , Infecções por Poxviridae/virologia , Inibidores do Fator de Necrose Tumoral , Fatores de Necrose Tumoral/imunologia , Proteínas Virais/química
18.
J Immunol ; 202(6): 1693-1703, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30760623

RESUMO

Although the expansion of myeloid-derived suppressor cells (MDSCs) has been reported in autoimmune disorders, it is largely unclear how MDSCs contribute to the development of primary Sjögren syndrome (pSS). In this study, we found significantly increased MDSCs with gradually diminished suppressive capacity during disease development in mice with experimental Sjögren syndrome (ESS). The ligand for glucocorticoid-induced TNFR family-related protein (GITRL) was increased along ESS progression, whereas the increased GITRL was found to attenuate the immunosuppressive function of MDSCs. Moreover, blocking GITR signal in MDSCs significantly restored their immunosuppressive function and alleviated ESS progression in mice. In pSS patients, expanded MDSCs were found to express low levels of arginase. Significantly increased serum GITRL levels were closely correlated with patients with higher Sjögren syndrome disease activity index. Furthermore, treatment with recombinant GITRL markedly reduced the immunosuppressive function of human MDSCs. Together, our studies have demonstrated a critical role of GITRL in modulating the suppressive function of MDSCs, which may facilitate the validation of GITRL as a therapeutic target for the treatment of pSS.


Assuntos
Células Supressoras Mieloides/imunologia , Síndrome de Sjogren/imunologia , Fatores de Necrose Tumoral/imunologia , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Células Supressoras Mieloides/metabolismo , Síndrome de Sjogren/metabolismo , Fatores de Necrose Tumoral/metabolismo
19.
J Immunol ; 202(5): 1501-1509, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30659107

RESUMO

The metalloproteinase ADAM17 plays a pivotal role in initiating inflammation by releasing TNF from its precursor. Prolonged TNF release causes many chronic inflammatory diseases, indicating that tight regulation of ADAM17 activity is essential for resolution of inflammation. In this study, we report that the endogenous ADAM17 inhibitor TIMP-3 inhibits ADAM17 activity only when it is bound to the cell surface and that cell surface levels of TIMP-3 in endotoxin-activated human macrophages are dynamically controlled by the endocytic receptor LRP1. Pharmacological blockade of LRP1 inhibited endocytic clearance of TIMP-3, leading to an increase in cell surface levels of the inhibitor that blocked TNF release. Following LPS stimulation, TIMP-3 levels on the surface of macrophages increased 4-fold within 4 h and continued to accumulate at 6 h, before a return to baseline levels at 8 h. This dynamic regulation of cell surface TIMP-3 levels was independent of changes in TIMP-3 mRNA levels, but correlated with shedding of LRP1. These results shed light on the basic mechanisms that maintain a regulated inflammatory response and ensure its timely resolution.


Assuntos
Proteína ADAM17/imunologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/imunologia , Macrófagos/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-3/imunologia , Fatores de Necrose Tumoral/imunologia , Proteína ADAM17/antagonistas & inibidores , Células Cultivadas , Endotoxinas/farmacologia , Humanos , Lipopolissacarídeos/farmacologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , Macrófagos/imunologia , Inibidor Tecidual de Metaloproteinase-3/antagonistas & inibidores , Inibidores do Fator de Necrose Tumoral
20.
Nat Commun ; 10(1): 150, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635578

RESUMO

Agonist antibodies (Ab) directed against costimulatory molecules on the surface of antigen-primed T cells are in various stages of pre-clinical and clinical trials, albeit with limited therapeutic benefit as single agents. The underlying mechanisms of action remain incompletely understood. Here, we demonstrate an inhibitory role of ecto-enzyme CD73 for agonistic anti-4-1BB/CD137 Ab therapy. In particular, anti-4-1BB treatment preferentially drives CD73- effector T cell response for tumor inhibition. Anti-CD73 neutralizing Ab further improves anti-4-1BB therapy associated with enhanced anti-tumor T cell immunity. However, the TGF-ß-rich tumor milieu confers resistance to anti-4-1BB therapy by sustaining CD73 expression primarily on infiltrating CD8+ T cells across several tumor models. TGF-ß blockade results in downregulation of CD73 expression on infiltrating T cells and sensitizes resistant tumors to agonistic anti-4-1BB therapy. Thus, our findings identify a mechanism of action for more effective clinical targeting of 4-1BB or likely other costimulatory molecules.


Assuntos
Ligante 4-1BB/imunologia , 5'-Nucleotidase/antagonistas & inibidores , Anticorpos Neutralizantes/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteína Relacionada a TNFR Induzida por Glucocorticoide/imunologia , Melanoma Experimental/terapia , 5'-Nucleotidase/genética , 5'-Nucleotidase/imunologia , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Regulação da Expressão Gênica/imunologia , Imunoterapia/métodos , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligante OX40 , Fator de Crescimento Transformador beta1/metabolismo , Fatores de Necrose Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA