Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Diabetes ; 71(3): 394-411, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35029277

RESUMO

Pancreatic ß-cells adapt to compensate for increased metabolic demand during obesity. Although the miRNA pathway has an essential role in ß-cell expansion, whether it is involved in adaptive proliferation is largely unknown. First, we report that EGR2 binding to the miR-455 promoter induced miR-455 upregulation in the pancreatic islets of obesity mouse models. Then, in vitro gain- or loss-of-function studies showed that miR-455 overexpression facilitated ß-cell proliferation. Knockdown of miR-455 in ob/ob mice via pancreatic intraductal infusion prevented compensatory ß-cell expansion. Mechanistically, our results revealed that increased miR-455 expression inhibits the expression of its target cytoplasmic polyadenylation element binding protein 1 (CPEB1), an mRNA binding protein that plays an important role in regulating insulin resistance and cell proliferation. Decreased CPEB1 expression inhibits elongation of the poly(A) tail and the subsequent translation of Cdkn1b mRNA, reducing the CDKN1B expression level and finally promoting ß-cell proliferation. Taken together, our results show that the miR-455/CPEB1/CDKN1B pathway contributes to adaptive proliferation of ß-cells to meet metabolic demand during obesity.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/fisiologia , Células Secretoras de Insulina/patologia , MicroRNAs/fisiologia , Obesidade/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia , Animais , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Humanos , Células Secretoras de Insulina/química , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , MicroRNAs/genética , Obesidade/patologia , RNA Mensageiro/análise , Fatores de Transcrição/genética , Regulação para Cima , Fatores de Poliadenilação e Clivagem de mRNA/genética
2.
Int J Biol Macromol ; 193(Pt A): 387-400, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34699898

RESUMO

In eukaryotes, maturation of pre-mRNA relies on its precise 3'-end processing. This processing involves co-transcriptional steps regulated by sequence elements and other proteins. Although, it holds tremendous importance, defect in the processing machinery will result in erroneous pre-mRNA maturation leading to defective translation. Remarkably, more than 20 proteins in humans and yeast share homology and execute this processing. The defects in this processing are associated with various diseases in humans. We shed light on the CF IA subunit of yeast Saccharomyces cerevisiae that contains four proteins (Pcf11, Clp1, Rna14 and Rna15) involved in this processing. Structural details of various domains of CF IA and their roles during 3'-end processing, like cleavage and polyadenylation at 3'-UTR of pre-mRNA and other cellular events are explained. Further, the chronological development and important discoveries associated with 3'-end processing are summarized. Moreover, the mammalian homologues of yeast CF IA proteins, along with their key roles are described. This knowledge would be helpful for better comprehension of the mechanism associated with this marvel; thus opening up vast avenues in this area.


Assuntos
Precursores de RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA , Regiões 3' não Traduzidas , Humanos , Poliadenilação , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia
3.
Nucleic Acids Res ; 49(2): 621-635, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33337475

RESUMO

The integration of retroviral reverse transcripts into the chromatin of the cells that they infect is required for virus replication. Retroviral integration has far-reaching consequences, from perpetuating deadly human diseases to molding metazoan evolution. The lentivirus human immunodeficiency virus 1 (HIV-1), which is the causative agent of the AIDS pandemic, efficiently infects interphase cells due to the active nuclear import of its preintegration complex (PIC). To enable integration, the PIC must navigate the densely-packed nuclear environment where the genome is organized into different chromatin states of varying accessibility in accordance with cellular needs. The HIV-1 capsid protein interacts with specific host factors to facilitate PIC nuclear import, while additional interactions of viral integrase, the enzyme responsible for viral DNA integration, with cellular nuclear proteins and nucleobases guide integration to specific chromosomal sites. HIV-1 integration favors transcriptionally active chromatin such as speckle-associated domains and disfavors heterochromatin including lamina-associated domains. In this review, we describe virus-host interactions that facilitate HIV-1 PIC nuclear import and integration site targeting, highlighting commonalities among factors that participate in both of these steps. We moreover discuss how the nuclear landscape influences HIV-1 integration site selection as well as the establishment of active versus latent virus infection.


Assuntos
HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Integração Viral , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas do Capsídeo/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Cromatina/genética , Cromatina/metabolismo , Citoplasma/metabolismo , Citoplasma/virologia , Proteínas do Citoesqueleto/metabolismo , Transcriptase Reversa do HIV/fisiologia , HIV-1/enzimologia , HIV-1/genética , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , Interfase , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Conformação Proteica , Domínios Proteicos , Fatores de Transcrição/deficiência , Fatores de Transcrição/fisiologia , Integração Viral/genética , Integração Viral/fisiologia , Latência Viral , Replicação Viral , Fatores de Poliadenilação e Clivagem de mRNA/deficiência , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia
4.
J Orthop Surg Res ; 15(1): 552, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228708

RESUMO

BACKGROUND: Osteoarthritis (OA), a refractory disease, is one of the leading contributors for disability worldwide. Since chondrocyte is the only resident cell in cartilage, this study aims to explore the roles of miR-129-3p and CPEB1 in chondrocyte apoptosis in knee joint fracture-induced OA. METHODS: Cartilage was collected from 20 OA patients who underwent total knee replacement (OA group) and 20 patients with knee contusion (normal group). Then, miR-129-3p and CPEB1 levels in the cartilage were quantified by qRT-PCR. Primary rat chondrocytes in the knee were isolated and identified by toluidine blue staining and immunofluorescent staining of type II collagen. OA cellular models were induced by TNF-α treatment, in which miR-129-3p and CPEB1 expressions were assessed. Subsequently, cell viability, apoptosis, and the expression levels of apoptotic protein and caspase-3 were measured. Dual luciferase reporter assay identified the interaction between miR-129-3p and CPEB1. RESULTS: Patients in the OA group had decreased miR-129-3p expression and increased CPEB1 expression than those in the normal group. TNF-α treatment successfully induced the OA cellular model. Downregulated miR-129-3p and upregulated CPEB1 expressions were found in OA-treated chondrocytes. miR-129-3p overexpression or CPEB1 knockdown improved chondrocyte viability and attenuated apoptosis, and vice versa. miR-129-3p negatively regulated CPEB1, thus ameliorating apoptosis and enhancing cell viability. CONCLUSION: miR-129-3p negatively targeted CPEB1 to facilitate chondrocyte viability and hamper apoptosis.


Assuntos
Apoptose/genética , Condrócitos/metabolismo , Condrócitos/patologia , Traumatismos do Joelho/complicações , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Animais , Artroplastia do Joelho , Cartilagem Articular/citologia , Sobrevivência Celular/genética , Células Cultivadas , Colágeno Tipo II/metabolismo , Feminino , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Traumatismos do Joelho/cirurgia , Articulação do Joelho/cirurgia , Masculino , MicroRNAs/fisiologia , Osteoartrite do Joelho/patologia , Ratos Wistar , Fatores de Transcrição/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia
5.
Nucleic Acids Res ; 45(17): 10115-10131, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28973460

RESUMO

New transcripts generated by RNA polymerase II (RNAPII) are generally processed in order to form mature mRNAs. Two key processing steps include a precise cleavage within the 3' end of the pre-mRNA, and the subsequent polymerization of adenosines to produce the poly(A) tail. In yeast, these two functions are performed by a large multi-subunit complex that includes the Cleavage Factor IA (CF IA). The four proteins Pcf11, Clp1, Rna14 and Rna15 constitute the yeast CF IA, and of these, Pcf11 is structurally the least characterized. Here, we provide evidence for the binding of two Zn2+ atoms to Pcf11, bound to separate zinc-binding domains located on each side of the Clp1 recognition region. Additional structural characterization of the second zinc-binding domain shows that it forms an unusual zinc finger fold. We further demonstrate that the two domains are not mandatory for CF IA assembly nor RNA polymerase II transcription termination, but are rather involved to different extents in the pre-mRNA 3'-end processing mechanism. Our data thus contribute to a more complete understanding of the architecture and function of Pcf11 and its role within the yeast CF IA complex.


Assuntos
Regiões 3' não Traduzidas/genética , Processamento de Terminações 3' de RNA/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Zinco/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/química , Sequência de Aminoácidos , Sítios de Ligação , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Processamento de Terminações 3' de RNA/genética , RNA Polimerase II/metabolismo , Precursores de RNA/metabolismo , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia
6.
Nucleic Acids Res ; 45(11): 6793-6804, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28383716

RESUMO

Regulation of gene expression at the level of cytoplasmic polyadenylation is important for many biological phenomena including cell cycle progression, mitochondrial respiration, and learning and memory. GLD4 is one of the non-canonical poly(A) polymerases that regulates cytoplasmic polyadenylation-induced translation, but its target mRNAs and role in cellular physiology is not well known. To assess the full panoply of mRNAs whose polyadenylation is controlled by GLD4, we performed an unbiased whole genome-wide screen using poy(U) chromatography and thermal elution. We identified hundreds of mRNAs regulated by GLD4, several of which are involved in carbohydrate metabolism including GLUT1, a major glucose transporter. Depletion of GLD4 not only reduced GLUT1 poly(A) tail length, but also GLUT1 protein. GLD4-mediated translational control of GLUT1 mRNA is dependent of an RNA binding protein, CPEB1, and its binding elements in the 3΄ UTR. Through regulating GLUT1 level, GLD4 affects glucose uptake into cells and lactate levels. Moreover, GLD4 depletion impairs glucose deprivation-induced GLUT1 up-regulation. In addition, we found that GLD4 affects glucose-dependent cellular phenotypes such as migration and invasion in glioblastoma cells. Our observations delineate a novel post-transcriptional regulatory network involving carbohydrate metabolism and glucose homeostasis mediated by GLD4.


Assuntos
Metabolismo dos Carboidratos , Poliadenilação , RNA Nucleotidiltransferases/fisiologia , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular , Citoplasma/metabolismo , Regulação da Expressão Gênica , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Células HEK293 , Homeostase , Humanos , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Fatores de Transcrição/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia
7.
Cold Spring Harb Perspect Biol ; 8(4): a021774, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27037416

RESUMO

Prions are a self-templating amyloidogenic state of normal cellular proteins, such as prion protein (PrP). They have been identified as the pathogenic agents, contributing to a number of diseases of the nervous system. However, the discovery that the neuronal RNA-binding protein, cytoplasmic polyadenylation element-binding protein (CPEB), has a prion-like state that is involved in the stabilization of memory raised the possibility that prion-like proteins can serve normal physiological functions in the nervous system. Here, we review recent experimental evidence of prion-like properties of neuronal CPEB in various organisms and propose a model of how the prion-like state may stabilize memory.


Assuntos
Memória/fisiologia , Modelos Biológicos , Proteínas Priônicas/fisiologia , Fatores de Transcrição/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Drosophila/metabolismo , Drosophila/fisiologia , Proteínas de Drosophila/análise , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiologia , Hipocampo/metabolismo , Proteínas Priônicas/análise , Proteínas Priônicas/metabolismo , Biossíntese de Proteínas , Sumoilação , Sinapses/metabolismo , Fatores de Transcrição/análise , Fatores de Transcrição/química , Ubiquitinação , Fatores de Poliadenilação e Clivagem de mRNA/análise , Fatores de Poliadenilação e Clivagem de mRNA/química
8.
Cell Cycle ; 15(5): 667-77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27027998

RESUMO

MicroRNAs (miRNAs) in the AGO-containing RISC complex control messenger RNA (mRNA) translation by binding to mRNA 3' untranslated region (3'UTR). The relationship between miRNAs and other regulatory factors that also bind to mRNA 3'UTR, such as CPEB1 (cytoplasmic polyadenylation element-binding protein), remains elusive. We found that both CPEB1 and miR-15b control the expression of WEE1, a key mammalian cell cycle regulator. Together, they repress WEE1 protein expression during G1 and S-phase. Interestingly, the 2 factors lose their inhibitory activity at the G2/M transition, at the time of the cell cycle when WEE1 expression is maximal, and, moreover, rather activate WEE1 translation in a synergistic manner. Our data show that translational regulation by RISC and CPEB1 is essential in cell cycle control and, most importantly, is coordinated, and can be switched from inhibition to activation during the cell cycle.


Assuntos
Proteínas de Ciclo Celular/metabolismo , MicroRNAs/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fatores de Transcrição/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia , Sequência de Bases , Proteínas de Ciclo Celular/genética , Pontos de Checagem da Fase G2 do Ciclo Celular , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Tirosina Quinases/genética , Interferência de RNA
9.
Can J Microbiol ; 62(1): 1-15, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26553381

RESUMO

Retroviruses must integrate their cDNA into the host genome to generate proviruses. Viral DNA-protein complexes interact with cellular proteins and produce pre-integration complexes, which carry the viral genome and cross the nuclear pore channel to enter the nucleus and integrate viral DNA into host chromosomal DNA. If the reverse transcripts fail to integrate, linear or circular DNA species such as 1- and 2-long terminal repeats are generated. Such complexes encounter numerous cellular proteins in the cytoplasm, which restrict viral infection and protect the nucleus. To overcome host cell defenses, the pathogens have evolved several evasion strategies. Viral proteins often contain nuclear localization signals, allowing entry into the nucleus. Among more than 1000 proteins identified as required for HIV infection by RNA interference screening, karyopherins, cleavage and polyadenylation specific factor 6, and nucleoporins have been predominantly studied. This review discusses current opinions about the synergistic relationship between the viral and cellular factors involved in nuclear import, with focus on the unveiled mysteries of the host-pathogen interaction, and highlights novel approaches to pinpoint therapeutic targets.


Assuntos
Núcleo Celular/metabolismo , Interações Hospedeiro-Patógeno , Retroviridae/fisiologia , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Produtos do Gene gag/fisiologia , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Proteínas Virais/metabolismo , Internalização do Vírus , beta Carioferinas/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia
10.
PLoS One ; 10(9): e0138794, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26398195

RESUMO

CPEB (Cytoplasmic Polyadenylation Element Binding) proteins are a family of four RNA-binding proteins that regulate the translation of maternal mRNAs controlling meiotic cell cycle progression. But CPEBs are not limited to the transcriptionally silent germline; they are also expressed, in various combinations, in somatic cells, yet their role in regulation of mitosis-related gene expression is largely unknown. Deregulation of CPEB1 and CPEB4 have been linked to tumor development. However, a systematic analysis addressing their requirements for the temporal regulation of mitotic gene expression has yet to be performed. This study addresses the requirements of each of the four CPEBs for mitotic phase transitions, with a particular focus on cytoplasmic polyadenylation and translational regulation. We demonstrate that CPEB3 is the only member dispensable for mitotic cell division, whereas the other three members, CPEB1, 2, and 4, are essential to successful mitotic cell division. Thus, CPEB1 is required for prophase entry, CPEB2 for metaphase and CPEB4 for cytokinesis. These three CPEBs have sequential non-redundant functions that promote the phase-specific polyadenylation and translational activation of CPE-regulated transcripts in the mitotic cell cycle.


Assuntos
Mitose , Proteínas de Ligação a RNA/fisiologia , Fatores de Transcrição/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Poliadenilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma
11.
Annu Rev Cell Dev Biol ; 30: 393-415, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25068488

RESUMO

The cytoplasmic polyadenylation element binding (CPEB) proteins are sequence-specific mRNA binding proteins that control translation in development, health, and disease. CPEB1, the founding member of this family, has become an important model for illustrating general principles of translational control by cytoplasmic polyadenylation in gametogenesis, cancer etiology, synaptic plasticity, learning, and memory. Although the biological functions of the other members of this protein family in vertebrates are just beginning to emerge, it is already evident that they, too, mediate important processes, such as cancer etiology and higher cognitive function. In Drosophila, the CPEB proteins Orb and Orb2 play key roles in oogenesis and in neuronal function, as do related proteins in Caenorhabditis elegans and Aplysia. We review the biochemical features of the CPEB proteins, discuss their activities in several biological systems, and illustrate how understanding CPEB activity in model organisms has an important impact on neurological disease.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia , Amiloide/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Senescência Celular , Citoplasma/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/metabolismo , Poliadenilação
12.
Ann Hematol ; 93(9): 1473-81, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24763514

RESUMO

FIP1-like 1 (FIP1L1) is associated with two leukemogenic fusion genes: FIP1L1-retinoic acid receptor alpha (RARA) and FIP1L1-platelet-derived growth factor receptor alpha (PDGFRA). Analyses of a series of deletion mutants revealed that the FIP1 motif in FIP1L1-RARA plays a pivotal role in its homodimerization and transcriptional repressor activity. However, in FIP1L1-PDGFRA, the C-terminal PDGFRA portion possesses the ability of forming a homodimer by itself, making FIP1L1 dispensable for constitutive activation of this kinase. Both the full-length and the C-terminal PDGFRA portion of FIP1L1-PDGFRA could transform the IL-3-dependent hematopoietic cell line, BAF-B03. Moreover, when either the full-length or the C-terminal PDGFRA portion of FIP1L1-PDGFRA was introduced in these cells, they grew in the absence of IL-3. The cells having the C-terminal PDGFRA portion of FIP1L1-PDGFRA, however, were partially IL-3 dependent, whereas the cells having the full-length FIP1L1-PDGFRA became completely IL-3 independent for their growth. Taken together, these results show that FIP1L1 differentially contributes to the pathogenesis of distinct types of leukemia.


Assuntos
Leucemia/classificação , Leucemia/genética , Proteínas de Fusão Oncogênica/fisiologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células HEK293 , Células HeLa , Humanos , Interleucina-3/farmacologia , Proteínas de Fusão Oncogênica/química , Domínios e Motivos de Interação entre Proteínas/genética , Multimerização Proteica/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/química , Fatores de Poliadenilação e Clivagem de mRNA/química
13.
Mol Reprod Dev ; 81(4): 376-87, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24474627

RESUMO

In many species, there is little transcription in the mature oocyte, and zygotic transcription does not begin immediately after fertilization. In zebrafish, zygotic transcription is not initiated until the mid-blastula transition, thus the production of new proteins during oogenesis and early embryogenesis is dependent on the translation of maternal mRNAs. In a growing number of species, the translation of key maternal transcripts is coupled to their cytoplasmic polyadenylation. One family of RNA-binding proteins implicated in this process is the cytoplasmic polyadenylation element (CPE)-binding proteins (CPEBs), which bind to a sequence in the 3'-untranslated regions of regulated transcripts and mediate their storage/repression or translation. In several species, there is evidence for two classes of CPEBs, a larger oocyte-type and a smaller CPEB that functions during embryogenesis. This appears to be the case in zebrafish as well, and we now provide evidence suggesting that the oocyte-type CPEB (zorba) regulates the translation of the embryonic-type (ElrA) by keeping the ElrA transcript in storage until fertilization. When zorba levels fall, ElrA protein is then produced and available to regulate the translation of additional mRNAs during embryogenesis. We have also identified a potential target of ElrA, the maternal mRNA for hnRNPab, which is a potential homolog of the Drosophila gene squid, whose product plays a role in patterning the Drosophila oocyte and embryo. These data suggest that during zebrafish embryogenesis, cytoplasmic polyadenylation mediates a cascade of translational control whose final targets play central patterning roles during embryogenesis.


Assuntos
Proteínas ELAV/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Oogênese/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/biossíntese , Proteínas de Ligação a RNA/fisiologia , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/genética , Fatores de Poliadenilação e Clivagem de mRNA/biossíntese , Regiões 3' não Traduzidas , Animais , Blástula/metabolismo , Padronização Corporal/genética , Citoplasma/metabolismo , Proteínas ELAV/genética , Embrião não Mamífero/metabolismo , Feminino , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Oócitos/metabolismo , Poliadenilação , Biossíntese de Proteínas , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia
14.
Nat Struct Mol Biol ; 21(2): 175-179, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24413056

RESUMO

At the 3' ends of protein-coding genes, RNA polymerase (Pol) II is dephosphorylated at tyrosine residues (Tyr1) of its C-terminal domain (CTD). In addition, the associated cleavage-and-polyadenylation factor (CPF) cleaves the transcript and adds a poly(a) tail. Whether these events are coordinated and how they lead to transcription termination remains poorly understood. Here we show that CPF from Saccharomyces cerevisiae is a Pol II-CTD phosphatase and that the CPF subunit Glc7 dephosphorylates Tyr1 in vitro. In vivo, the activity of Glc7 is required for normal Tyr1 dephosphorylation at the polyadenylation site, for recruitment of termination factors Pcf11 and Rtt103 and for normal Pol II termination. These results show that transcription termination involves Tyr1 dephosphorylation of the CTD and indicate that pre-mRNA processing by CPF and transcription termination are coupled via Glc7-dependent Pol II-Tyr1 dephosphorylation.


Assuntos
Proteína Fosfatase 1/fisiologia , RNA Polimerase II/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Terminação da Transcrição Genética , Tirosina/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/fisiologia , Fosforilação , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
16.
Nat Med ; 19(11): 1473-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24141422

RESUMO

Fragile X syndrome (FXS), the most common cause of inherited mental retardation and autism, is caused by transcriptional silencing of FMR1, which encodes the translational repressor fragile X mental retardation protein (FMRP). FMRP and cytoplasmic polyadenylation element-binding protein (CPEB), an activator of translation, are present in neuronal dendrites, are predicted to bind many of the same mRNAs and may mediate a translational homeostasis that, when imbalanced, results in FXS. Consistent with this possibility, Fmr1(-/y); Cpeb1(-/-) double-knockout mice displayed amelioration of biochemical, morphological, electrophysiological and behavioral phenotypes associated with FXS. Acute depletion of CPEB1 in the hippocampus of adult Fmr1(-/y) mice rescued working memory deficits, demonstrating reversal of this FXS phenotype. Finally, we find that FMRP and CPEB1 balance translation at the level of polypeptide elongation. Our results suggest that disruption of translational homeostasis is causal for FXS and that the maintenance of this homeostasis by FMRP and CPEB1 is necessary for normal neurologic function.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/deficiência , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia , Regiões 3' não Traduzidas , Animais , Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil/psicologia , Hipocampo/fisiopatologia , Humanos , Masculino , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Nat Rev Cancer ; 13(4): 283-90, 2013 04.
Artigo em Inglês | MEDLINE | ID: mdl-23446545

RESUMO

The cytoplasmic polyadenylation element binding proteins (CPEBs) associate with specific sequences in mRNA 3' untranslated regions to promote translation. They do so by inducing cytoplasmic polyadenylation, which requires specialized poly(A) polymerases. Aberrant expression of these proteins correlates with certain types of cancer, indicating that cytoplasmic RNA 3' end processing is important in the control of growth. Several CPEB-regulated mRNAs govern cell cycle progression, regulate senescence, establish cell polarity, and promote tumorigenesis and metastasis. In this Opinion article, we discuss the emerging evidence that indicates a key role for the CPEBs in cancer biology.


Assuntos
Neoplasias , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia , Animais , Ciclo Celular/fisiologia , Proliferação de Células , Senescência Celular/fisiologia , Humanos , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Polinucleotídeo Adenililtransferase , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
18.
Biochem Biophys Res Commun ; 425(4): 848-53, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22898046

RESUMO

Mammalian precursor mRNA (pre-mRNA) cleavage factor I (CFIm) plays important roles in the selection of poly(A) sites in a 3'-untranslated region (3'-UTR), producing mRNAs with variable 3' ends. Because 3'-UTRs often contain cis elements that impact stability or localization of mRNA or translation, alternative polyadenylation diversifies utilization of primary transcripts in mammalian cells. However, the physiological role of CFIm remains unclear. CFIm acts as a heterodimer comprising a 25kDa subunit (CFIm25) and one of the three large subunits-CFIm59, CFIm68, or CFIm72. CFIm25 binds directly to RNA and introduces and anchors the larger subunit. To examine the physiological roles of CFIm, we knocked down the CFIm25 gene in neuronal cells using RNA interference. Knockdown of CFIm25 increased the number of primary dendrites of developing hippocampal neurons and promoted nerve growth factor (NGF)-induced neurite extension from rat pheochromocytoma PC12 cells without affecting the morphology of proliferating PC12 cells. On the other hand, CFIm25 knockdown did not influence constitutively active or dominantly negative RhoA suppression or promotion of NGF-induced neurite extension from PC12 cells, respectively. Taken together, our results indicate that endogenous CFIm may promote neuritogenesis in developing neurons by coordinating events upstream of NGF-induced RhoA inactivation.


Assuntos
Neuritos/fisiologia , Clivagem do RNA , Precursores de RNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia , Animais , Técnicas de Silenciamento de Genes , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Fator de Crescimento Neural/farmacologia , Neuritos/efeitos dos fármacos , Células PC12 , Ratos , Fatores de Poliadenilação e Clivagem de mRNA/genética , Proteína rhoA de Ligação ao GTP/metabolismo
19.
Ageing Res Rev ; 11(4): 460-72, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22542725

RESUMO

Cytoplasmic elongation of the poly(A) tail was originally identified as a mechanism to activate maternal mRNAs, stored as silent transcripts with short poly(A) tails, during meiotic progression. A family of RNA-binding proteins named CPEBs, which recruit the translational repression or cytoplasmic polyadenylation machineries to their target mRNAs, directly mediates cytoplasmic polyadenylation. Recent years have witnessed an explosion of studies showing that CPEBs are not only expressed in a variety of somatic tissues, but have essential functions controlling gene expression in time and space in the adult organism. These "new" functions of the CPEBs include regulating the balance between senescence and proliferation and its pathological manifestation, tumor development. In this review, we summarize current knowledge on the functions of the CPEB-family of proteins in the regulation of cell proliferation, their target mRNAs and the mechanism controlling their activities.


Assuntos
Envelhecimento/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias/genética , Biossíntese de Proteínas/genética , Fatores de Transcrição/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Animais , Humanos , Processamento Pós-Transcricional do RNA/genética , Fatores de Transcrição/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia
20.
PLoS One ; 7(4): e34912, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22523564

RESUMO

The Fip1-like1 (FIP1L1)-platelet-derived growth factor receptor alpha fusion gene (F/P) arising in the pluripotent hematopoietic stem cell (HSC),causes 14% to 60% of patients with hypereosinophilia syndrome (HES). These patients, classified as having F/P (+) chronic eosinophilic leukemia (CEL), present with clonal eosinophilia and display a more aggressive disease phenotype than patients with F/P (-) HES patients. The mechanisms underlying predominant eosinophil lineage targeting and the cytotoxicity of eosinophils in this leukemia remain unclear. Given that the Janus tyrosine kinase (JAK)/signal transducers and activators of transcription (Stat) signaling pathway is key to cytokine receptor-mediated eosinophil development and activated Stat3 and Stat5 regulate the expression of genes involved in F/P malignant transformation, we investigated whether and how JAK proteins were involved in the pathogenesis of F/P-induced CEL. F/P activation of JAK2, Stat3 and Stat5, were confirmed in all the 11 F/P (+) CEL patients examined. In vitro inhibition of JAK2 in EOL-1, primary F/P(+) CEL cells (PC) and T674I F/P Imatinib resistant cells(IR) by either JAK2-specific short interfering RNA (siRNA) or the tryphostin derivative AG490(AG490), significantly reduced cellular proliferation and induced cellular apoptosis. The F/P can enhance the IL-5-induced JAK2 activation, and further results indicated that JAK2 inhibition blocked IL-5-induced cellular migration and activation of the EOL-1 and PC cells in vitro. F/P-stimulation of the JAK2 suppressed cells led to a significantly reduction in Stat3 activation, but relatively normal induction of Stat5 activation. Interestingly, JAK2 inhibition also reduced PI3K, Akt and NF-κB activity in a dose-dependent manner, and suppressed expression levels of c-Myc and Survivin. These results strongly suggest that JAK2 is activated by F/P and is required for F/P stimulation of cellular proliferation and infiltration, possibly through induction of c-Myc and Survivin expression via activation of multiple signaling pathways, including NF-κB, Stat3, and PI3K/Akt.


Assuntos
Eosinófilos/fisiologia , Síndrome Hipereosinofílica/genética , Janus Quinase 2/metabolismo , Proteínas de Fusão Oncogênica/fisiologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia , Benzamidas , Regulação para Baixo , Ativação Enzimática , Células-Tronco Hematopoéticas/metabolismo , Humanos , Síndrome Hipereosinofílica/enzimologia , Síndrome Hipereosinofílica/fisiopatologia , Mesilato de Imatinib , Interleucina-5/fisiologia , Janus Quinase 2/antagonistas & inibidores , NF-kappa B/metabolismo , Piperazinas/uso terapêutico , Pirimidinas/uso terapêutico , RNA Interferente Pequeno/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/antagonistas & inibidores , Fator de Transcrição STAT5/metabolismo , Células Tumorais Cultivadas , Tirfostinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA