RESUMO
The microbial transcription factor YhaJ responds to 2,4-dinitrotoluene (DNT) derivatives. Here, we describe steps for overexpression and purification of the protein, characterization for the binding of a DNT derivative methylhydroquinone, and crystallization by using a random seeding technique. We then detail procedures for structure determination by employing the crystal-twin resolving processes. This protocol can also be performed using other DNT derivatives. For complete details on the use and execution of this protocol, please refer to Kim et al.1.
Assuntos
Cristalização , Dinitrobenzenos/química , Cristalografia por Raios X/métodos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismoRESUMO
Halophyte Tamarix ramosissima. Lcdcb (T. ramosissima) are known as the representative of Tamarix plants that are widely planted in salinized soil. However, molecular mechanisms towards salt tolerance and adaptation are largely rare. In this study, we carried out RNA-sequence and transcriptome analysis of T. ramosissima in response to NaCl stress, screened differentially expressed genes (DEGs) and further verified by qRT-PCR. Results showed that 105702 unigenes were spliced from the raw data of transcriptome sequencing, where 54238 unigenes were retrieved from KEGG, KOG, NR, and SwissProt. After 48 hours of NaCl treatment, the expression levels of 6374 genes were increased, and 5380 genes were decreased in leaves. After 168 hours, the expression levels of 3837 genes were up-regulated and 7808 genes were down-regulated. In particular, 8 transcription factors annotated to the KEGG Pathway were obtained, involving the WRKY and bZIP transcription family. In addition, KEGG pathway annotation showed that expression of 39 genes involved in ROS scavenging mechanisms were significantly changed, in which 21 genes were up-regulated and 18 genes were down-regulated after 48 hours as well as 15 genes were up-regulated and 24 genes were down-regulated after 168h. Simultaneously, the enzyme activities of SOD and POD were significantly enhanced under NaCl treatment, but the enzyme activity of CAT was not significantly enhanced. Moreover, WRKY, MYB and bZIP may participate in the process of salt resistance in T. ramosissima. This study provides gene resources and a theoretical basis for further molecular mechanisms of salt tolerance in T. ramosissima.
Assuntos
Cloreto de Sódio/farmacologia , Tamaricaceae , Transcriptoma , Regulação para Baixo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Solo/química , Tamaricaceae/efeitos dos fármacos , Tamaricaceae/genética , Fatores de Tempo , Fatores de Transcrição/isolamento & purificação , Regulação para CimaRESUMO
GLIS1 has multiple roles in embryonic development and in deriving induced pluripotent stem cells by aiding signaling pathways and chromatin assembly. An inexpensive and simple method to produce human GLIS1 protein from Escherichia coli (E. coli) is demonstrated in this study. Various parameters such as codon usage bias, E. coli strains, media, induction conditions (such as inducer concentration, cell density, time, and temperature), and genetic constructs were investigated to obtain soluble expression of human GLIS1 protein. Using identified expression conditions and an appropriate genetic construct, the human GLIS1 protein was homogeneously purified (purity > 90%) under native conditions. Importantly, the purified protein has upheld a stable secondary structure, as demonstrated by circular dichroism spectroscopy. To the best of our knowledge, this is the first study to report the ideal expression conditions of human GLIS1 protein in E. coli to achieve soluble expression and purification under native conditions, upholding its stable secondary structure post-purification. The biological activity of the purified GLIS1 fusion protein was further assessed in MDA-MB-231 cells. This biologically active human GLIS1 protein potentiates new avenues to understand its molecular mechanisms in different cellular functions in various cancers and in the generation of induced pluripotent stem cells.
Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Escherichia coli/genética , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Linhagem Celular Tumoral , Movimento Celular , Clonagem Molecular , Códon , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos , Humanos , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Fatores de Transcrição/química , Fatores de Transcrição/metabolismoRESUMO
RNA Polymerase II (Pol II) transcriptional recycling is a mechanism for which the required factors and contributions to overall gene expression levels are poorly understood. We describe an in vitro methodology facilitating unbiased identification of putative RNA Pol II transcriptional recycling factors and quantitative measurement of transcriptional output from recycled transcriptional components. Proof-of-principle experiments identified PAF1 complex components among recycling factors and detected defective transcriptional output from Pol II recycling following PAF1 depletion. Dynamic ChIP-seq confirmed PAF1 silencing triggered defective Pol II recycling in human cells. Prostate tumors exhibited enhanced transcriptional recycling, which was attenuated by antibody-based PAF1 depletion. These findings identify Pol II recycling as a potential target in cancer and demonstrate the applicability of in vitro and cellular transcription assays to characterize Pol II recycling in other disease states.
Assuntos
RNA Polimerase II/metabolismo , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Masculino , Neoplasias , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Transcrição GênicaRESUMO
Cholera is an epidemic disease caused by the Gram-negative bacterium Vibrio cholerae. V. cholerae is found in aquatic ecosystems and infects people through the consumption of V. cholerae-contaminated food or water. Following ingestion, V. cholerae responds to host cues to activate the expression of critical virulence genes that are under the control of a hierarchical regulatory system called the ToxR regulon. The ToxR regulon is tightly regulated and is expressed in vitro only under special growth conditions referred to as AKI conditions. AKI conditions have been instrumental in elucidating V. cholerae virulence regulation, but the chemical cues within AKI medium that activate virulence gene expression are unknown. In this study, we fractionated AKI medium on a reverse-phase chromatography column (RPCC) and showed that the virulence-activating molecules were retained on the RPCC column and recovered in the eluate. Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis of the eluate revealed the presence of a known ToxR regulon activator, taurocholate, and other bile salts. The RPCC eluate activated the ToxR regulon when added to noninducing medium and promoted TcpP dimerization in a two-hybrid system, consistent with taurocholate being responsible for the virulence-inducing activity of AKI medium. Additional experiments using purified bile salts showed that the ToxR regulon was preferentially activated in response to primary bile acids. The results of this study shed light on the chemical cues involved in V. cholerae virulence activation and suggested that V. cholerae virulence genes are modulated in response to regionally specific bile acid species in the intestine.
Assuntos
Proteínas de Bactérias/genética , Ácidos e Sais Biliares/metabolismo , Cólera/metabolismo , Cólera/microbiologia , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Regulon , Fatores de Transcrição/genética , Vibrio cholerae/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Cromatografia Líquida , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Humanos , Espectrometria de Massas , Fatores de Transcrição/química , Fatores de Transcrição/isolamento & purificação , Vibrio cholerae/patogenicidade , Virulência/genética , Fatores de Virulência/genéticaRESUMO
Bacillus subtilis can form structurally complex biofilms on solid or liquid surfaces, which requires expression of genes for matrix production. The transcription of these genes is activated by regulatory protein RemA, which binds to poorly conserved, repetitive DNA regions but lacks obvious DNA-binding motifs or domains. Here, we present the structure of the RemA homologue from Geobacillus thermodenitrificans, showing a unique octameric ring with the potential to form a 16-meric superstructure. These results, together with further biochemical and in vivo characterization of B. subtilis RemA, suggests that the protein can wrap DNA around its ring-like structure through a LytTR-related domain.
Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , DNA Bacteriano/metabolismo , Geobacillus/fisiologia , Fatores de Transcrição/metabolismo , Bacillus subtilis/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/ultraestrutura , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica , Modelos Genéticos , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas/genética , Multimerização Proteica/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/ultraestruturaRESUMO
A lot of researches have been focused on the evolution and function of MYB transcription factors (TFs). For revealing the formation of petunia flower color diversity, MYB gene family in petunia was identified and analyzed. In this study, a total of 155 MYB genes, including 40 1R-MYBs, 106 R2R3-MYBs, 7 R1R2R3-MYBs and 2 4R-MYBs, have been identified in the Petunia axillaris genome. Most R2R3 genes contain three exons and two introns, whereas the number of PaMYB introns varies from 0 to 12. The R2R3-MYB members could be divided into 28 subgroups. Analysis of gene structure and protein motifs revealed that members within the same subgroup presented similar exon/intron and motif organization, further supporting the results of phylogenetic analysis. Genes in subgroup 10, 11 and 21 were mainly expressed in petal, not in vegetative tissues. Genes in subgroup 9, 19, 25 and 27 expressed in all tissues, but the expression patterns of each gene were different. According to the promoter analysis, five R2R3-MYB and two MYB-related genes contained MBSI cis-element, which was involved in flavonoid biosynthetic regulation. PaMYB100/DPL has been reported to positively regulate to pigmentation. However, although PaMYB82, PaMYB68 and Pa1RMYB36 contained MBSI cis-element, their function in flavonoid biosynthesis has not been revealed. Consistent with existing knowledge, PaMYBs in subgroup 11 had similar function to AtMYBs in subgroup 6, genes in which played an important role in anthocyanin biosynthesis. In addition, PaMYB1 and PaMYB40 belonged to P9 (S7) and were potentially involved in regulation of flavonoid synthesis in petunia vegetative organs. This work provides a comprehensive understanding of the MYB gene family in petunia and lays a significant foundation for future studies on the function and evolution of MYB genes in petunia.
Assuntos
Antocianinas/biossíntese , Genes myb/genética , Petunia/genética , Fatores de Transcrição/genética , Antocianinas/genética , Proteínas de Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Família Multigênica/genética , Filogenia , Pigmentação/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/classificação , Fatores de Transcrição/isolamento & purificaçãoRESUMO
Significant advancements in understanding disease mechanisms can occur through combined analysis of next-generation sequencing datasets generated using purified cell populations. Here, we detail our optimized protocol for purification of mouse hepatic macrophages (or other liver non-parenchymal populations) suitable for use in various next-generation sequencing protocols. An alternative framework is described for sorting pre-fixed hepatic nuclei populations. This strategy has the advantage of rapidly preserving the nuclei and can facilitate success with ChIP-seq for more challenging molecules. For complete details on the use and execution of these protocols, please refer to Muse et al. (2018), Sakai et al. (2019), and Seidman et al. (2020).
Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/métodos , Imunoprecipitação da Cromatina/métodos , Animais , Núcleo Celular , Hepatócitos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Camundongos , Análise de Sequência de DNA , Fatores de Transcrição/isolamento & purificaçãoRESUMO
Phosphorus is an essential nutrient taken up by organisms in the form of inorganic phosphate (Pi). Eukaryotes have evolved sophisticated Pi sensing and signaling cascades, enabling them to stably maintain cellular Pi concentrations. Pi homeostasis is regulated by inositol pyrophosphate signaling molecules (PP-InsPs), which are sensed by SPX domain-containing proteins. In plants, PP-InsP-bound SPX receptors inactivate Myb coiled-coil (MYB-CC) Pi starvation response transcription factors (PHRs) by an unknown mechanism. Here we report that a InsP8-SPX complex targets the plant-unique CC domain of PHRs. Crystal structures of the CC domain reveal an unusual four-stranded anti-parallel arrangement. Interface mutations in the CC domain yield monomeric PHR1, which is no longer able to bind DNA with high affinity. Mutation of conserved basic residues located at the surface of the CC domain disrupt interaction with the SPX receptor in vitro and in planta, resulting in constitutive Pi starvation responses. Together, our findings suggest that InsP8 regulates plant Pi homeostasis by controlling the oligomeric state and hence the promoter binding capability of PHRs via their SPX receptors.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Difosfatos/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfatos de Inositol/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/ultraestrutura , Cristalografia por Raios X , Mutação , Proteínas Nucleares/genética , Ligação Proteica/genética , Domínios Proteicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/ultraestruturaRESUMO
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged as the cause of a global pandemic in 2019-2020. In March 2020, New York City became the epicenter in the United States for the pandemic. On 27 March 2020, a Malayan tiger (Panthera tigris jacksoni) at the Bronx Zoo in New York City developed a cough and wheezing with subsequent inappetence. Over the next week, an additional Malayan tiger and two Amur tigers (Panthera tigris altaica) in the same building and three lions (Panthera leo krugeri) in a separate building also became ill. The index case was anesthetized for diagnostic workup. Physical examination and bloodwork results were unremarkable. Thoracic radiography and ultrasonography revealed a bronchial pattern with peribronchial cuffing and mild lung consolidation with alveolar-interstitial syndrome, respectively. SARS-CoV-2 RNA was identified by real-time, reverse transcriptase PCR (rRT-PCR) on oropharyngeal and nasal swabs and tracheal wash fluid. Cytologic examination of tracheal wash fluid revealed necrosis, and viral RNA was detected in necrotic cells by in situ hybridization, confirming virus-associated tissue damage. SARS-CoV-2 was isolated from the tracheal wash fluid of the index case, as well as the feces from one Amur tiger and one lion. Fecal viral RNA shedding was confirmed in all seven clinical cases and an asymptomatic Amur tiger. Respiratory signs abated within 1-5 days for most animals, although they persisted intermittently for 16 days in the index case. Fecal RNA shedding persisted for as long as 35 days beyond cessation of respiratory signs. This case series describes the clinical presentation, diagnostic evaluation, and management of tigers and lions infected with SARS-CoV-2 and describes the duration of viral RNA fecal shedding in these cases. This report documents the first known natural transmission of SARS-CoV-2 from humans to nondomestic felids.
Assuntos
COVID-19/veterinária , Fezes/virologia , Leões/virologia , SARS-CoV-2 , Tigres/virologia , Animais , Animais de Zoológico , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/transmissão , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Cidade de Nova Iorque/epidemiologia , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificaçãoRESUMO
Quorum sensing is a cell density-dependent form of cellular communication among bacteria. This signaling process has been heavily studied in vibrios due to their diverse and complex phenotypes and relevance to human and aquaculture disease. Mechanistic studies of Vibrio quorum sensing have required optimization of protein purification techniques to examine the role of key proteins, such as the LuxR/HapR family of transcription factors that control quorum-sensing gene expression. Protein purification is the cornerstone of biochemistry, and it is crucial to consistently produce batches of protein that are pure, active, and concentrated to perform various assays. The methods described here are optimized for purification of the Vibrio master quorum-sensing regulators, LuxR (Vibrio harveyi), HapR (Vibrio cholerae), and SmcR (Vibrio vulnificus). We anticipate that these methods can be applied to other proteins in this family of transcription factors.
Assuntos
Proteínas de Bactérias/isolamento & purificação , Fatores de Transcrição/isolamento & purificação , Vibrio/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Percepção de Quorum , Fatores de Transcrição/química , Fatores de Transcrição/metabolismoRESUMO
Protein phosphorylation is a universal mechanism for transducing cellular signals in prokaryotes and eukaryotes. The histidine kinase CckA, the histidine phosphotransferase ChpT, and the response regulator CtrA are conserved throughout the alphaproteobacteria. In Rhodobacter capsulatus, these proteins are key regulators of the gene transfer agent (RcGTA), which is present in several alphaproteobacteria. Using purified recombinant R. capsulatus proteins, we show in vitro autophosphorylation of CckA protein, and phosphotransfer to ChpT and thence to CtrA, to demonstrate biochemically that they form a phosphorelay. The secondary messenger cyclic di-GMP changed CckA from a kinase to a phosphatase, resulting in reversal of the phosphotransfer flow in the relay. The substitutions of two residues in CckA greatly affected the kinase or phosphatase activity of the protein in vitro, and production of mutant CckA proteins in vivo confirmed the importance of kinase but not phosphatase activity for the lytic release of RcGTA. However, phosphatase activity was needed to produce functional RcGTA particles. The binding of cyclic di-GMP to the wild-type and mutant CckA proteins was evaluated directly using a pulldown assay based on biotinylated cyclic di-GMP and streptavidin-linked beads.IMPORTANCE The CckA, ChpT, and CtrA phosphorelay proteins are widespread in the alphaproteobacteria, and there are two groups of organisms that differ in terms of whether this pathway is essential for cell viability. Little is known about the biochemical function of these proteins in organisms where the pathway is not essential, a group that includes Rhodobacter capsulatus This work demonstrates biochemically that CckA, ChpT, and CtrA also form a functional phosphorelay in the latter group and that the direction of phosphotransfer is reversed by cyclic di-GMP. It is important to improve understanding of more representatives of this pathway in order to obtain deeper insight into the function, composition, and evolutionary significance of a wider range of bacterial regulatory networks.
Assuntos
Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Transferência Genética Horizontal , Histidina Quinase/metabolismo , Fosfotransferases/metabolismo , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Fatores de Transcrição/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , GMP Cíclico/metabolismo , Técnicas de Transferência de Genes , Histidina Quinase/genética , Histidina Quinase/isolamento & purificação , Fosforilação , Fosfotransferases/genética , Fosfotransferases/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificaçãoRESUMO
The PLATZ (plant AT-rich protein and zinc-binding protein) transcription factor family is a class of plant-specific zinc-dependent DNA-binding proteins. PLATZ has essential roles in seed endosperm development, as well as promoting cell proliferation duration in the earlier stages of the crops. In the present study, 62 TaPLATZ genes were identified from the wheat genome, and they were unequally distributed on 15 chromosomes. According to the phylogenetic analysis, 62 TaPLATZ genes were classified into six groups, including two groups that were unique in wheat. Members in the same groups shared similar exon-intron structures. The polyploidization, together with genome duplication of wheat, plays a crucial role in the expansion of the TaPLATZs family. Transcriptome data indicated a distinct divergence expression pattern of TaPLATZ genes that could be clustered into four modules. The TaPLATZs in Module b possessed a seed-specific expression pattern and displayed obvious high expression in the earlier development stage of seeds. Subcellular localization data of TaPLATZs suggesting that they likely perform a function as a conventional transcription factor. This study provides insight into understanding the structure divergence, evolutionary features, expression profiles, and potential function of PLATZ in wheat.
Assuntos
Evolução Molecular , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Triticum/genética , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta , Família Multigênica/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Fatores de Transcrição/isolamento & purificação , Triticum/químicaRESUMO
Currently, predictive translation tuning of regulatory elements to the desired output of transcription factor (TF)-based biosensors remains a challenge. The gene expression of a biosensor system must exhibit appropriate translation intensity, which is controlled by the ribosome-binding site (RBS), to achieve fine-tuning of its dynamic range (i.e. fold change in gene expression between the presence and absence of inducer) by adjusting the translation level of the TF and reporter. However, existing TF-based biosensors generally suffer from unpredictable dynamic range. Here, we elucidated the connections and partial mechanisms between RBS, translation level, protein folding and dynamic range, and presented a design platform that predictably tuned the dynamic range of biosensors based on deep learning of large datasets cross-RBSs (cRBSs). In doing so, a library containing 7053 designed cRBSs was divided into five sub-libraries through fluorescence-activated cell sorting to establish a classification model based on convolutional neural network in deep learning. Finally, the present work exhibited a powerful platform to enable predictable translation tuning of RBS to the dynamic range of biosensors.
Assuntos
Técnicas Biossensoriais , Sequências Reguladoras de Ácido Nucleico/genética , Ribossomos/genética , Fatores de Transcrição/genética , Sítios de Ligação/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/isolamento & purificaçãoRESUMO
The MYB transcription factors are involved in the regulation of plant secondary metabolism, cell development and morphogenesis, and stress response. Here, a full-length, 816-bp NtMYB4a cDNA, which encodes a protein comprising 271 amino acids, was isolated from tobacco leaves. Phylogenetic analysis revealed that NtMYB4a is most similar to Nicotiana. attenuata MYB4, followed by Eriobotrya japonica MYB4, and NtMYB4a clustered with transcriptional activators rather than repressors. Subcellular localization assays showed that NtMYB4 localized in the nucleus, membrane, and cytoplasm. Expression analyses revealed differential expression of NtMYB4a among different tissues and organs and between different developmental stages, with most expression occurring in the stems and leaves during the full-bloom stage. Moreover, NtMYB4a expression was induced by cold, NaCl, PEG, abscisic acid, methyl jasmonate, and dark stressors, and the expression patterns and maximum expression levels varied with the type of stress. Overexpression of NtMYB4a upregulated NtPAL, Nt4CL, NtCHS, NtCHI, NtF3H, NtDFR, NtANS, and NtUFGT, which resulted in increased anthocyanin content in the tobacco corolla and darker colors. However, CRISPR/Cas9-mediated knockout of NtMYB4a downregulated NtPAL, NtC4H, Nt4CL, NtCHS, NtCHI, NtF3H, NtANS, and NtUFGT, which resulted in reduced anthocyanin content, and lighter corolla colors. These results indicated that NtMYB4a positively regulates anthocyanin biosynthesis and is involved in abiotic stress responses in tobacco plants.
Assuntos
Nicotiana/metabolismo , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Sequência de Aminoácidos , Antocianinas/biossíntese , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Nicotiana/genética , Fatores de Transcrição/genética , Ativação Transcricional/genéticaRESUMO
Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme that has emerged as a central hub linking redox equilibrium and signal transduction in living organisms. The homeostasis of NAD is required for plant growth, development, and adaption to environmental cues. In this study, we isolated a chilling hypersensitive Arabidopsis thaliana mutant named qs-2 and identified the causal mutation in the gene encoding quinolinate synthase (QS) critical for NAD biosynthesis. The qs-2 mutant is also hypersensitive to salt stress and abscisic acid (ABA) but resistant to drought stress. The qs-2 mutant accumulates a reduced level of NAD and over-accumulates reactive oxygen species (ROS). The ABA-hypersensitivity of qs-2 can be rescued by supplementation of NAD precursors and by mutations in the ABA signaling components SnRK2s or RBOHF. Furthermore, ABA-induced over-accumulation of ROS in the qs-2 mutant is dependent on the SnRK2s and RBOHF. The expression of QS gene is repressed directly by ABI4, a transcription factor in the ABA response pathway. Together, our findings reveal an unexpected interplay between NAD biosynthesis and ABA and stress signaling, which is critical for our understanding of the regulation of plant growth and stress responses.
Assuntos
Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Complexos Multienzimáticos/genética , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico/genética , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Retroalimentação Fisiológica , Perfilação da Expressão Gênica , Complexos Multienzimáticos/isolamento & purificação , Complexos Multienzimáticos/metabolismo , Mutação , NAD/biossíntese , NADPH Oxidases/metabolismo , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismoRESUMO
Neurofibromatosis type 1 (NF1) displays overlapping phenotypes with other neurocutaneous diseases such as Legius Syndrome. Here, we present results obtained using a next generation sequencing (NGS) panel including NF1, NF2, SPRED1, SMARCB1, and LZTR1 genes on Ion Torrent. Together with NGS, the Multiplex Ligation-Dependent Probe Amplification Analysis (MLPA) method was performed to rule out large deletions/duplications in NF1 gene; we validated the MLPA/NGS approach using Sanger sequencing on DNA or RNA of both positive and negative samples. In our cohort, a pathogenic variant was found in 175 patients; the pathogenic variant was observed in NF1 gene in 168 cases. A SPRED1 pathogenic variant was also found in one child and in a one year old boy, both NF2 and LZTR1 pathogenic variants were observed; in addition, we identified five LZTR1 pathogenic variants in three children and two adults. Six NF1 pathogenic variants, that the NGS analysis failed to identify, were detected on RNA by Sanger. NGS allows the identification of novel mutations in five genes in the same sequencing run, permitting unambiguous recognition of disorders with overlapping phenotypes with NF1 and facilitating genetic counseling and a personalized follow-up.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neurofibromatose 1/genética , Neurofibromina 1/genética , Neurofibromina 2/genética , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/isolamento & purificação , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação/genética , Neurilemoma/diagnóstico , Neurilemoma/genética , Neurilemoma/patologia , Neurofibromatoses/diagnóstico , Neurofibromatoses/genética , Neurofibromatoses/patologia , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/patologia , Neurofibromina 1/isolamento & purificação , Neurofibromina 2/isolamento & purificação , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Fatores de Transcrição/isolamento & purificação , Adulto JovemRESUMO
Allostery pervades macromolecular function and drives cooperative binding of ligands to macromolecules. To decipher the mechanisms of cooperative ligand binding, it is necessary to define, at a microscopic level, the thermodynamic consequences of binding of each ligand to its energetically coupled site(s). However, extracting these microscopic constants is difficult for macromolecules with more than two binding sites, because the observable [e.g., nuclear magnetic resonance (NMR) chemical shift changes, fluorescence, and enthalpy] can be altered by allostery, thereby distorting its proportionality to site occupancy. Native mass spectrometry (MS) can directly quantify the populations of homo-oligomeric protein species with different numbers of bound ligands, provided the populations are proportional to ion counts and that MS-compatible electrolytes do not alter the overall thermodynamics. These measurements can help decipher allosteric mechanisms by providing unparalleled access to the statistical thermodynamic partition function. We used native MS (nMS) to study the cooperative binding of tryptophan (Trp) to Bacillus stearothermophilus trp RNA binding attenuation protein (TRAP), a ring-shaped homo-oligomeric protein complex with 11 identical binding sites. MS-compatible solutions did not significantly perturb protein structure or thermodynamics as assessed by isothermal titration calorimetry and NMR spectroscopy. Populations of Trpn-TRAP11 states were quantified as a function of Trp concentration by nMS. The population distributions could not be explained by a noncooperative binding model but were described well by a mechanistic nearest-neighbor cooperative model. Nonlinear least-squares fitting yielded microscopic thermodynamic constants that define the interactions between neighboring binding sites. This approach may be applied to quantify thermodynamic cooperativity in other ring-shaped proteins.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Geobacillus stearothermophilus/enzimologia , Espectrometria de Massas/métodos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Termodinâmica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Triptofano/metabolismo , Regulação Alostérica , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Fenômenos Biofísicos , Modelos Moleculares , Proteínas de Ligação a RNA/isolamento & purificação , Relação Estrutura-Atividade , Fatores de Transcrição/isolamento & purificaçãoRESUMO
BRG1/SMARCA4 and its paralog BRM/SMARCA2 are the ATPase subunits of human SWI/SNF chromatin remodeling complexes. These multisubunit assemblies can act as either tumor suppressors or drivers of cancer, and inhibiting both BRG1 and BRM, is emerging as an effective therapeutic strategy in diverse cancers. BRG1 and BRM contain a BRK domain. The function of this domain is unknown, but it is often found in proteins involved in transcription and developmental signaling in higher eukaryotes, in particular in proteins that remodel chromatin. We report the NMR structure of the BRG1 BRK domain. It shows similarity to the glycine-tyrosine-phenylalanine (GYF) domain, an established protein-protein interaction module. Computational peptide-binding-site analysis of the BRK domain identifies a binding site that coincides with a highly conserved groove on the surface of the protein. This sets the scene for experiments to elucidate the role of this domain, and evaluate the potential of targeting it for cancer therapy.
Assuntos
Montagem e Desmontagem da Cromatina , DNA Helicases/química , Proteínas Nucleares/química , Fatores de Transcrição/química , Cromatina/química , Cromatina/metabolismo , DNA Helicases/genética , DNA Helicases/isolamento & purificação , Humanos , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/isolamento & purificação , Ligação Proteica , Conformação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Domínios de Homologia de srcRESUMO
Liver sinusoidal endothelial cells play a key role maintaining the hepatic homeostasis, the disruption of which is associated with such end-stage liver diseases as hepatocellular carcinoma and cirrhosis. In the present study we investigated the role of brahma-related gene 1 (BRG1), a chromatin remodeling protein, in regulating endothelial transcription and the implication in liver fibrosis. We report that endothelial-specific deletion of BRG1 in mice attenuated liver fibrosis induced by injection with thioacetamide (TAA). Coincidently, alleviation of liver fibrosis as a result of endothelial BRG1 deletion was accompanied by an up-regulation of eNOS activity and NO bioavailability. In cultured endothelial cells, exposure to lipopolysaccharide (LPS) suppressed eNOS activity whereas BRG1 depletion with small interfering RNA restored eNOS-dependent NO production. Further analysis revealed that BRG1 was recruited to the caveolin-1 (CAV1) promoter by Sp1 and activated transcription of CAV1, which in turn inhibited eNOS activity. Mechanistically, BRG1 interacted with the H3K4 trimethyltransferase MLL1 to modulate H3K4 trimethylation surrounding the CAV1 promoter thereby contributing to LPS-induced CAV1 activation. In conclusion, our data unveil a novel role for BRG1 in the regulation of endothelial function and liver fibrosis.