Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(18): 9444-9455, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30053100

RESUMO

Transcription of transfer RNA genes by RNA polymerase III (Pol III) is controlled by general factors, TFIIIB and TFIIIC, and a negative regulator, Maf1. Here we report the interplay between TFIIIC and Maf1 in controlling Pol III activity upon the physiological switch of yeast from fermentation to respiration. TFIIIC directly competes with Pol III for chromatin occupancy as demonstrated by inversely correlated tDNA binding. The association of TFIIIC with tDNA was stronger under unfavorable respiratory conditions and in the presence of Maf1. Induction of tDNA transcription by glucose-activated protein kinase A (PKA) was correlated with the down-regulation of TFIIIC occupancy on tDNA. The conditions that activate the PKA signaling pathway promoted the binding of TFIIIB subunits, Brf1 and Bdp1, with tDNA, but decreased their interaction with TFIIIC. Association of Brf1 and Bdp1 with TFIIIC was much stronger under repressive conditions, potentially restricting TFIIIB recruitment to tDNA and preventing Pol III recruitment. Altogether, we propose a model in which, depending on growth conditions, TFIIIC promotes activation or repression of tDNA transcription.


Assuntos
RNA de Transferência/genética , Fatores de Transcrição TFIII/fisiologia , Transcrição Gênica , Respiração Celular/genética , Fermentação/genética , Regulação Fúngica da Expressão Gênica , Inativação Gênica , RNA Polimerase III/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética
2.
Genome Biol ; 15(6): R82, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24981874

RESUMO

BACKGROUND: Chromosome conformation capture studies suggest that eukaryotic genomes are organized into structures called topologically associating domains. The borders of these domains are highly enriched for architectural proteins with characterized roles in insulator function. However, a majority of architectural protein binding sites localize within topological domains, suggesting sites associated with domain borders represent a functionally different subclass of these regulatory elements. How topologically associating domains are established and what differentiates border-associated from non-border architectural protein binding sites remain unanswered questions. RESULTS: By mapping the genome-wide target sites for several Drosophila architectural proteins, including previously uncharacterized profiles for TFIIIC and SMC-containing condensin complexes, we uncover an extensive pattern of colocalization in which architectural proteins establish dense clusters at the borders of topological domains. Reporter-based enhancer-blocking insulator activity as well as endogenous domain border strength scale with the occupancy level of architectural protein binding sites, suggesting co-binding by architectural proteins underlies the functional potential of these loci. Analyses in mouse and human stem cells suggest that clustering of architectural proteins is a general feature of genome organization, and conserved architectural protein binding sites may underlie the tissue-invariant nature of topologically associating domains observed in mammals. CONCLUSIONS: We identify a spectrum of architectural protein occupancy that scales with the topological structure of chromosomes and the regulatory potential of these elements. Whereas high occupancy architectural protein binding sites associate with robust partitioning of topologically associating domains and robust insulator function, low occupancy sites appear reserved for gene-specific regulation within topological domains.


Assuntos
Drosophila melanogaster/genética , Genes de Insetos , Adenosina Trifosfatases/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Mapeamento Cromossômico , Sequência Consenso , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/fisiologia , Humanos , Células K562 , Camundongos , Família Multigênica , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteínas Repressoras/genética , Fatores de Transcrição TFIII/fisiologia , Coesinas
3.
Transcription ; 5(1): e27639, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25764110

RESUMO

In eukaryotes, RNA polymerase (RNAP) III transcribes hundreds of genes for tRNAs and 5S rRNA, among others, which share similar promoters and stable transcription initiation complexes (TIC), which support rapid RNAP III recycling. In contrast, RNAP II transcribes a large number of genes with highly variable promoters and interacting factors, which exert fine regulatory control over TIC lability and modifications of RNAP II at different transitional points in the transcription cycle. We review data that illustrate a relatively smooth continuity of RNAP III initiation-elongation-termination and reinitiation toward its function to produce high levels of tRNAs and other RNAs that support growth and development.


Assuntos
Modelos Genéticos , Modelos Moleculares , RNA Polimerase III/fisiologia , RNA Polimerase II/fisiologia , Iniciação da Transcrição Genética , Terminação da Transcrição Genética , Células Eucarióticas/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo , Fatores de Transcrição TFII/fisiologia , Fatores de Transcrição TFIII/fisiologia
4.
Proc Natl Acad Sci U S A ; 108(20): 8385-9, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21536876

RESUMO

Extra TF(III)C (ETC) sites are chromosomal locations bound in vivo by the RNA polymerase III (Pol III) transcription factor III C (TF(III)C) complex, but are not necessarily associated with Pol III transcription. Although the location of ETC sequences are conserved in budding yeast, and similar sites are found in other organisms, their functions are largely unstudied. One such site, ETC6 in Saccharomyces cerevisiae, lies upstream of TFC6, a gene encoding a subunit of the TF(III)C complex itself. Promoter analysis shows that the ETC6 B-box sequence is involved in autoregulation of the TFC6 promoter. Mutation of ETC6 increases TFC6 mRNA levels, whereas mutation immediately upstream severely weakens promoter activity. A temperature-sensitive mutation in TFC3 that weakens DNA binding of TF(III)C also results in increased TFC6 mRNA levels; however, no increase is observed in mutants of TF(III)B or Pol III subunits, demonstrating a specific role for the TF(III)C complex in TFC6 promoter regulation. Chromatin immunoprecipitation shows an inverse relationship of TF(III)C occupancy at ETC6 versus TFC6 mRNA levels. Overexpression of TFC6 increases association of TF(III)C at ETC6 (and other loci) and results in reduced expression of a TFC6 promoter-URA3 reporter gene. Both of these effects are dependent on the ETC6 B-box. These results demonstrate that the TFC6 promoter is directly regulated by the TF(III)C complex, a demonstration of an RNA polymerase II promoter being directly responsive to a core Pol III transcription factor complex. This regulation could have implications in controlling global tRNA expression levels.


Assuntos
Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , RNA Polimerase III/genética , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição TFIII/fisiologia , Transcrição Gênica , Ligação Proteica , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo , Sequências Reguladoras de Ácido Nucleico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
5.
Genetics ; 183(1): 131-48, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19596900

RESUMO

Chromatin insulators separate active from repressed chromatin domains. In yeast the RNA pol III transcription machinery bound to tRNA genes function with histone acetylases and chromatin remodelers to restrict the spread of heterochromatin. Our results collectively demonstrate that binding of TFIIIC is necessary for insulation but binding of TFIIIB along with TFIIIC likely improves the probability of complex formation at an insulator. Insulation by this transcription factor occurs in the absence of RNA polymerase III or polymerase II but requires specific histone acetylases and chromatin remodelers. This analysis identifies a minimal set of factors required for insulation.


Assuntos
Elementos Isolantes/fisiologia , RNA de Transferência/genética , Fatores de Transcrição TFIII/fisiologia , Transcrição Gênica/genética , Montagem e Desmontagem da Cromatina/genética , Mapeamento Cromossômico , Histona Acetiltransferases/metabolismo , Organismos Geneticamente Modificados , Multimerização Proteica , RNA de Transferência/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Fatores de Transcrição TFIII/metabolismo , Transcrição Gênica/fisiologia , Leveduras/genética
6.
Genes Dev ; 22(16): 2215-27, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18708580

RESUMO

Eukaryotic chromosomes reach their stable rod-shaped appearance in mitosis in a reaction dependent on the evolutionarily conserved condensin complex. Little is known about how and where condensin associates with chromosomes. Here, we analyze condensin binding to budding yeast chromosomes using high-resolution oligonucleotide tiling arrays. Condensin-binding sites coincide with those of the loading factor Scc2/4 of the related cohesin complex. The sites map to tRNA and other genes bound by the RNA polymerase III transcription factor TFIIIC, and ribosomal protein and SNR genes. An ectopic B-box element, recognized by TFIIIC, constitutes a minimal condensin-binding site, and TFIIIC and the Scc2/4 complex promote functional condensin association with chromosomes. A similar pattern of condensin binding is conserved along fission yeast chromosomes. This reveals that TFIIIC-binding sites, including tRNA genes, constitute a hitherto unknown chromosomal feature with important implications for chromosome architecture during both interphase and mitosis.


Assuntos
Adenosina Trifosfatases/fisiologia , Cromossomos Fúngicos/genética , Proteínas de Ligação a DNA/fisiologia , Mitose , Complexos Multiproteicos/fisiologia , Saccharomycetales/metabolismo , Fatores de Transcrição TFIII/fisiologia , Transcrição Gênica , Sítios de Ligação , Ciclo Celular , Proteínas de Ciclo Celular , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona , Proteínas Fúngicas/fisiologia , RNA Polimerase III/metabolismo , RNA de Transferência/genética , Saccharomycetales/citologia , Saccharomycetales/genética , Coesinas
7.
Cell Mol Biol Lett ; 13(1): 112-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17965971

RESUMO

Transcription reinitiation by RNA polymerase (Pol) III proceeds through facilitated recycling, a process by which the terminating Pol III, assisted by the transcription factors TFIIIB and TFIIIC, rapidly reloads onto the same transcription unit. To get further insight into the Pol III transcription mechanism, we analyzed the kinetics of transcription initiation and reinitiation of a simplified in vitro transcription system consisting only of Pol III and template DNA. The data indicates that, in the absence of transcription factors, first-round transcription initiation by Pol III proceeds at a normal rate, while facilitated reinitiation during subsequent cycles is compromised.


Assuntos
RNA Polimerase III/fisiologia , Fator de Transcrição TFIIIB/deficiência , Fatores de Transcrição TFIII/deficiência , Transcrição Gênica/fisiologia , Sequência de Bases , Regulação Fúngica da Expressão Gênica/fisiologia , Dados de Sequência Molecular , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIIB/fisiologia , Fatores de Transcrição TFIII/fisiologia
8.
Mol Cell ; 24(2): 221-32, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-17052456

RESUMO

Yeast RNA polymerase III is recruited upon binding of subcomplexes tauA and tauB of transcription factor IIIC (TFIIIC) to the A and B blocks of tRNA gene promoters. The tauB subcomplex consists of subunits tau60, tau91, and tau138. We determined the 3.2 A crystal structure of tau60 bound to a large C-terminal fragment of tau91 (Deltatau91). Deltatau91 protein contains a seven-bladed propeller preceded by an N-terminal extension, whereas tau60 contains a structurally homologous propeller followed by a C-terminal domain with a novel alpha/beta fold. The two propeller domains do not have any detectable DNA binding activity and mediate heterodimer formation that may serve as scaffold for tau138 assembly. We show that the C-terminal tau60 domain interacts with the TATA binding protein (TBP). Recombinant tauB recruits TBP and stimulates TFIIIB-directed transcription on a TATA box containing tRNA gene, implying a combined contribution of tauA and tauB to preinitiation complex formation.


Assuntos
Fatores de Transcrição TFIII/química , Fatores de Transcrição TFIII/fisiologia , Sequência de Aminoácidos , Cristalografia por Raios X , Dimerização , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Transcrição Gênica
9.
FEBS Lett ; 548(1-3): 33-6, 2003 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-12885403

RESUMO

The Saccharomyces cerevisiae RPR1 gene encodes the RNA subunit of its RNase P, which processes RNA polymerase (pol) III primary transcripts. RPR1, which is transcribed by pol III, has been isolated as a multicopy suppressor of a specific small internal deletion (amino acids 253-269) in the Bdp1 subunit of transcription factor TFIIIB, the core pol III transcription factor. The selective effect of this Bdp1 deletion on RPR1 transcription has been analyzed in vitro. It is shown that TFIIIC-dependent assembly of TFIIIB on the RPR1 promoter is specifically sensitive to this Bdp1 deletion, leading to gene-specifically defective single-round and multiple-round transcription.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Fator de Transcrição TFIIIB/genética , Sequência de Bases , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/biossíntese , Fator de Transcrição TFIIIB/biossíntese , Fatores de Transcrição TFIII/fisiologia , Transcrição Gênica/genética
10.
J Biol Chem ; 278(12): 10450-7, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12533520

RESUMO

The yeast transcription factor IIIC (TFIIIC) is organized in two distinct multisubunit domains, tauA and tauB, that are respectively responsible for TFIIIB assembly and stable anchoring of TFIIIC on the B block of tRNA genes. Surprisingly, we found that the removal of tauA by mild proteolysis stabilizes the residual tauB.DNA complexes at high temperatures. Focusing on the well conserved tau95 subunit that belongs to the tauA domain, we found that the tau95-E447K mutation has long distance effects on the stability of TFIIIC.DNA complexes and start site selection. Mutant TFIIIC.DNA complexes presented a shift in their 5' border, generated slow-migrating TFIIIB.DNA complexes upon stripping TFIIIC by heparin or heat treatment, and allowed initiation at downstream sites. In addition, mutant TFIIIC.DNA complexes were highly unstable at high temperatures. Coimmunoprecipitation experiments indicated that tau95 participates in the interconnection of tauA with tauB via its contacts with tau138 and tau91 polypeptides. The results suggest that tau95 serves as a scaffold critical for tauA.DNA spatial configuration and tauB.DNA stability.


Assuntos
DNA/metabolismo , Proteínas Fúngicas/química , Fatores de Transcrição TFIII/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Conformação Proteica , Subunidades Proteicas , Relação Estrutura-Atividade , Fatores de Transcrição TFIII/fisiologia , Transcrição Gênica
11.
Mol Cell Biol ; 21(19): 6429-39, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11533232

RESUMO

The Saccharomyces cerevisiae U6 RNA gene, SNR6, possesses upstream sequences that allow productive binding in vitro of the RNA polymerase III (Pol III) transcription initiation factor IIIB (TFIIIB) in the absence of TFIIIC or other assembly factors. TFIIIC-independent transcription of SNR6 in vitro is highly sensitive to point mutations in a consensus TATA box at position -30. In contrast, the TATA box is dispensable for SNR6 transcription in vivo, apparently because TFIIIC bound to the intragenic A block and downstream B block can recruit TFIIIB via protein-protein interactions. A mutant allele of SNR6 with decreased spacing between the A and B blocks, snr6-Delta42, exhibits increased dependence on the upstream sequences in vivo. Unexpectedly, we find that in vivo expression of snr6-Delta42 is much more sensitive to mutations in a (dT-dA)(7) tract between the TATA box and transcription start site than to mutations in the TATA box itself. Inversion of single base pairs in the center of the dT-dA tract nearly abolishes transcription of snr6-Delta42, yet inversion of all 7 base pairs has little effect on expression, indicating that the dA-dT tract is relatively orientation independent. Although it is within the TFIIIB footprint, point mutations in the dT-dA tract do not inhibit TFIIIB binding or TFIIIC-independent transcription of SNR6 in vitro. In the absence of the chromatin architectural protein Nhp6, dT-dA tract mutations are lethal even when A-to-B block spacing is wild type. We conclude that the (dT-dA)(7) tract and Nhp6 cooperate to direct productive transcription complex assembly on SNR6 in vivo.


Assuntos
Cromatina/ultraestrutura , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , RNA Polimerase III/fisiologia , RNA Nuclear Pequeno/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência Rica em At , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Genes Fúngicos , Proteínas HMGN , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , RNA Nuclear Pequeno/biossíntese , Elementos de Resposta , Saccharomyces cerevisiae/metabolismo , TATA Box , Fator de Transcrição TFIIIB , Fatores de Transcrição/metabolismo , Fatores de Transcrição TFIII/fisiologia , Transcrição Gênica
12.
J Mol Biol ; 299(3): 601-13, 2000 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-10835271

RESUMO

The most peculiar transcriptional property of eukaryotic tRNA genes, as well as of other genes served by RNA polymerase III, is their complete dependence on the intragenic interaction platform provided by transcription factor IIIC (TFIIIC) for the productive assembly of the TBP-containing initiation factor TFIIIB. The sole exception, in yeast, is the U6 RNA gene, which is able to exploit a TATAAATA element, 30 bp upstream of the transcription start site, for the TFIIIC-independent assembly of TFIIIB. To find out whether this extragenic core promoter organization and autonomous TFIIIB assembly capacity are unique features of the U6 gene or also apply to other genes transcribed by RNA polymerase III, we scanned the 5'-flanking regions (up to position -100) of the entire tRNA gene set of Saccharomyces cerevisiae searching for U6-like TATA motifs. Four tRNA genes harboring such a sequence motif around position -30 were identified and found to be transcribed in vitro by a minimal system only composed of TFIIIB and RNA polymerase III. In this system, start site selection is not at all affected by the absence of TFIIIC, which, when added, significantly stimulates transcription by determining an increase in the number, rather than in the efficiency of utilization, of productive initiation complexes. A specific TBP-TATA element interaction is absolutely required for TFIIIC-independent transcription, but the nearby sequence context also contributes to the efficiency of autonomous TFIIIB assembly. The existence of a TFIIIB assembly pathway leading to the faithful transcription of natural eukaryotic tRNA genes in the absence of TFIIIC provides novel insights into the functional flexibility of the eukaryotic tRNA gene transcription machinery and on its evolution from an ancestral RNA polymerase III system relying on upstream, TATA- centered control elements.


Assuntos
Genes Fúngicos/genética , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição TFIII/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Sequência de Bases , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Regulação Fúngica da Expressão Gênica/genética , Frequência do Gene/genética , Genes de Plantas/genética , Cinética , Dados de Sequência Molecular , Mutação/genética , RNA Polimerase III/metabolismo , RNA Fúngico/análise , RNA Fúngico/biossíntese , RNA Fúngico/genética , RNA Nuclear Pequeno/genética , RNA de Transferência/análise , RNA de Transferência/biossíntese , Saccharomyces cerevisiae/enzimologia , TATA Box/genética , Proteína de Ligação a TATA-Box , Moldes Genéticos , Fator de Transcrição TFIIIB
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA