Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 32(13): 2618-27, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22566684

RESUMO

Otx2 plays essential roles in rostral brain development, and its counteraction with Gbx2 has been suggested to determine the midbrain-hindbrain boundary (MHB) in vertebrates. We previously identified the FM enhancer that is conserved among vertebrates and drives Otx2 transcription in forebrain/midbrain from the early somite stage. In this study, we found that the POU homeodomain of class III POU factors (Brn1, Brn2, Brn4, and Oct6) associates with noncanonical target sequence TAATTA in the FM enhancer. MicroRNA-mediated knockdown of Brn2 and Oct6 diminished the FM enhancer activity in anterior neural progenitor cells (NPCs) differentiated from P19 cells. The class III POU factors associate with the FM enhancer in forebrain and midbrain but not in hindbrain. We also demonstrated that the Gbx2 homeodomain recognizes the same target TAATTA in the FM enhancer, and Gbx2 associates with the FM enhancer in hindbrain. Gbx2 misexpression in the anterior NPCs repressed the FM enhancer activity and inhibited Brn2 association with the enhancer, whereas Gbx2 knockdown caused ectopic Brn2 association in the posterior NPCs. These results suggest that class III POU factors and Gbx2 share the same target site, TAATTA, in the FM enhancer and that their region-specific binding restricts Otx2 expression at the MHB.


Assuntos
Proteínas de Homeodomínio/metabolismo , Mesencéfalo/metabolismo , Fatores de Transcrição Otx/genética , Fatores do Domínio POU/metabolismo , Prosencéfalo/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação/genética , Ligação Competitiva , Linhagem Celular , Sequência Conservada , Primers do DNA/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Glicoproteínas de Membrana/genética , Mesencéfalo/embriologia , Camundongos , Camundongos Transgênicos , Modelos Neurológicos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Fator 6 de Transcrição de Octâmero/antagonistas & inibidores , Fator 6 de Transcrição de Octâmero/genética , Fator 6 de Transcrição de Octâmero/metabolismo , Fatores do Domínio POU/antagonistas & inibidores , Fatores do Domínio POU/classificação , Fatores do Domínio POU/genética , Prosencéfalo/embriologia , Homologia de Sequência de Aminoácidos
2.
Artigo em Inglês | MEDLINE | ID: mdl-21911072

RESUMO

Brine shrimps of the genus Artemia are aquatic species of economic importance because of their important significance to aquaculture and are used as a model species in physiology and developmental biology. Research on Artemia POU homeobox gene function will enhance our understanding of the physiological and developmental processes of POU homeobox gene in animals. Herein, a full-length cDNA encoding an Artemia POU homeobox protein gene 1 (APH-1) from Artemia sinica (designated as As-APH-1) was cloned and characterized by a reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end (RACE) method. The As-APH-1 gene encoded a protein of 388 amino acid polypeptide with a calculated molecular mass of 42.85kDa and an isoelectric point of 6.90 and the protein belongs to the POU III family. Multiple sequence alignments revealed that A. sinica As-APH-1 protein sequence shared a conserved POU homeobox domain with other species. The early and persistent expression of As-APH-1 in the naupliar stages by semi-quantitative RT-PCR and whole-mount embryonic immunohistochemistry suggest that As-APH-1 functions very early in the salt gland and may be required continuously in this organ. Later in development, expression of As-APH-1 begins to dramatically decrease and disappear in salt gland of the sub-adult Artemia. In addition, we also discovered that As-APH-1 increased obviously as the salinity increased, indicating that As-APH-1 might be used as a good indicator of salinity stress. In summary, we are the first to identify the As-APH-1 gene and to determine its gene expression patterns in early embryogenesis stages and in different salinity stress in brine shrimp, A. sinica. The result of expression of As-APH-1 affected by salinity changes will provide us further understanding of the underlying mechanisms of osmoregulation in Artemia early embryonic development.


Assuntos
Artemia/crescimento & desenvolvimento , Artemia/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Fatores do Domínio POU/genética , Tolerância ao Sal/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Evolução Molecular , Proteínas de Homeodomínio/classificação , Dados de Sequência Molecular , Fatores do Domínio POU/classificação , Filogenia , Conformação Proteica , Salinidade , Estresse Fisiológico/genética
3.
Dev Dyn ; 240(10): 2354-63, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21932313

RESUMO

The highly conserved POU genes encode homeodomain transcription factors involved in various developmental events, with some, the Brn genes, playing key roles in neurogenesis. We investigated the evolutionary relationships between these genes, by studying the POU gene complement of a model teleost, the medaka (Oryzias latipes). We identified 17 POU genes and carried out a comprehensive in situ hybridization analysis focusing on the optic tectum, a cortical structure of the mesencephalon, in which cell positions and their differentiation states are spatially and temporally correlated. Six POU genes displayed patterned expression in the optic tectum: two genes were expressed in the center of the organ (a zone with differentiated neurons), two in an intermediate zone in which cells exit the cell cycle and two in the peripheral proliferation zone. These results suggest that POU genes may play key roles in both late neurogenesis and in multipotent neural progenitors.


Assuntos
Oryzias/anatomia & histologia , Oryzias/genética , Oryzias/metabolismo , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Colículos Superiores/metabolismo , Animais , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Estudo de Associação Genômica Ampla , Dados de Sequência Molecular , Fatores do Domínio POU/classificação , Filogenia , Somitos/embriologia , Colículos Superiores/citologia , Colículos Superiores/embriologia
4.
BMC Biol ; 5: 47, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17963489

RESUMO

BACKGROUND: The homeobox genes are a large and diverse group of genes, many of which play important roles in the embryonic development of animals. Increasingly, homeobox genes are being compared between genomes in an attempt to understand the evolution of animal development. Despite their importance, the full diversity of human homeobox genes has not previously been described. RESULTS: We have identified all homeobox genes and pseudogenes in the euchromatic regions of the human genome, finding many unannotated, incorrectly annotated, unnamed, misnamed or misclassified genes and pseudogenes. We describe 300 human homeobox loci, which we divide into 235 probable functional genes and 65 probable pseudogenes. These totals include 3 genes with partial homeoboxes and 13 pseudogenes that lack homeoboxes but are clearly derived from homeobox genes. These figures exclude the repetitive DUX1 to DUX5 homeobox sequences of which we identified 35 probable pseudogenes, with many more expected in heterochromatic regions. Nomenclature is established for approximately 40 formerly unnamed loci, reflecting their evolutionary relationships to other loci in human and other species, and nomenclature revisions are proposed for around 30 other loci. We use a classification that recognizes 11 homeobox gene 'classes' subdivided into 102 homeobox gene 'families'. CONCLUSION: We have conducted a comprehensive survey of homeobox genes and pseudogenes in the human genome, described many new loci, and revised the classification and nomenclature of homeobox genes. The classification scheme may be widely applicable to homeobox genes in other animal genomes and will facilitate comparative genomics of this important gene superclass.


Assuntos
Genes Homeobox , Proteínas de Homeodomínio/classificação , Proteína do Homeodomínio de Antennapedia/classificação , Mapeamento Cromossômico , Cromossomos Humanos/química , Proteínas de Drosophila/classificação , Proteínas de Drosophila/genética , Fator 1-alfa Nuclear de Hepatócito/classificação , Fator 1-alfa Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Homeodomínio LIM , Proteínas Mitocondriais , Proteínas de Neoplasias , Fatores do Domínio POU/classificação , Filogenia , Pseudogenes , Fatores de Transcrição , Dedos de Zinco/fisiologia
5.
J Mol Biol ; 370(4): 687-700, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17543985

RESUMO

N Oct-3, a transcription factor member of the POU protein family, is implicated in normal central nervous system development but also in melanoma growth. Its DNA-binding domain (DBD) comprises two subdomains, POUs and POUh, joined by a linker peptide. We have previously shown that N Oct-3 can interact with the already described PORE and MORE DNA motifs, but also with a new structural element we have termed NORE. Having observed that both the PORE and NORE DNA-association modes depend on a strong anchoring of the POUh subdomain rigid arm into the DNA-target minor groove, in contrast to the MORE mode, we have formulated the hypothesis that phosphorylation of the conserved Ser101 residue located in the N Oct-3 POUh arm could lead to differential results in DNA binding according to the type of target. Here we demonstrate that, in vitro, Ser101 is phosphorylated by protein kinase A (PKA), either purified or contained in melanoma (624 mel) nuclear extract, and that this phosphorylation indeed significantly reduced N Oct-3 DBD binding to PORE and NORE motifs, most likely by hampering the POUh rigid arm insertion in the DNA minor groove. Conversely, no effect was observed on the binding of N Oct-3 DBD to MORE sequences. Finally, once bound to its DNA targets, N Oct-3 DBD is less susceptible to PKA activity. We conclude that transcription of genes exhibiting a MORE motif in their promoter should be less affected by N Oct-3 phosphorylation than that of genes switched on by PORE or NORE sequences.


Assuntos
DNA/química , DNA/metabolismo , Fator 3 de Transcrição de Octâmero/química , Fator 3 de Transcrição de Octâmero/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Domínio Catalítico , Extratos Celulares , Núcleo Celular/enzimologia , Simulação por Computador , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Conformação de Ácido Nucleico , Fator 3 de Transcrição de Octâmero/genética , Fatores do Domínio POU/química , Fatores do Domínio POU/classificação , Fatores do Domínio POU/metabolismo , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
6.
Gene ; 383: 1-11, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16989962

RESUMO

Three POU domain containing transcription factors have been cloned from the urochordate Oikopleura dioica. Phylogenetic analysis showed that two of these (OctA1 and OctA2) are closely related members of the class II POU domain family, and one (OctB) is a member of the class III POU domain family. All three transcription factors contained a highly conserved bipartite DNA-binding POU domain with POU specific and POU homeodomains, separated by a linker region. All three proteins were shown to bind specifically to the canonical octamer motif, ATGCAAAT. The ability of these factors to drive transcription from an octamer-containing reporter construct was assessed in vertebrate B lymphocyte cell lines. Both OctA1 and OctA2 drove transcription in murine and catfish B cell lines, however, OctB did not increase the level of transcription above background levels. It is concluded that Oct transcription factors capable of functioning in a similar fashion to vertebrate Oct1/2 were present at the phylogenetic level of the urochordates.


Assuntos
Fatores do Domínio POU/genética , Urocordados/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linfócitos B/metabolismo , Sequência de Bases , Peixes-Gato , Linhagem Celular , Clonagem Molecular , DNA Complementar/genética , Camundongos , Dados de Sequência Molecular , Fatores do Domínio POU/química , Fatores do Domínio POU/classificação , Fatores do Domínio POU/metabolismo , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Transcrição Gênica , Urocordados/metabolismo
7.
Mech Dev ; 123(8): 614-25, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16860542

RESUMO

Three POU factors of subclass V, Oct-25, Oct-60 and Oct-91 are expressed in Xenopus oocytes and early embryos. We here demonstrate that vegetal overexpression of Oct-25, Oct-60, Oct-91 or mammalian Oct-3/4 suppresses mesendoderm formation in Xenopus embryos. Oct-25 and Oct-60 are shown to inhibit activin/nodal and FGF signaling pathways. Loss of Oct-25 and Oct-60 function results in elevated transcription of mesendodermal marker genes and ectopic formation of endoderm in the equatorial region of gastrula stage embryos. Within the ectoderm, Oct-25 promotes neural fate by upregulating neuroectodermal genes, such as Xsox2, which prevent differentiation of neural progenitors into neurons. We also show that mouse Oct-3/4 and Xenopus Oct-25 or Oct-60 behave as functional homologues. We conclude that Xenopus Oct proteins are required to control the levels of embryonic signaling pathways, thereby ensuring the correct specification of germ layers.


Assuntos
Ativinas/metabolismo , Gástrula/metabolismo , Fatores do Domínio POU/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Animais , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/metabolismo , Proteína Nodal , Fatores do Domínio POU/classificação , Fatores do Domínio POU/genética , RNA/genética , Xenopus laevis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA