Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000284

RESUMO

African swine fever (ASF), caused by the African swine fever virus (ASFV), is one of the most important infectious diseases that cause high morbidity and mortality in pigs and substantial economic losses to the pork industry of affected countries due to the lack of effective vaccines. The need to develop alternative robust antiviral countermeasures, especially anti-ASFV agents, is of the utmost urgency. This study shows that fangchinoline (FAN), a bisbenzylisoquinoline alkaloid found in the roots of Stephania tetrandra of the family Menispermaceae, significantly inhibits ASFV replication in porcine alveolar macrophages (PAMs) at micromolar concentrations (IC50 = 1.66 µM). Mechanistically, the infection of ASFV triggers the AKT/mTOR/NF-κB signaling pathway. FAN significantly inhibits ASFV-induced activation of such pathways, thereby suppressing viral replication. Such a mechanism was confirmed using an AKT inhibitor MK2206 as it inhibited AKT phosphorylation and ASFV replication in PAMs. Altogether, the results suggest that the AKT/mTOR pathway could potentially serve as a treatment strategy for combating ASFV infection and that FAN could potentially emerge as an effective novel antiviral agent against ASFV infections and deserves further in vivo antiviral evaluations.


Assuntos
Vírus da Febre Suína Africana , Antivirais , Benzilisoquinolinas , Macrófagos Alveolares , NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Replicação Viral , Animais , Macrófagos Alveolares/virologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Replicação Viral/efeitos dos fármacos , Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/fisiologia , Suínos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Benzilisoquinolinas/farmacologia , Antivirais/farmacologia , Febre Suína Africana/virologia , Febre Suína Africana/tratamento farmacológico , Febre Suína Africana/metabolismo
2.
Viruses ; 16(7)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39066332

RESUMO

The African swine fever virus (ASFV) is an often deadly disease in swine and poses a threat to swine livestock and swine producers. With its complex genome containing more than 150 coding regions, developing effective vaccines for this virus remains a challenge due to a lack of basic knowledge about viral protein function and protein-protein interactions between viral proteins and between viral and host proteins. In this work, we identified ASFV-ASFV protein-protein interactions (PPIs) using artificial intelligence-powered protein structure prediction tools. We benchmarked our PPI identification workflow on the Vaccinia virus, a widely studied nucleocytoplasmic large DNA virus, and found that it could identify gold-standard PPIs that have been validated in vitro in a genome-wide computational screening. We applied this workflow to more than 18,000 pairwise combinations of ASFV proteins and were able to identify seventeen novel PPIs, many of which have corroborating experimental or bioinformatic evidence for their protein-protein interactions, further validating their relevance. Two protein-protein interactions, I267L and I8L, I267L__I8L, and B175L and DP79L, B175L__DP79L, are novel PPIs involving viral proteins known to modulate host immune response.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Biologia Computacional , Proteínas Virais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/química , Animais , Suínos , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Biologia Computacional/métodos , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Interações Hospedeiro-Patógeno , Genoma Viral , Inteligência Artificial
3.
PLoS Pathog ; 20(7): e1012256, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39024394

RESUMO

African swine fever (ASF) is a highly contagious, fatal disease of pigs caused by African swine fever virus (ASFV). The complexity of ASFV and our limited understanding of its interactions with the host have constrained the development of ASFV vaccines and antiviral strategies. To identify host factors required for ASFV replication, we developed a genome-wide CRISPR knockout (GeCKO) screen that contains 186,510 specific single guide RNAs (sgRNAs) targeting 20,580 pig genes and used genotype II ASFV to perform the GeCKO screen in wild boar lung (WSL) cells. We found that knockout of transmembrane protein 239 (TMEM239) significantly reduced ASFV replication. Further studies showed that TMEM239 interacted with the early endosomal marker Rab5A, and that TMEM239 deletion affected the co-localization of viral capsid p72 and Rab5A shortly after viral infection. An ex vivo study showed that ASFV replication was significantly reduced in TMEM239-/- peripheral blood mononuclear cells from TMEM239 knockout piglets. Our study identifies a novel host factor required for ASFV replication by facilitating ASFV entry into early endosomes and provides insights for the development of ASF-resistant breeding.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Sistemas CRISPR-Cas , Endossomos , Proteínas de Membrana , Internalização do Vírus , Replicação Viral , Animais , Suínos , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Febre Suína Africana/genética , Endossomos/metabolismo , Endossomos/virologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Técnicas de Inativação de Genes
4.
Viruses ; 16(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38932241

RESUMO

African swine fever (ASF) is an acute, hemorrhagic, highly contagious disease in pigs caused by African swine fever virus (ASFV). Our previous study identified that the ASFV MGF300-2R protein functions as a virulence factor and found that MGF300-2R degrades IKKß via selective autophagy. However, the E3 ubiquitin ligase responsible for IKKß ubiquitination during autophagic degradation still remains unknown. In order to solve this problem, we first pulled down 328 proteins interacting with MGF300-2R through immunoprecipitation-mass spectrometry. Next, we analyzed and confirmed the interaction between the E3 ubiquitin ligase TRIM21 and MGF300-2R and demonstrated the catalytic role of TRIM21 in IKKß ubiquitination. Finally, we indicated that the degradation of IKKß by MGF300-2R was dependent on TRIM21. In summary, our results indicate TRIM21 is the E3 ubiquitin ligase involved in the degradation of IKKß by MGF300-2R, thereby augmenting our understanding of the functions of MGF300-2R and offering insights into the rational design of live attenuated vaccines and antiviral strategies against ASF.


Assuntos
Vírus da Febre Suína Africana , Quinase I-kappa B , Ribonucleoproteínas , Ubiquitina-Proteína Ligases , Ubiquitinação , Proteínas Virais , Animais , Vírus da Febre Suína Africana/metabolismo , Vírus da Febre Suína Africana/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Suínos , Quinase I-kappa B/metabolismo , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Humanos , Células HEK293 , Interações Hospedeiro-Patógeno , Fatores de Virulência/metabolismo , Autofagia , Ligação Proteica
5.
J Biol Chem ; 300(7): 107453, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852886

RESUMO

Identification of a conserved G-quadruplex in E165R of ASFVAfrican swine fever virus (ASFV) is a double-stranded DNA arbovirus with high transmissibility and mortality rates. It has caused immense economic losses to the global pig industry. Currently, no effective vaccines or medications are to combat ASFV infection. G-quadruplex (G4) structures have attracted increasing interest because of their regulatory role in vital biological processes. In this study, we identified a conserved G-rich sequence within the E165R gene of ASFV. Subsequently, using various methods, we verified that this sequence could fold into a parallel G4. In addition, the G4-stabilizers pyridostatin and 5,10,15,20-tetrakis-(N-methyl-4-pyridyl) porphin (TMPyP4) can bind and stabilize this G4 structure, thereby inhibiting E165R gene expression, and the inhibitory effect is associated with G4 formation. Moreover, the G4 ligand pyridostatin substantially impeded ASFV proliferation in Vero cells by reducing gene copy number and viral protein expression. These compelling findings suggest that G4 structures may represent a promising and novel antiviral target against ASFV.


Assuntos
Vírus da Febre Suína Africana , Antivirais , Quadruplex G , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Animais , Chlorocebus aethiops , Células Vero , Antivirais/farmacologia , Antivirais/química , Suínos , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Porfirinas/química , Porfirinas/farmacologia , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacologia , Ácidos Picolínicos/metabolismo , Replicação Viral/efeitos dos fármacos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/química , Aminoquinolinas
6.
J Biol Chem ; 300(7): 107472, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38879005

RESUMO

African swine fever virus (ASFV) causes severe disease in domestic pigs and wild boars, seriously threatening the development of the global pig industry. Type I interferon (IFN-I) is an important component of innate immunity, inducing the transcription and expression of antiviral cytokines by activating Janus-activated kinase-signal transducer and activator of transcription (STAT). However, the underlying molecular mechanisms by which ASFV antagonizes IFN-I signaling have not been fully elucidated. Therefore, using coimmunoprecipitation, confocal microscopy, and dual luciferase reporter assay methods, we investigated these mechanisms and identified a novel ASFV immunosuppressive protein, pB475L, which interacts with the C-terminal domain of STAT2. Consequently, pB475L inhibited IFN-I signaling by inhibiting STAT1 and STAT2 heterodimerization and nuclear translocation. Furthermore, we constructed an ASFV-B475L7PM mutant strain by homologous recombination, finding that ASFV-B475L7PM attenuated the inhibitory effects on IFN-I signaling compared to ASFV-WT. In summary, this study reveals a new mechanism by which ASFV impairs host innate immunity.


Assuntos
Vírus da Febre Suína Africana , Imunidade Inata , Interferon Tipo I , Fator de Transcrição STAT2 , Transdução de Sinais , Proteínas Virais , Animais , Humanos , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/genética , Células HEK293 , Evasão da Resposta Imune , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT2/metabolismo , Fator de Transcrição STAT2/genética , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/imunologia
7.
Front Immunol ; 15: 1380220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799458

RESUMO

African swine fever (ASF) is an acute hemorrhagic and devastating infectious disease affecting domestic pigs and wild boars. It is caused by the African swine fever virus (ASFV), which is characterized by genetic diversity and sophisticated immune evasion strategies. To facilitate infection, ASFV encodes multiple proteins to antagonize host innate immune responses, thereby contributing to viral virulence and pathogenicity. The molecular mechanisms employed by ASFV-encoded proteins to modulate host antiviral responses have not been comprehensively elucidated. In this study, it was observed that the ASFV MGF505-6R protein, a member of the multigene family 505 (MGF505), effectively suppressed the activation of the interferon-beta (IFN-ß) promoter, leading to reduced mRNA levels of antiviral genes. Additional evidence has revealed that MGF505-6R antagonizes the cGAS-STING signaling pathway by interacting with the stimulator of interferon genes (STING) for degradation in the autophagy-lysosomal pathway. The domain mapping revealed that the N-terminal region (1-260aa) of MGF505-6R is the primary domain responsible for interacting with STING, while the CTT domain of STING is crucial for its interaction with MGF505-6R. Furthermore, MGF505-6R also inhibits the activation of STING by reducing the K63-linked polyubiquitination of STING, leading to the disruption of STING oligomerization and TANK binding kinase 1 (TBK1) recruitment, thereby impairing the phosphorylation and nuclear translocation of interferon regulatory factor 3 (IRF3). Collectively, our study elucidates a novel strategy developed by ASFV MGF505-6R to counteract host innate immune responses. This discovery may offer valuable insights for further exploration of ASFV immune evasion mechanisms and antiviral strategies.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteínas de Membrana , Proteínas Virais , Animais , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/genética , Suínos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/imunologia , Transdução de Sinais , Proteólise , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune , Interferon beta/metabolismo , Interferon beta/imunologia , Interferon beta/genética
8.
Microbes Infect ; 26(5-6): 105348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38697277

RESUMO

African swine fever virus (ASFV) infection causes African swine fever (ASF), a highly contagious and fatal disease that poses severe threat to swine production. To gain insights into the host responses to ASFV, we generated recombinant adenovirus Ad5 expressing viral membrane proteins p54, p17, and pB117L individually and infected an alveolar cell line, 3D4/21, with these recombinant viruses. Then, the cell lysates were analyzed using label-free quantification proteomic analysis method. A total of 2158 differentially expressed proteins (DEPs) were identified, of which 817, 466, and 875 proteins were from Ad5-p54-, Ad5-p17-, Ad5-pB117L-infected 3D4/21 cells, respectively. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed distinct yet interconnecting patterns of protein interaction networks. Specifically, the Ad5-p54 virus infection enriched the DEPs primarily involved in the metabolic pathways, endocytosis, adherens junction, and SNARE interactions in vesicular transport. The Ad5-p17 virus infection enriched the DEPs in endocytosis, ubiquitin-mediated proteolysis, N-Glycan biosynthesis, and apoptosis, while the Ad5-pB117L virus infection enriched the DEPs in metabolic pathways, endocytosis, oxidative phosphorylation, and focal adhesion. In summary, these results provide a comprehensive proteinomics analysis of the cellular responses to three ASFV membrane proteins, thus facilitating our understanding of ASFV pathogenesis.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteômica , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Vírus da Febre Suína Africana/metabolismo , Animais , Suínos , Proteômica/métodos , Linhagem Celular , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Interações Hospedeiro-Patógeno , Mapas de Interação de Proteínas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas da Matriz Viral/metabolismo , Proteínas da Matriz Viral/genética
9.
Virol Sin ; 39(3): 469-477, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38789040

RESUMO

Virus replication relies on complex interactions between viral proteins. In the case of African swine fever virus (ASFV), only a few such interactions have been identified so far. In this study, we demonstrate that ASFV protein p72 interacts with p11.5 using co-immunoprecipitation and liquid chromatography-mass spectrometry (LC-MS). It was found that protein p72 interacts specifically with p11.5 â€‹at sites amino acids (aa) 1-216 of p72 and aa 1-68 of p11.5. To assess the importance of p11.5 in ASFV infection, we developed a recombinant virus (ASFVGZΔA137R) by deleting the A137R gene from the ASFVGZ genome. Compared with ASFVGZ, the infectious progeny virus titers of ASFVGZΔA137R were reduced by approximately 1.0 logs. In addition, we demonstrated that the growth defect was partially attributable to a higher genome copies-to-infectious virus titer ratios produced in ASFVGZΔA137R-infected MA104 â€‹cells than in those infected with ASFVGZ. This finding suggests that MA104 â€‹cells infected with ASFVGZΔA137R may generate larger quantities of noninfectious particles. Importantly, we found that p11.5 did not affect virus-cell binding or endocytosis. Collectively, we show for the first time the interaction between ASFV p72 and p11.5. Our results effectively provide the relevant information of the p11.5 protein. These results extend our understanding of complex interactions between viral proteins, paving the way for further studies of the potential mechanisms and pathogenesis of ASFV infection.


Assuntos
Vírus da Febre Suína Africana , Proteínas Virais , Replicação Viral , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Animais , Suínos , Proteínas Virais/metabolismo , Proteínas Virais/genética , Chlorocebus aethiops , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Linhagem Celular , Ligação Proteica , Cromatografia Líquida , Células Vero , Espectrometria de Massas
10.
Front Biosci (Landmark Ed) ; 29(4): 164, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38682190

RESUMO

BACKGROUND: The African swine fever (ASF) virus (ASFV) and ASF-like viral sequences were identified in human samples and sewage as well as in different water environments. Pigs regularly experience infections by the ASFV. The considerable stability of the virus in the environment suggests that there is ongoing and long-term contact between humans and the ASFV. However, humans exhibit resistance to the ASFV, and the decisive factor in developing infection in the body is most likely the reaction of target macrophages to the virus. Therefore, this study aimed to characterize the responses of human macrophages to the virus and explore the distinct features of the viral replication cycle within human macrophages. METHODS: The ASFV Armenia/07 strain was used in all experiments. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the ASFV gene expression; flow cytometry analysis was performed to evaluate the effects of the inactive and active ASFV (inASFV and aASFV) treatments on the phenotype of THP-1-derived macrophages (Mφ0) and inflammatory markers. Moreover, other methods such as cell viability and apoptosis assays, staining techniques, phagocytosis assay, lysosome-associated membrane protein (LAMP-1) cytometry, and cytokine detection were used during experiments. RESULTS: Our findings showed that the virus initiated replication by entering human macrophages. Subsequently, the virus shed its capsid and initiated the transcription of numerous viral genes, and at least some of these genes executed their functions. In THP-1-derived macrophages (Mφ0), the ASFV implemented several functions to suppress cell activity, although the timing of their implementation was slower compared with virus-sensitive porcine alveolar macrophages (PAMs). Additionally, the virus could not complete the entire replication cycle in human Mφ0, as indicated by the absence of viral factories and a decrease in infectious titers of the virus with each subsequent passage. Overall, the infection of Mφ0 with the ASFV caused significant alterations in their phenotype and functions, such as increased TLR2, TLR3, CD80, CD36, CD163, CXCR2, and surface LAMP-1 expression. Increased production of the tumor necrosis factor (TNF) and interleukin (IL)-10 and decreased production of interferon (IFN)-α were also observed. Taken together, the virus enters human THP-1-derived macrophages, starts transcription, and causes immunological responses by target cells but cannot complete the replicative cycle. CONCLUSION: These findings suggest that there may be molecular limitations within human macrophages that at least partially restrict the complete replication of the ASFV. Understanding the factors that hinder viral replication in Mφ0 can provide valuable insights into the host-virus interactions and the mechanisms underlying the resistance of human macrophages to the ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Macrófagos , Replicação Viral , Vírus da Febre Suína Africana/fisiologia , Vírus da Febre Suína Africana/genética , Humanos , Macrófagos/virologia , Macrófagos/metabolismo , Animais , Febre Suína Africana/virologia , Febre Suína Africana/imunologia , Febre Suína Africana/metabolismo , Apoptose , Suínos , Fagocitose , Células THP-1 , Sobrevivência Celular , Citocinas/metabolismo , Citocinas/genética
11.
J Biol Chem ; 300(6): 107307, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657868

RESUMO

African swine fever, caused by the African swine fever virus (ASFV), is a viral hemorrhagic disease that affects domestic pigs and wild boars. ASFV infection causes extensive tissue damage, and the associated mechanism is poorly understood. Pyroptosis is characterized by the activation of inflammatory caspases and pore formation in the cellular plasma membrane, resulting in the release of inflammatory cytokines and cell damage. How ASFV infection regulates pyroptosis remains unclear. Here, using siRNA assay and overexpression methods, we report that ASFV infection regulated pyroptosis by cleaving the pyroptosis execution protein gasdermin A (GSDMA). ASFV infection activated caspase-3 and caspase-4, which specifically cleaved GSDMA at D75-P76 and D241-V242 to produce GSDMA into five fragments, including GSDMA-N1-75, GSDMA-N1-241, and GSDMA-N76-241 fragments at the N-terminal end of GSDMA. Only GSDMA-N1-241, which was produced in the late stage of ASFV infection, triggered pyroptosis and inhibited ASFV replication. The fragments, GSDMA-N1-75 and GSDMA-N76-241, lose the ability to induce pyroptosis. Overall ASFV infection differentially regulates pyroptosis by GSDMA in the indicated phase, which may be conducive to its own replication. Our findings reveal a novel molecular mechanism for the regulation of pyroptosis.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Caspase 3 , Caspases Iniciadoras , Piroptose , Vírus da Febre Suína Africana/metabolismo , Animais , Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , Febre Suína Africana/patologia , Suínos , Caspase 3/metabolismo , Caspase 3/genética , Caspases Iniciadoras/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Ligação a Fosfato/metabolismo , Células HEK293 , Replicação Viral
12.
Int J Biol Macromol ; 266(Pt 1): 130939, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493816

RESUMO

African swine fever (ASF) is an acute, febrile, highly contagious infection of pigs caused by the African swine fever virus (ASFV). The purpose of this study is to understand the molecular mechanism of ASFV infection and evaluate the effect of DCA on MAPK pathway, so as to provide scientific basis for the development of new antiviral drugs. The transcriptome analysis found that ASFV infection up-regulated the IL-17 and MAPK signaling pathways to facilitate viral replication. Metabolome analysis showed that DCA levels were up-regulated after ASFV infection, and that exogenous DCA could inhibit activation of the MAPK pathway by ASFV infection and thus inhibit viral replication. Dual-luciferase reporter assays were used to screen the genes of ASFV and revealed that I73R could significantly up-regulate the transcription level of AP-1 transcription factor in the MAPK pathway. Confocal microscopy demonstrated that I73R could promote AP-1 entry into the nucleus, and that DCA could inhibit the I73R-mediated nuclear entry of AP-1, inhibiting MAPK pathway, and I73R interacts with AP-1. These results indicated that DCA can inhibit ASFV-mediated activation of the MAPK pathway, thus inhibiting ASFV replication. This study provides a theoretical basis for research on ASF pathogenesis and for antiviral drug development.


Assuntos
Vírus da Febre Suína Africana , Ácido Desoxicólico , Sistema de Sinalização das MAP Quinases , Replicação Viral , Replicação Viral/efeitos dos fármacos , Animais , Vírus da Febre Suína Africana/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Suínos , Ácido Desoxicólico/farmacologia , Fator de Transcrição AP-1/metabolismo , Chlorocebus aethiops , Células Vero , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Antivirais/farmacologia
13.
J Virol ; 98(3): e0183423, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38353534

RESUMO

African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by ASF virus (ASFV) infection. At present, there are still no safe and effective drugs and vaccines to prevent ASF. Mining the important proteins encoded by ASFV that affect the virulence and replication of ASFV is the key to developing effective vaccines and drugs. In this study, ASFV pH240R, a capsid protein of ASFV, was found to inhibit the type I interferon (IFN) signaling pathway. Mechanistically, pH240R interacted with IFNAR1 and IFNAR2 to disrupt the interaction of IFNAR1-TYK2 and IFNAR2-JAK1. Additionally, pH240R inhibited the phosphorylation of IFNAR1, TYK2, and JAK1 induced by IFN-α, resulting in the suppression of the nuclear import of STAT1 and STAT2 and the expression of IFN-stimulated genes (ISGs). Consistent with these results, H240R-deficient ASFV (ASFV-∆H240R) infection induced more ISGs in porcine alveolar macrophages compared with its parental ASFV HLJ/18. We also found that pH240R enhanced viral replication via inhibition of ISGs expression. Taken together, our results clarify that pH240R enhances ASFV replication by inhibiting the JAK-STAT signaling pathway, which highlights the possibility of pH240R as a potential drug target.IMPORTANCEThe innate immune response is the host's first line of defense against pathogen infection, which has been reported to affect the replication and virulence of African swine fever virus (ASFV) isolates. Identification of ASFV-encoded proteins that affect the virulence and replication of ASFV is the key step in developing more effective vaccines and drugs. In this study, we found that pH240R interacted with IFNAR1 and IFNAR2 by disrupting the interaction of IFNAR1-TYK2 and IFNAR2-JAK1, resulting in the suppression of the expression of interferon (IFN)-stimulated genes (ISGs). Consistent with these results, H240R-deficient ASFV (ASFV-∆H240R) infection induces more ISGs' expression compared with its parental ASFV HLJ/18. We also found that pH240R enhanced viral replication via inhibition of ISGs' expression. Taken together, our findings showed that pH240R enhances ASFV replication by inhibiting the IFN-JAK-STAT axis, which highlights the possibility of pH240R as a potential drug target.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Animais , Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/metabolismo , Interferon Tipo I/metabolismo , Transdução de Sinais/fisiologia , Suínos , Vacinas/metabolismo , Replicação Viral
14.
Subcell Biochem ; 106: 283-331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38159232

RESUMO

African swine fever virus is a complex double-stranded DNA virus that exhibits tropism for cells of the mononuclear phagocytic system. Virus replication is a multi-step process that involves the nucleus of the host cell as well the formation of large perinuclear sites where progeny virions are assembled prior to transport to, and budding through, the plasma membrane. Like many viruses, African swine fever virus reorganises the cellular architecture to facilitate its replication and has evolved multiple mechanisms to avoid the potential deleterious effects of host cell stress response pathways. However, how viral proteins and virus-induced structures trigger cellular stress pathways and manipulate the subsequent responses is still relatively poorly understood. African swine fever virus alters nuclear substructures, modulates autophagy, apoptosis and the endoplasmic reticulum stress response pathways. The viral genome encodes for at least 150 genes, of which approximately 70 are incorporated into the virion. Many of the non-structural genes have not been fully characterised and likely play a role in host range and modifying immune responses. As the field moves towards approaches that take a broader view of the effect of expression of individual African swine fever genes, we summarise how the different steps in virus replication interact with the host cell and the current state of knowledge on how it modulates the resulting stress responses.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/metabolismo , Proteínas Virais/genética , Interações Hospedeiro-Patógeno , Replicação Viral
15.
mSystems ; 8(6): e0047123, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37966252

RESUMO

IMPORTANCE: African swine fever (ASF), caused by African swine fever virus (ASFV), has become a major crisis for the pork industry in recent years. The mechanism for ASFV pathology and the clinical symptoms difference of ASF between domestic pigs and reservoir hosts remain to be elucidated. We deciphered the comprehensive protein-protein interaction (PPI) network between ASFV and host immune pathways. The intensive PPI network contained both ASFV-host immune pathway PPI and ASFV-ASFV PPI information, providing a comprehensive ASFV-host interaction landscape. Furthermore, the ASFV-host PPI difference between domestic pigs and warthogs was explored, which will be instructive for exploring essential candidates involved in ASFV pathology. Moreover, we screened the inhibitory effect of ASFV proteins in the PPI with cGAS-STING pathway on IFN-I and NF-κB, further providing possible functions of ASFV-host PPI network in innate immune regulation.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Suínos , Animais , Febre Suína Africana/metabolismo , Sus scrofa , NF-kappa B/metabolismo , Interferon Tipo I/metabolismo
16.
Virulence ; 14(1): 2232707, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37442088

RESUMO

Viruses have developed different strategies to hijack mitophagy to facilitate their replication. However, whether and how African swine fever virus (ASFV) regulates mitophagy are largely unknown. Here, we found that the ASFV-encoded p17 induced mitophagy. Coimmunoprecipitation/mass spectrometry assays identified translocase of outer mitochondrial membrane 70 (TOMM70) as the protein that interacted with p17. The binding of TOMM70 to p17 promoted the binding of the mitophagy receptor SQSTM1 to TOMM70, led to engulfment of mitochondria by autophagosomes, and consequently decreased the number of mitochondria. Consistently, the levels of TOMM70 and TOMM20 decreased substantially after p17 expression or ASFV infection. Furthermore, p17-mediated mitophagy resulted in the degradation of mitochondrial antiviral signalling proteins and inhibited the production of IFN-α, IL-6 and TNFα. Overall, our findings suggest that ASFV p17 regulates innate immunity by inducing mitophagy via the interaction of SQSTM1 with TOMM70.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Mitofagia , Mitocôndrias/metabolismo , Febre Suína Africana/metabolismo
17.
J Biol Chem ; 299(7): 104844, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209818

RESUMO

Cytoplasmic stress granules (SGs) are generally triggered by stress-induced translation arrest for storing mRNAs. Recently, it has been shown that SGs are regulated by different stimulators including viral infection, which is involved in the antiviral activity of host cells to limit viral propagation. To survive, several viruses have been reported to execute various strategies, such as modulating SG formation, to create optimal surroundings for viral replication. African swine fever virus (ASFV) is one of the most notorious pathogens in the global pig industry. However, the interplay between ASFV infection and SG formation remains largely unknown. In this study, we found that ASFV infection inhibited SG formation. Through SG inhibitory screening, we found that several ASFV-encoded proteins are involved in inhibition of SG formation. Among them, an ASFV S273R protein (pS273R), the only cysteine protease encoded by the ASFV genome, significantly affected SG formation. ASFV pS273R interacted with G3BP1 (Ras-GTPase-activating protein [SH3 domain] binding protein 1), a vital nucleating protein of SG formation. Furthermore, we found that ASFV pS273R cleaved G3BP1 at the G140-F141 to produce two fragments (G3BP1-N1-140 and G3BP1-C141-456). Interestingly, both the pS273R-cleaved fragments of G3BP1 lost the ability to induce SG formation and antiviral activity. Taken together, our finding reveals that the proteolytic cleavage of G3BP1 by ASFV pS273R is a novel mechanism by which ASFV counteracts host stress and innate antiviral responses.


Assuntos
Vírus da Febre Suína Africana , Grânulos de Estresse , Proteínas Virais , Animais , Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/enzimologia , Vírus da Febre Suína Africana/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Grânulos de Estresse/metabolismo , Suínos , Replicação Viral/fisiologia , Chlorocebus aethiops , Humanos , Células HEK293 , Células Cultivadas , Macrófagos Alveolares/virologia , Proteínas Virais/metabolismo , Proteólise
18.
Microbiol Spectr ; 10(6): e0328222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36377947

RESUMO

African swine fever (ASF) is a highly contagious and often lethal disease of pigs caused by ASF virus (ASFV) and recognized as the biggest killer in global swine industry. Despite exhibiting incredible self-sufficiency, ASFV remains unconditionally dependent on the host translation machinery for its mRNA translation. However, less is yet known regarding how ASFV-encoded proteins regulate host translation machinery in infected cells. Here, we examined how ASFV interacts with the eukaryotic initiation factor 2α (eIF2α) signaling axis, which directs host translation control and adaptation to cellular stress. We found that ASFV MGF110-7L, a previously uncharacterized member of the multigene family 110, remarkably enhanced the phosphorylation level of eIF2α. In porcine alveolar macrophage 3D4/21 and porcine kidney-15 cells, MGF110-7L triggered eIF2α signaling and the integrated stress response, resulting in the suppression of host translation and the formation of stress granules (SGs). Mechanistically, MGF110-7L-induced phosphorylation of eIF2α was mediated via protein kinase R (PKR) and PKR-like endoplasmic reticulum (ER) kinase (PERK), and this process was essential for host translation repression and SG formation. Notably, our subsequent analyses confirmed that MGF110-7L was overwhelmingly retained in the ER and caused a specific reorganization of the secretory pathway. Further proteomic analyses and biochemical experiments revealed that MGF110-7L could trigger ER stress and activate the unfolded protein response, thus contributing to eIF2α phosphorylation and translation reprogramming. Overall, our study both identifies a novel mechanism by which ASFV MGF110-7L subverts the host protein synthesis machinery and provides further insights into the translation regulation that occurs during ASFV infection. IMPORTANCE African swine fever (ASF) has become a socioeconomic burden and a threat to food security and biodiversity, but no commercial vaccines or antivirals are available currently. Understanding the viral strategies to subvert the host translation machinery during ASF virus (ASFV) infection could potentially lead to new vaccines and antiviral therapies. In this study, we dissected how ASFV MGF110-7L interacts with the eIF2α signaling axis controlling translational reprogramming, and we addressed the role of MGF110-7L in induction of cellular stress responses, eIF2α phosphorylation, translation suppression, and stress granule formation. These results define several molecular interfaces by which ASFV MGF110-7L subverts host cell translation, which may guide research on antiviral strategies and dissection of ASFV pathogenesis.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Febre Suína Africana/genética , Febre Suína Africana/metabolismo , Grânulos de Estresse , Replicação Viral , Proteômica , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas Quinases , Antivirais
19.
Front Cell Infect Microbiol ; 12: 809135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223542

RESUMO

African swine fever (ASF) has brought excellent barriers to swine production in China and the world. Studies have shown that extracellular vesicles mediate the RNA and protein spread of pathogenic microorganisms and RNA and proteins. After infection by pathogenic microorganisms causes significant differences in the proteins contained within extracellular vesicles. Based on the above studies, the extracellular vesicles were extracted from ASF virus (ASFV)-infected swine plasma. And qPCR, western blot, and confocal experiment were carried out. The research shows that extracted extracellular vesicles significantly promote the replication of ASFV in susceptible and non-susceptible cells Proteomics analysis of the extracellular vesicle proteins revealed that ASFV infection could cause significant differences in the protein profile. This study demonstrates that extracellular vesicles play a critical role in ASFV replication and transmission and cause significant differences in the protein profile encapsulated in extracellular vesicles.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vesículas Extracelulares , Febre Suína Africana/metabolismo , Febre Suína Africana/patologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Proteômica , Suínos , Replicação Viral
20.
J Virol ; 96(3): e0166721, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34787458

RESUMO

African swine fever virus (ASFV) is a complex nucleocytoplasmic large DNA virus that causes African swine fever, a lethal hemorrhagic disease that currently threatens the pig industry. Recent studies have identified the viral structural proteins of infectious ASFV particles. However, the functional roles of several ASFV structural proteins remain largely unknown. Here, we characterized the function of the ASFV structural protein H240R (pH240R) in virus morphogenesis. pH240R was identified as a capsid protein by using immunoelectron microscopy and interacted with the major capsid protein p72 by pulldown assays. Using a recombinant ASFV, ASFV-ΔH240R, with the H240R gene deleted from the wild-type ASFV (ASFV-WT) genome, we revealed that the infectious progeny virus titers were reduced by approximately 2.0 logs compared with those of ASFV-WT. Furthermore, we demonstrated that the growth defect was due to the generation of noninfectious particles with a higher particle-to-infectious titer ratio in ASFV-ΔH240R-infected primary porcine alveolar macrophages (PAMs) than in those infected with ASFV-WT. Importantly, we found that pH240R did not affect virus-cell binding, endocytosis, or egress but did affect ASFV assembly; noninfectious virions containing large aberrant tubular and bilobulate structures comprised nearly 98% of all virions observed in ASFV-ΔH240R-infected PAMs by electron microscopy. Notably, we demonstrated that ASFV-ΔH240R infection induced high-level expression of inflammatory cytokines in PAMs. Collectively, we show for the first time that pH240R is essential for ASFV icosahedral capsid formation and infectious particle production. Also, these results highlight the importance of pH240R in ASFV morphogenesis and provide a novel target for the development of ASF vaccines and antivirals. IMPORTANCE African swine fever is a lethal hemorrhagic disease of global concern that is caused by African swine fever virus (ASFV). Despite extensive research, there exist relevant gaps in knowledge of the fundamental biology of the viral life cycle. In this study, we identified pH240R as a capsid protein that interacts with the major capsid protein p72. Furthermore, we showed that pH240R was required for the efficient production of infectious progeny virions as indicated by the H240R-deleted ASFV mutant (ASFV-ΔH240R). More specifically, pH240R directs the morphogenesis of ASFV toward the icosahedral capsid in the process of assembly. In addition, ASFV-ΔH240R infection induced high-level expression of inflammatory cytokines in primary porcine alveolar macrophages. Our results elucidate the role of pH240R in the process of ASFV assembly, which may instruct future research on effective vaccines or antiviral strategies.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/genética , Febre Suína Africana/metabolismo , Proteínas do Capsídeo/genética , Citocinas/metabolismo , Macrófagos/metabolismo , Deleção de Sequência , Febre Suína Africana/patologia , Vírus da Febre Suína Africana/ultraestrutura , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Citocinas/genética , Suscetibilidade a Doenças/imunologia , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Suínos , Vírion/ultraestrutura , Internalização do Vírus , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA