Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Microb Pathog ; 185: 106452, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37972743

RESUMO

The present investigation focuses on examining the clinical, histopathological, and ultrastructural changes that occurred in pig, during an outbreak of African swine fever (ASF) in 2022 in Assam, India. The disease initially manifested as a per-acute case with high mortality but without any evident clinical signs. Subsequently, some animals exhibited an acute form of the disease characterized by high fever (104-106 °F), anorexia, vomiting, respiratory distress, and bleeding from the anal and nasal orifices. During acute African swine fever virus (ASFV) infections, elevated levels of pro-inflammatory IL-1α, IL-1ß, IL-6, TNF, CCL2, CCL5, and CXCL10 were detected in the palatine tonsil, lymph nodes, spleen, and kidney using qPCR assay. These molecular changes were associated with haemorrhages, edemas, and lymphoid depletion. Postmortem examinations revealed prominent features such as splenomegaly with haemorrhages, haemorrhagic lymphadenitis, severe petechial haemorrhage in the kidney, pneumonia in the lungs, and necrotic palatine tonsil. Histopathological analysis demonstrated lymphocyte depletion in lymphoid organs, multi-organ haemorrhages, and interstitial pneumonia in the lungs. Scanning electron microscopy (SEM) further confirmed lymphocyte depletion in lymphoid organs through lymphocyte apoptosis and kidney damage with distorted tubules due to red blood cell destruction. Transmission electron microscopy reaffirmed lymphocyte apoptosis by observing chromatin condensation and nucleus margination in lymphocytes of lymphoid organs. These findings provide comprehensive insights into the clinical, histopathological, and ultrastructural aspects of ASF outbreak in pigs. Understanding the pathological changes associated with ASF can contribute to improved diagnosis, prevention, and control measures for this highly contagious and economically devastating viral disease.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Febre Suína Africana/epidemiologia , Febre Suína Africana/patologia , Linfócitos , Surtos de Doenças , Hemorragia , Sus scrofa
2.
Front Cell Infect Microbiol ; 12: 809135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223542

RESUMO

African swine fever (ASF) has brought excellent barriers to swine production in China and the world. Studies have shown that extracellular vesicles mediate the RNA and protein spread of pathogenic microorganisms and RNA and proteins. After infection by pathogenic microorganisms causes significant differences in the proteins contained within extracellular vesicles. Based on the above studies, the extracellular vesicles were extracted from ASF virus (ASFV)-infected swine plasma. And qPCR, western blot, and confocal experiment were carried out. The research shows that extracted extracellular vesicles significantly promote the replication of ASFV in susceptible and non-susceptible cells Proteomics analysis of the extracellular vesicle proteins revealed that ASFV infection could cause significant differences in the protein profile. This study demonstrates that extracellular vesicles play a critical role in ASFV replication and transmission and cause significant differences in the protein profile encapsulated in extracellular vesicles.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vesículas Extracelulares , Febre Suína Africana/metabolismo , Febre Suína Africana/patologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Proteômica , Suínos , Replicação Viral
3.
Vet Res ; 53(1): 7, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073979

RESUMO

The type I interferon (IFN-I) signaling pathway is an important part of the innate immune response and plays a vital role in controlling and eliminating pathogens. African swine fever virus (ASFV) encodes various proteins to evade the host's natural immunity. However, the molecular mechanism by which the ASFV-encoded proteins inhibit interferon production remains poorly understood. In the present study, ASFV MGF360-11L inhibited cGAS, STING, TBK1, IKKε, IRF7 and IRF3-5D mediated activation of the IFN-ß and ISRE promoters, accompanied by decreases in IFN-ß, ISG15 and ISG56 mRNA expression. ASFV MGF360-11L interacted with TBK1 and IRF7, degrading TBK1 and IRF7 through the cysteine, ubiquitin-proteasome and autophagy pathways. Moreover, ASFV MGF360-11L also inhibited the phosphorylation of TBK1 and IRF3 stimulated by cGAS-STING overexpression. Truncation mutation analysis revealed that aa 167-353 of ASFV MGF360-11L could inhibit cGAS-STING-mediated activation of the IFN-ß and ISRE promoters. Finally, the results indicated that ASFV MGF360-11L plays a significant role in inhibiting IL-1ß, IL-6 and IFN-ß production in PAM cells (PAMs) infected with ASFV. In short, these results demonstrated that ASFV MGF360-11L was involved in regulating IFN-I expression by negatively regulating the cGAS signaling pathway. In summary, this study preliminarily clarified the molecular mechanism by which the ASFV MGF360-11L protein antagonizes IFN-I-mediated antiviral activity, which will help to provide new strategies for the treatment and prevention of ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Doenças dos Suínos , Febre Suína Africana/patologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/metabolismo , Animais , Interferon Tipo I/genética , Interferon beta , Interferons/imunologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Suínos , Doenças dos Suínos/patologia
4.
J Virol ; 96(3): e0166721, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34787458

RESUMO

African swine fever virus (ASFV) is a complex nucleocytoplasmic large DNA virus that causes African swine fever, a lethal hemorrhagic disease that currently threatens the pig industry. Recent studies have identified the viral structural proteins of infectious ASFV particles. However, the functional roles of several ASFV structural proteins remain largely unknown. Here, we characterized the function of the ASFV structural protein H240R (pH240R) in virus morphogenesis. pH240R was identified as a capsid protein by using immunoelectron microscopy and interacted with the major capsid protein p72 by pulldown assays. Using a recombinant ASFV, ASFV-ΔH240R, with the H240R gene deleted from the wild-type ASFV (ASFV-WT) genome, we revealed that the infectious progeny virus titers were reduced by approximately 2.0 logs compared with those of ASFV-WT. Furthermore, we demonstrated that the growth defect was due to the generation of noninfectious particles with a higher particle-to-infectious titer ratio in ASFV-ΔH240R-infected primary porcine alveolar macrophages (PAMs) than in those infected with ASFV-WT. Importantly, we found that pH240R did not affect virus-cell binding, endocytosis, or egress but did affect ASFV assembly; noninfectious virions containing large aberrant tubular and bilobulate structures comprised nearly 98% of all virions observed in ASFV-ΔH240R-infected PAMs by electron microscopy. Notably, we demonstrated that ASFV-ΔH240R infection induced high-level expression of inflammatory cytokines in PAMs. Collectively, we show for the first time that pH240R is essential for ASFV icosahedral capsid formation and infectious particle production. Also, these results highlight the importance of pH240R in ASFV morphogenesis and provide a novel target for the development of ASF vaccines and antivirals. IMPORTANCE African swine fever is a lethal hemorrhagic disease of global concern that is caused by African swine fever virus (ASFV). Despite extensive research, there exist relevant gaps in knowledge of the fundamental biology of the viral life cycle. In this study, we identified pH240R as a capsid protein that interacts with the major capsid protein p72. Furthermore, we showed that pH240R was required for the efficient production of infectious progeny virions as indicated by the H240R-deleted ASFV mutant (ASFV-ΔH240R). More specifically, pH240R directs the morphogenesis of ASFV toward the icosahedral capsid in the process of assembly. In addition, ASFV-ΔH240R infection induced high-level expression of inflammatory cytokines in primary porcine alveolar macrophages. Our results elucidate the role of pH240R in the process of ASFV assembly, which may instruct future research on effective vaccines or antiviral strategies.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/genética , Febre Suína Africana/metabolismo , Proteínas do Capsídeo/genética , Citocinas/metabolismo , Macrófagos/metabolismo , Deleção de Sequência , Febre Suína Africana/patologia , Vírus da Febre Suína Africana/ultraestrutura , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Citocinas/genética , Suscetibilidade a Doenças/imunologia , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Suínos , Vírion/ultraestrutura , Internalização do Vírus , Replicação Viral
5.
Viruses ; 13(11)2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34835046

RESUMO

African swine fever (ASF) is a severe hemorrhagic disease in swine characterized by massive lymphocyte depletion and cell death, with apoptosis and necrosis in infected lymphoid tissues. However, the molecular mechanism regarding ASFV-induced cell death remains largely unknown. In this study, 94 ASFV-encoded proteins were screened to determine the viral proteins involved in cell death in vitro, and pE199L showed the most significant effect. Ectopic expression of pE199L in porcine cells (CRL-2843) and human cells (HEK293T and HeLa cells) induced cell death remarkably, showing obvious shrinking, blistering, apoptotic bodies, and nuclear DNA fragments. Meanwhile, cell death was markedly alleviated when the expression of pE199L was knocked down during ASFV infection. Additionally, the expression of pE199L caused a loss of mitochondrial membrane potential, release of cytochrome C, and caspase-9 and -3/7 activation, indicating that the mitochondrial apoptotic pathway was involved in pE199L-induced apoptosis. Further investigations showed that pE199L interacted with several anti-apoptotic BCL-2 subfamily members (such as BCL-XL, MCL-1, BCL-W, and BCL-2A1) and competed with BAK for BCL-XL, which promoted BAK and BAX activation. Taken together, ASFV pE199L induces the mitochondrial-dependent apoptosis, which may provide clues for a comprehensive understanding of ASFV pathogenesis.


Assuntos
Vírus da Febre Suína Africana , Apoptose , Mitocôndrias , Proteínas Virais , Animais , Humanos , Febre Suína Africana/patologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/crescimento & desenvolvimento , Vírus da Febre Suína Africana/metabolismo , Vírus da Febre Suína Africana/patogenicidade , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína bcl-X/metabolismo , Caspases/metabolismo , Linhagem Celular , Citocromos c/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
J Virol ; 95(23): e0119921, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34495696

RESUMO

African swine fever (ASF) is a severe hemorrhagic infectious disease in pigs caused by African swine fever virus (ASFV), leading to devastating economic losses in epidemic regions. Its control currently depends on thorough culling and clearance of the diseased and surrounding suspected pigs. An ASF vaccine has been extensively explored for years worldwide, especially in hog-intensive areas where it is highly desired, but it is still unavailable for numerous reasons. Here, we report another ASF vaccine candidate, named SY18ΔI226R, bearing a deletion of the I226R gene with a replacement of an enhanced green fluorescent protein (eGFP) expression cassette at the right end of the viral genome. This deletion results in the complete loss of virulence of SY18 as the gene-deleted strain does not cause any clinical symptoms in all pigs inoculated with a dosage of either 104.0 or 107.0 50% tissue culture infective doses (TCID50). Apparent viremia with a gradual decline was monitored, while virus shedding was detected only occasionally in oral or anal swabs. ASFV-specific antibody appeared at 9 days postinoculation. After intramuscular challenge with its parental strain ASFV SY18 at 21 days postinoculation, all the challenged pigs survived, without obvious febrile or abnormal clinical signs. No viral DNA could be detected upon the dissection of any tissue when viremia disappeared. These results indicated that SY18ΔI226R is safe in swine and elicits robust immunity to virulent ASFV infection. IMPORTANCE Outbreaks of African swine fever have resulted in devastating losses to the swine industry worldwide, but there is currently no commercial vaccine available. Although several vaccine candidates have been reported, none has been approved for use for several reasons, especially ones concerning biosafety. Here, we identified a new undescribed functional gene, I226R. When deleted from the ASFV genome, the virus completely loses its virulence in swine. Importantly, pigs infected with this gene-deleted virus were resistant to infection by intramuscular challenge with 102.5 or 104.0 TCID50 of its virulent parental virus. Furthermore, the nucleic acid of the gene-deleted virus and its virulent parental virus was rarely detected from oral or anal swabs. Viruses could not be detected in any tissues after necropsy when viremia became negative, indicating that robust immunity was achieved. Therefore, SY18ΔI226R is a novel, ideal, and efficacious vaccine candidate for genotype II ASF.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/imunologia , Deleção de Genes , Genoma Viral , Febre Suína Africana/patologia , Febre Suína Africana/prevenção & controle , Animais , DNA Viral , Genes Virais/genética , Genótipo , Análise de Sequência , Suínos , Vacinas Virais/imunologia , Viremia/genética , Virulência/genética
7.
J Biol Chem ; 297(5): 101190, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34517008

RESUMO

African swine fever virus (ASFV) is a large DNA virus that is highly contagious and pathogenic in domestic pigs with a mortality rate up to 100%. However, how ASFV suppresses JAK-STAT1 signaling to evade the immune response remains unclear. In this study, we found that the ASFV-encoded protein MGF-505-7R inhibited proinflammatory IFN-γ-mediated JAK-STAT1 signaling. Mechanistically, MGF-505-7R was found to interact with JAK1 and JAK2 and mediate their degradation. Further study indicated that MGF-505-7R promoted degradation of JAK1 and JAK2 by upregulating the E3 ubiquitin ligase RNF125 expression and inhibiting expression of Hes5, respectively. Consistently, MGF-505-7R-deficient ASFV induced high levels of IRF1 expression and displayed compromised replication both in primary porcine alveolar macrophages and pigs compared with wild-type ASFV. Furthermore, MGF-505-7R deficiency attenuated the virulence of the ASFV and pathogenesis of ASF in pigs. These findings suggest that the JAK-STAT1 axis mediates the innate immune response to the ASFV and that MGF-505-7R plays a critical role in the virulence of the ASFV and pathogenesis of ASF by antagonizing this axis. Thus, we conclude that deletion of MGF-505-7R may serve as a strategy to develop attenuated vaccines against the ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Janus Quinase 1 , Janus Quinase 2 , Sistema de Sinalização das MAP Quinases , Macrófagos Alveolares , Proteínas Virais , Fatores de Virulência , Febre Suína Africana/genética , Febre Suína Africana/metabolismo , Febre Suína Africana/patologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Vírus da Febre Suína Africana/patogenicidade , Animais , Linhagem Celular , Humanos , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
Viruses ; 13(2)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673255

RESUMO

African swine fever (ASF) is currently causing an epizootic, affecting pigs throughout Eurasia, and causing significant economic losses in the swine industry. ASF is caused by African swine fever virus (ASFV) that consists of a large dsDNA genome that encodes for more than 160 genes; few of these genes have been studied in detail. ASFV contains four multi-gene family (MGF) groups of genes that have been implicated in regulating the immune response and host specificity; however, the individual roles of most of these genes have not been well studied. Here, we describe the evaluation of the previously uncharacterized ASFV MGF110-1L open reading frame (ORF) using a deletion mutant of the ASFV currently circulating throughout Eurasia. The recombinant ASFV lacking the MGF110-1L gene (ASFV-G-ΔMGF110-1L) demonstrated in vitro that the MGF110-1L gene is non-essential, since ASFV-G-ΔMGF110-1L had similar replication kinetics in primary swine macrophage cell cultures when compared to parental highly virulent field isolate Georgia2007 (ASFV-G). Experimental infection of domestic pigs with ASFV-G-ΔMGF110-1L produced a clinical disease similar to that caused by the parental ASFV-G, confirming that deletion of the MGF110-1L gene from the ASFV genome does not affect viral virulence.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/patologia , Fases de Leitura Aberta/genética , Fatores de Virulência/genética , Replicação Viral/genética , Sequência de Aminoácidos/genética , Animais , Sequência de Bases , Células Cultivadas , Deleção de Genes , Regulação Viral da Expressão Gênica/genética , Genoma Viral/genética , República da Geórgia , Macrófagos/virologia , Alinhamento de Sequência , Sus scrofa , Suínos/virologia , Doenças dos Suínos/virologia , Virulência/genética
9.
Viruses ; 14(1)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-35062235

RESUMO

African swine fever (ASF) has evolved from an exotic animal disease to a threat to global pig production. An important avenue for the wide-spread transmission of animal diseases is their dissemination through boar semen used for artificial insemination. In this context, we investigated the role of male reproductive organs in the transmission of ASF. Mature domestic boars and adolescent wild boars, inoculated with different ASF virus strains, were investigated by means of virological and pathological methods. Additionally, electron microscopy was employed to investigate in vitro inoculated sperm. The viral genome, antigens and the infectious virus could be found in all gonadal tissues and accessory sex glands. The viral antigen and viral mRNAs were mainly found in mononuclear cells of the respective tissues. However, some other cell types, including Leydig, endothelial and stromal cells, were also found positive. Using RNAScope, p72 mRNA could be found in scattered halo cells of the epididymal duct epithelium, which could point to the disruption of the barrier. No direct infection of spermatozoa was observed by immunohistochemistry, or electron microscopy. Taken together, our results strengthen the assumption that ASFV can be transmitted via boar semen. Future studies are needed to explore the excretion dynamics and transmission efficiency.


Assuntos
Vírus da Febre Suína Africana/isolamento & purificação , Febre Suína Africana/transmissão , Febre Suína Africana/virologia , Genitália Masculina/virologia , Febre Suína Africana/patologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Animais , Glândulas Bulbouretrais/patologia , Glândulas Bulbouretrais/virologia , DNA Viral/análise , Epididimo/patologia , Epididimo/virologia , Genitália Masculina/patologia , Leucócitos Mononucleares/virologia , Masculino , Próstata/patologia , Próstata/virologia , RNA Mensageiro/análise , RNA Viral/análise , Espermatozoides/ultraestrutura , Espermatozoides/virologia , Sus scrofa , Suínos , Testículo/patologia , Testículo/virologia , Replicação Viral
10.
Open Vet J ; 10(2): 189-197, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32821663

RESUMO

Background: The first confirmed case of African swine fever (ASF) in Vietnam was reported officially in February 2019. To date, ASF virus (ASFV) have been detected in 63/63 provinces in Vietnam. Currently, real-time polymerase chain reaction (PCR) is considered to be a powerful tool for viral detection in field samples, including ASFV. However, some recent reports have suggested that mismatches in primer and probe binding regions may directly affect real-time PCR qualification, leading a false-negative result. Aim: This study aims to further examine a conflicting result obtained from two OIE recommended methods, conventional PCR and real-time PCR, for ASFV detection. Methods: Two ASF suspected pigs from different provinces in the north of Vietnam were selected for this study based on clinical signs and postmortem lesions. The different results obtained by OIE-recommended conventional PCR and real-time PCR were further analyzed by the Sanger sequencing method and virus isolation in combination with hemadsorption (HAD) test using porcine alveolar macrophages cells. Results: The results showed that when the primer sequence matched perfectly with the sequences of field isolates, a mutation in probe binding region was found, indicating that a single mismatch in the probe binding site may cause a false-negative result by real-time PCR in detecting ASFV in clinical samples in Vietnam. An agreement between conventional PCR, using PPA1/PPA2 primers and two golden standard methods, virus isolation in combination with HAD assay, and sequencing method was observed in this study. Conclusion: A single mismatch in the probe binding site caused a failse-negative result by realtime PCR method in field diagnosis of ASFV. The needs consideration when selecting the appropriate molecular diagnostic methods is based on the current databases of ASFV sequences, particularly for epidemiological surveillance of ASF.


Assuntos
Vírus da Febre Suína Africana/isolamento & purificação , Febre Suína Africana/diagnóstico , Febre Suína Africana/patologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Animais , Reações Falso-Negativas , Macrófagos Alveolares/virologia , Técnicas de Diagnóstico Molecular/veterinária , Reação em Cadeia da Polimerase/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Suínos , Vietnã
11.
Viruses ; 12(6)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585808

RESUMO

African swine fever virus (ASFV) is the causative agent of the African swine fever (ASF) epizootic currently affecting pigs throughout Eurasia, causing significant economic losses in the swine industry. The virus genome encodes for more than 160 genes, of which only a few have been studied in detail. Here we describe the previously uncharacterized ASFV open reading frame (ORF) C962R, a gene encoding for a putative NTPase. RNA transcription studies using infected swine macrophages demonstrate that the C962R gene is translated as a late virus protein. A recombinant ASFV lacking the C962R gene (ASFV-G-ΔC962R) demonstrates in vivo that the C962R gene is non-essential, since ASFV-G-ΔC962R has similar replication kinetics in primary swine macrophage cell cultures when compared to parental highly virulent field isolate Georgia2007 (ASFV-G). Experimental infection of domestic pigs with ASFV-G-ΔC962R produced a clinical disease similar to that caused by the parental ASFV-G, confirming that deletion of the C962R gene from the ASFV genome does not impact virulence.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/patologia , Nucleosídeo-Trifosfatase/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Deleção de Genes , Genoma Viral/genética , Macrófagos/virologia , Fases de Leitura Aberta/genética , Alinhamento de Sequência , Suínos , Doenças dos Suínos/virologia , Proteínas Virais/genética , Fatores de Virulência/genética , Replicação Viral/genética
12.
J Virol ; 94(14)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32376618

RESUMO

Following short immunization protocols, naturally attenuated African swine fever virus (ASFV) isolate OURT88/3 and deletion mutant BeninΔMGF have previously been shown to induce high percentages of protection in domestic pigs against challenge with virulent virus. The results obtained in the present study show that a single intramuscular immunization of domestic pigs with OURT88/3 or BeninΔMGF followed by a challenge with the virulent Benin 97/1 isolate at day 130 postimmunization did not trigger the mechanisms necessary to generate immunological memory able to induce long-term protection against disease. All pigs developed acute forms of acute swine fever (ASF). Gamma interferon-producing cells peaked at day 24 postimmunization, declining thereafter. Surprisingly, the levels of regulatory T cells (Tregs) and interleukin-10 (IL-10) were elevated at the end of the experiment, suggesting that regulatory components of the immune system may inhibit effective protection.IMPORTANCE The duration of immunity for any vaccine candidate is crucial. In the case of African swine fever virus vaccine candidates, this issue has received little attention. Attenuated viruses have proven protective following short immunization protocols in which pigs were challenged a few weeks after the first immunization. Here, the duration of immunity and the immune responses induced over a duration of 130 days were studied during prechallenge and after challenge of pigs immunized with the naturally attenuated isolate OURT88/3 and an attenuated gene-deleted isolate, BeninΔMGF. After a single intramuscular immunization of domestic pigs with the OURT88/3 isolate or BeninΔMGF virus, animals were not protected against challenge with the virulent Benin 97/1 ASFV genotype I isolate at day 130 postimmunization. The levels of regulatory T cells and IL-10 were elevated at the end of the experiment, suggesting that regulatory components of the immune system may inhibit effective protection.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/imunologia , Interleucina-10/imunologia , Linfócitos T Reguladores/imunologia , Vacinas Virais/imunologia , Febre Suína Africana/patologia , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/isolamento & purificação , Animais , Suínos , Linfócitos T Reguladores/patologia , Vacinas Atenuadas/imunologia
13.
Transbound Emerg Dis ; 67(4): 1654-1659, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32009303

RESUMO

African swine fever (ASF) is one of the most important and complex viral diseases in domestic pigs and wild boar. Over the last decade, the disease has spread to several European and Asian countries and is now one of the major threats to profitable pig production worldwide. One of the more recently affected western countries is Belgium. To date, only wild boar are affected in a rather defined area in the Luxembourg region close to France, Luxembourg and Germany. While detailed sequence analyses were recently performed, biological characterization was still pending. Here, we report on the experimental inoculation of four sub-adult wild boar to further characterize the virus and its distribution in different tissues. After oronasal inoculation with the virus strain 'Belgium 2018/1', all animals developed an acute and severe disease course with typical pathomorphological and histopathological lesions. Organs and blood samples were positive in qPCR, haemadsorption test and antigen lateral flow devices (LFD). Virus and viral genome were also detected in genitals and accessory sex glands of two boars. There were no antibodies detectable in commercial antibody ELISAs, antibody LFDs and indirect immunoperoxidase tests. Thus, the genotype II ASF virus isolate 'Belgium 2018/1' showed a highly virulent phenotype in European wild boar similar to parental viruses like Armenia 2007 and other previously characterized ASFV strains. The study also provided a large set of well-characterized sample materials for test validation and assay harmonization.


Assuntos
Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/virologia , Sus scrofa/virologia , Doenças dos Suínos/virologia , Febre Suína Africana/patologia , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/isolamento & purificação , Animais , Animais Selvagens/virologia , Anticorpos Antivirais/sangue , Bélgica , Ensaio de Imunoadsorção Enzimática/veterinária , Genoma Viral , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Suínos , Doenças dos Suínos/patologia , Virulência/fisiologia
14.
Viruses ; 11(10)2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547130

RESUMO

: African swine fever is a devastating hemorrhagic infectious disease, which affects domestic and wild swines (Susscrofa) of all breeds and ages, with a high lethality of up to 90-100% in naïve animals. The causative agent, African swine fever virus (ASFV), is a large and complex double-stranded DNA arbovirus which is currently spreading worldwide, with serious socioeconomic consequences. There is no treatment or effective vaccine commercially available, and most of the current research is focused on attenuated viral models, with limited success so far. Thus, new strategies are under investigation. Extracellular vesicles (EVs) have proven to be a promising new vaccination platform for veterinary diseases in situations in which conventional approaches have not been completely successful. Here, serum extracellular vesicles from infected pigs using two different ASFV viruses (OURT 88/3 and Benin ΔMGF), corresponding to a naturally attenuated virus and a deletion mutant, respectively, were characterized in order to determine possible differences in the content of swine and viral proteins in EV-enriched fractions. Firstly, EVs were characterized by their CD5, CD63, CD81 and CD163 surface expression. Secondly, ASFV proteins were detected on the surface of EVs from ASFV-infected pig serum. Finally, proteomic analysis revealed few specific proteins from ASFV in the EVs, but 942 swine proteins were detected in all EV preparations (negative controls, and OURT 88/3 and Benin ΔMGF-infected preparations). However, in samples from OURT 88/3-infected animals, only a small number of proteins were differentially identified compared to control uninfected animals. Fifty-six swine proteins (Group Benin) and seven proteins (Group OURT 88/3) were differentially detected on EVs when compared to the EV control group. Most of these were related to coagulation cascades. The results presented here could contribute to a better understanding of ASFV pathogenesis and immune/protective responses in the host.


Assuntos
Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/virologia , Vesículas Extracelulares/metabolismo , Febre Suína Africana/metabolismo , Febre Suína Africana/patologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Vesículas Extracelulares/virologia , Feminino , Mutação , Proteômica , Sus scrofa , Suínos , Carga Viral , Proteínas Virais/metabolismo
15.
Emerg Microbes Infect ; 8(1): 438-447, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30898043

RESUMO

African swine fever (ASF) entered China in August 2018 and rapidly spread across the entire country, severely threatening the Chinese domestic pig population, which accounts for more than 50% of the pig population worldwide. In this study, an ASFV isolate, Pig/Heilongjiang/2018 (Pig/HLJ/18), was isolated in primary porcine alveolar macrophages (PAMs) from a pig sample from an ASF outbreak farm. The isolate was characterized by using the haemadsorption (HAD) test, Western blotting and immunofluorescence, and electronic microscopy. Phylogenetic analysis of the viral p72 gene revealed that Pig/HLJ/18 belongs to Genotype II. Infectious titres of virus propagated in primary PAMs and pig marrow macrophages were as high as 107.2 HAD50/ml. Specific-pathogen-free pigs intramuscularly inoculated with different virus dosages at 103.5-106.5 HAD50 showed acute disease with fever and haemorrhagic signs. The incubation periods were 3-5 days for virus-inoculated pigs and 9 days for contact pigs. All virus-inoculated pigs died between 6-9 days post-inoculation (p.i.), and the contact pigs died between 13-14 days post-contact (p.c.). Viremia started on day 2 p.i. in inoculated pigs and on day 9 p.c. in contact pigs. Viral genomic DNA started to be detected from oral and rectal swab samples on 2-5 days p.i. in virus-inoculated pigs, and 6-10 days p.c. in contact pigs. These results indicate that Pig/HLJ/18 is highly virulent and transmissible in domestic pigs. Our study demonstrates the threat of ASFV and emphasizes the need to control and eradicate ASF in China.


Assuntos
Vírus da Febre Suína Africana/crescimento & desenvolvimento , Vírus da Febre Suína Africana/isolamento & purificação , Febre Suína Africana/patologia , Febre Suína Africana/virologia , Replicação Viral , Vírus da Febre Suína Africana/classificação , Vírus da Febre Suína Africana/genética , Animais , Sangue/virologia , China , Genótipo , Macrófagos Alveolares/virologia , Boca/virologia , Filogenia , Reto/virologia , Análise de Sobrevida , Sus scrofa , Suínos , Fatores de Tempo
16.
Antiviral Res ; 165: 34-41, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30836106

RESUMO

The continuing spread of African swine fever (ASF) outside Africa in Europe, the Russian Federation, China and most recently to Mongolia and Vietnam, has heightened awareness of the threat posed by this devastating disease to the global pig industry and food security. In this review we summarise what we know about the African swine fever virus (ASFV), the disease it causes, how it spreads and the current global situation. We discuss current control methods in domestic and wild pigs and prospects for development of vaccines and other tools for control.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , África , Febre Suína Africana/tratamento farmacológico , Febre Suína Africana/patologia , Febre Suína Africana/prevenção & controle , Febre Suína Africana/transmissão , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/isolamento & purificação , Vírus da Febre Suína Africana/patogenicidade , Vírus da Febre Suína Africana/ultraestrutura , Animais , Antivirais/uso terapêutico , Ásia , China , Surtos de Doenças , Europa (Continente) , Ornithodoros/virologia , Federação Russa , Sus scrofa/virologia , Suínos , Doenças Transmitidas por Carrapatos/transmissão , Vacinas Virais
17.
J Comp Pathol ; 167: 50-59, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30898298

RESUMO

There is significant evidence that pathology of the microcirculation occurs in African swine fever (ASF); however, the mechanisms by which it develops are largely unknown. In the present experimental infection study, we show that an increase in vascular permeability in the initial stages of acute ASF is dependent on viraemia and elevation of the concentration of serum nitric oxide (NO). Macrophages activated by ASF virus (ASFV) are stimulated to produce NO and simultaneously to sensitize the endothelial cells through the action of vascular endothelial growth factor Β (VEGFΒ), which is followed by an increase in VEGF-mediated endothelial permeability. In the later stages of disease, the endothelial cells undergo DNA proliferation, which may additionally provoke capillary leakage, point haemorrhages and migration of blood cells into tissues. The possible mechanism of a shift in the cell cycle from the G1 to S and G2 stages could be a direct effect of ASFV. The terminal stages of disease are characterized by triggering of compensatory mechanisms such as stimulation of the synthesis of stromal cell-derived factor-1.


Assuntos
Febre Suína Africana/patologia , Quimiocina CXCL12/sangue , Endotélio Vascular/patologia , Óxido Nítrico/sangue , Fator A de Crescimento do Endotélio Vascular/sangue , Febre Suína Africana/metabolismo , Animais , Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/metabolismo , Suínos
18.
PLoS One ; 13(8): e0202800, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30142224

RESUMO

BACKGROUND: Georgia is a country in the Caucasus region with a traditional backyard and highly variable pig farming system. The practices of such sectors have seldom been described and analyzed to better understand their implication in the introduction and spread of infectious pig diseases. Moreover, the Georgian pig sector was badly hit by an epidemic of African swine fever in 2007 that quickly spread throughout the region. MATERIALS AND METHODS: We interviewed 487 pig farmers and 116 butchers using closed questionnaires on socioeconomic issues related to pig production, husbandry practices, biosecurity, marketing and movements, and disease awareness. Surveys were conducted in four regions of Georgia and descriptive statistics were computed. Factorial analyses of mixed data and hierarchical clustering on principal components were applied to study the relationship among collected variables for both farmers and butchers. RESULTS: Results show that pig farming in Georgia is a non-professional sector, highly heterogeneous by region, characterized by smallholdings of few animals, with low inputs, outdated technologies, and poor biosecurity, which all translates into low outputs and productivity. The hierarchical clustering on principal components confirmed that there are five major production and husbandry strategies, which match the four regions where the study was conducted. CONCLUSIONS: Our results are the first step to quantify biosecurity gaps and risky behaviours, develop risk profiles, and identify critical control points across the market chain where to implement mitigation measures. This study provides the baseline information needed to design realistic and sustainable prevention, surveillance and control strategies.


Assuntos
Fazendeiros/psicologia , Doenças dos Suínos/transmissão , Febre Suína Africana/epidemiologia , Febre Suína Africana/patologia , Febre Suína Africana/transmissão , Criação de Animais Domésticos , Animais , Cruzamento , República da Geórgia/epidemiologia , Entrevistas como Assunto , Análise Multivariada , Estações do Ano , Fatores Socioeconômicos , Inquéritos e Questionários , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/patologia
19.
Sci Rep ; 7(1): 12562, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970577

RESUMO

African swine fever (ASF) in wild boar emerged in Estonia for the first time in September 2014. The first affected region was located in the South of Estonia close to the border with Latvia. It was considered to be epidemiologically connected to the outbreaks in the North of Latvia. About two weeks later, cases were detected in the North of Estonia, close to the Russian border. In the present study, we aimed to investigate the epidemiological courses of the disease in the South and in the North of Estonia. Potential associations between risk factors and the laboratory test results for ASF were examined. A hierarchical Bayesian space-time model was used to analyze the temporal trend of the ASF seroprevalence in the two areas. Young wild boar were statistically significant more likely to be ASF-positive by both, serology and virus detection, than older animals. A statistically significant difference between the two areas in the temporal course of the seroprevalence was found. While the seroprevalence clearly increased in the South, it remained relatively constant in the North. These findings led to the hypothesis that ASF might have been introduced earlier into the North of Estonia then into the South of the country.


Assuntos
Febre Suína Africana/epidemiologia , Epidemias , Sus scrofa/virologia , Doenças dos Suínos/epidemiologia , Febre Suína Africana/patologia , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/patogenicidade , Animais , Teorema de Bayes , Surtos de Doenças , Estônia , Fatores de Risco , Estudos Soroepidemiológicos , Suínos/virologia , Doenças dos Suínos/virologia
20.
BMC Vet Res ; 13(1): 227, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28764692

RESUMO

BACKGROUND: Recently moderate-virulence classical swine fever virus (CSFV) strains have been proven capable of generating postnatal persistent infection (PI), defined by the maintenance of viremia and the inability to generate CSFV-specific immune responses in animals. These animals also showed a type I interferon blockade in the absence of clinical signs. In this study, we assessed the infection generated in 7-week-old CSFV PI wild boars after infection with the African swine fever virus (ASFV). The wild boars were divided in two groups and were infected with ASFV. Group A comprised boars who were CSFV PI in a subclinical form and Group B comprised pestivirus-free wild boars. Some relevant parameters related to CSFV replication and the immune response of CSFV PI animals were studied. Additionally, serum soluble factors such as IFN-α, TNF-α, IL-6, IL-10, IFN-γ and sCD163 were analysed before and after ASFV infection to assess their role in disease progression. RESULTS: After ASFV infection, only the CSFV PI wild boars showed progressive acute haemorrhagic disease; however, the survival rates following ASFV infection was similar in both experimental groups. Notwithstanding, the CSFV RNA load of CSFV PI animals remained unaltered over the study; likewise, the ASFV DNA load detected after infection was similar between groups. Interestingly, systemic type I FN-α and IL-10 levels in sera were almost undetectable in CSFV PI animals, yet detectable in Group B, while detectable levels of IFN-γ were found in both groups. Finally, the flow cytometry analysis showed an increase in myelomonocytic cells (CD172a+) and a decrease in CD4+ T cells in the PBMCs from CSFV PI animals after ASFV infection. CONCLUSIONS: Our results showed that the immune response plays a role in the progression of disease in CSFV subclinically infected wild boars after ASFV infection, and the immune response comprised the systemic type I interferon blockade. ASFV does not produce any interference with CSFV replication, or vice versa. ASFV infection could be a trigger factor for the disease progression in CSFV PI animals, as their survival after ASFV was similar to that of the pestivirus-free ASFV-infected group. This fact suggests a high resistance in CSFV PI animals even against a virus like ASFV; this may mean that there are relevant implications for CSF control in endemic countries. The diagnosis of ASFV and CSFV co-infection in endemic countries cannot be ruled out and need to be studied in greater depth.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/imunologia , Vírus da Febre Suína Clássica/imunologia , Peste Suína Clássica/imunologia , Sus scrofa , Febre Suína Africana/patologia , Febre Suína Africana/virologia , Animais , Anticorpos Antivirais/sangue , Antígenos CD/sangue , Antígenos de Diferenciação Mielomonocítica/sangue , Peste Suína Clássica/virologia , Coinfecção/veterinária , Interferon-alfa/sangue , Interferon gama/sangue , Interleucina-10/sangue , Interleucina-6/sangue , Receptores de Superfície Celular/sangue , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA