RESUMO
The objective of this study was to estimate the genetic parameters for feed efficiency-related traits and their genetic correlations with growth, male fertility, and carcass traits using multi-trait analysis in Guzerat cattle. Further, it aimed to predict the direct and correlated responses for feed efficiency traits when selection was applied for growth, male fertility, and carcass traits. The evaluated traits were adjusted weight at 120 (W120), 210 (W210), 365 (W365), and 450 days of age (W450), adjusted scrotal circumference at 365 days of age (SC365) and at 450 days of age (SC450), scrotal circumference, ribeye area (REA), backfat thickness (BFT), rump fat thickness (RFT), residual feed intake (RFI), and dry matter intake (DMI). The genetic parameters were obtained by the restricted maximum likelihood method (REML), using an animal model in multi-trait analyses. The heritability estimates for W120, W210, W365, W450, SC365, and SC450 varied from low to high (0.17 to 0.39). The carcass traits, REA, BFT, and RFT, displayed low to moderate heritability estimates, 0.27, 0.10, and 0.31, respectively. The heritability estimates for RFI (0.15) and DMI (0.23) were low and moderate, respectively. The RFI showed low genetic correlations with growth traits, ranging from - 0.07 to 0.22, from 0.03 to 0.05 for scrotal circumference, and from - 0.35 to 0.16 for carcass, except for DMI, which ranged from 0.42 to 0.46. The RFI and DMI presented enough additive genetic variability to be used as selection criteria in Guzerat breed genetic improvement program. Additionally, the response to selection for RFI would be higher when selection is performed directly for this trait. The selection for residual feed intake would not promote unfavorable correlated responses for scrotal circumference, carcass (yield and finish), and growth traits. Therefore, the selection for more efficient animals would not compromise the productive, reproductive, and carcass performance, contributing to reduce the production costs, increasing the profitability and sustainability of beef cattle production in tropical areas.
Assuntos
Bovinos , Fenômenos Fisiológicos da Nutrição , Escroto , Aumento de Peso , Bovinos/fisiologia , Tecido Adiposo/anatomia & histologia , Composição Corporal/genética , Ingestão de Alimentos/fisiologia , Fertilidade/genética , Fenômenos Fisiológicos da Nutrição/genética , Escroto/anatomia & histologia , Seleção Artificial , Aumento de Peso/genética , AnimaisRESUMO
BACKGROUND & AIMS: Comprehensive understanding of gene-diet interactions is necessary to establish proper dietary guidelines to prevent and manage general and abdominal obesity. We investigated the role of genetic variants and their interactions with general and abdominal obesity-associated nutrients using a largescale genome-wide association study of Korean adults. METHODS: A total of 50,808 participants from a Korean genome and epidemiology study were included. Dietary intake was assessed using a food frequency questionnaire. Obesity was defined as a body mass index ≥25 kg/m2. Abdominal obesity (AO) was defined as waist circumference ≥90 cm and 80 cm in males and females, respectively. Dietary nutrient intake was classified based on Korean Dietary Reference Intakes (DRIs). Odds ratios and 95% confidence intervals were calculated after adjusting for age, sex, exercise, smoking, alcohol drinking, total energy consumption, PC1, and PC2. RESULTS: Among the individuals consuming fat (%) above DRI, carriers of Ca binding protein 39 (CAB39)- rs6722579 minor allele (A) have a higher risk of AO than those not carrying the SNP (odds ration [OR] = 3.73, p-value = 2.05e-07; interaction p-value = 1.80e-07). Among the individuals consuming vitamin C above DRI, carriers of carboxypeptidase Q (CPQ)- rs59465035 minor allele (T) have a lower risk of AO than those without that SNP (OR = 0.89, p-value = 1.44e-08; interaction p-value = 9.50e-06). The genetic association with obesity was stronger among individuals with a genetic variant rs4130113 near GHR gene region in those consume folate above DRI and with a genetic variant rs5760920 near CRYBB2 gene region in those consume vitamin B2 above DRI. CONCLUSION: Our study results suggested that interactions of specific polymorphisms at loci and certain nutrients may influence obesity and abdominal obesity.
Assuntos
Povo Asiático/genética , Ingestão de Alimentos/genética , Predisposição Genética para Doença/genética , Obesidade Abdominal/genética , Obesidade/genética , Alelos , Índice de Massa Corporal , Feminino , Predisposição Genética para Doença/epidemiologia , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fenômenos Fisiológicos da Nutrição/genética , Obesidade/epidemiologia , Obesidade Abdominal/epidemiologia , Razão de Chances , Polimorfismo de Nucleotídeo Único , República da Coreia/epidemiologiaRESUMO
BACKGROUND: DNA methylation-based epigenetic age measures have been used as biological aging markers and are associated with a healthy lifespan. Few population-based studies have examined the relation between diet and epigenetic age acceleration. OBJECTIVES: We aimed to investigate the relation between diet quality and epigenetic age acceleration. METHODS: We analyzed data from 1995 participants (mean age, 67 years; 55% women) of the Framingham Heart Study Offspring Cohort. Cross-sectional associations between the Dietary Approaches to Stop Hypertension (DASH) score and 3 whole-blood DNA methylation-derived epigenetic age acceleration measures-Dunedin Pace of Aging Methylation (DunedinPoAm), GrimAge acceleration (GrimAA), and PhenoAge acceleration (PhenoAA)-were examined. A mediation analysis was conducted to assess the mediating role of epigenetic age acceleration in relation to DASH and all-cause mortality. RESULTS: A higher DASH score was associated with lower levels of DunedinPoAm (ß = -0.05; SE = 0.02; P = 0.007), GrimAA (ß = -0.09; SE = 0.02; P < 0.001), and PhenoAA (ß = -0.07; SE = 0.02; P = 0.001). All 3 epigenetic measures mediated the association between the DASH score and all-cause mortality, with mean proportions of 22.1% for DunedinPoAm (Pmediation = 0.04), 45.1% for GrimAA (Pmediation = 0.001), and 22.9% for PhenoAA (Pmediation = 0.03). An interaction was observed between the DASH score and smoking status in relation to the epigenetic aging markers. The association between the DASH score and epigenetic aging markers tended to be stronger in "ever-smokers" (former and current smokers) compared to "never-smokers." The proportions of mediation were 31.3% for DunedinPoAm, 46.8% for GrimAA, and 10.3% for PhenoAA in ever-smokers, whereas no significant mediation was observed in never-smokers. CONCLUSIONS: Higher diet quality is associated with slower epigenetic age acceleration, which partially explains the beneficial effect of diet quality on the lifespan. Our findings emphasize that adopting a healthy diet is crucial for maintaining healthy aging.
Assuntos
Envelhecimento , Metilação de DNA , Abordagens Dietéticas para Conter a Hipertensão/mortalidade , Epigênese Genética , Fenômenos Fisiológicos da Nutrição/genética , Idoso , Biomarcadores/análise , Causas de Morte , Estudos Transversais , Feminino , Humanos , Longevidade , MasculinoRESUMO
BACKGROUND: It is unknown whether behavioral interventions to improve diet are effective in people with a genetic predisposition to obesity. OBJECTIVES: To examine associations between BMI genetic risk and changes in weight and workplace purchases by employees participating in a randomized controlled trial of an automated behavioral workplace intervention to promote healthy food choices. METHODS: Participants were hospital employees enrolled in a 12-mo intervention followed by a 12-mo follow-up. Hospital cafeterias utilized a traffic-light labeling system (e.g., green = healthy, red = unhealthy) that was used to calculate a validated Healthy Purchasing Score (HPS; higher = healthier). A weighted genome-wide BMI genetic score was generated by summing BMI-increasing alleles. RESULTS: The study included 397 adults of European ancestry (mean age, 44.9 y; 80.9% female). Participants in the highest genetic quartile (Q4) had a lower HPS and higher purchases of red-labeled items relative to participants in the lowest quartile (Q1) at baseline [Q4-Q1 Beta HPS, -4.66 (95% CI, -8.01 to -1.32); red-labeled items, 4.26% (95% CI, 1.45%-7.07%)] and at the 12-mo [HPS, -3.96 (95% CI, -7.5 to -0.41); red-labeled items, 3.20% (95% CI, 0.31%-6.09%)] and 24-mo [HPS, -3.70 (95% CI, -7.40 to 0.00); red-labeled items, 3.48% (95% CI, 0.54%-6.41%)] follow-up periods. In the intervention group, increases in HPS were similar in Q4 and Q1 at 12 mo (Q4-Q1 Beta, 1.04; 95% CI, -2.42 to 4.50). At the 24-mo follow-up, the change in BMI from baseline was similar between Q4 and Q1 (0.17 kg/m2; 95% CI, -0.55 to 0.89 kg/m2) in the intervention group, but higher in Q4 than Q1 (1.20 kg/m2; 95% CI, 0.26-2.13 kg/m2) in the control group. No interaction was evident between the treatment arm and genetic score for BMI or HPS. CONCLUSIONS: Having a high BMI genetic risk was associated with greater increases in BMI and lower quality purchases over 2 y. The 12-mo behavioral intervention improved employees' food choices, regardless of the genetic burden, and may have attenuated weight gain conferred by having the genetic risk.
Assuntos
Terapia Comportamental/métodos , Dieta Saudável/métodos , Promoção da Saúde/métodos , Obesidade/genética , Obesidade/prevenção & controle , Adulto , Índice de Massa Corporal , Comportamento do Consumidor , Feminino , Preferências Alimentares , Humanos , Masculino , Pessoa de Meia-Idade , Fenômenos Fisiológicos da Nutrição/genética , Doenças Profissionais/genética , Doenças Profissionais/prevenção & controle , Recursos Humanos em Hospital/psicologia , Fatores de Risco , Aumento de PesoRESUMO
BACKGROUND: Healthy eating is associated with lower risks of disease and mortality, but the mechanisms underlying these associations are unclear. Age is strongly related to health outcomes, and biological age can be estimated using the blood methylome. OBJECTIVES: To determine whether healthy eating patterns are associated with methylation-based measures of biological age. METHODS: Among women in the Sister Study, we calculated scores on 4 recommendation-based healthy eating indexes [Dietary Approaches to Stop Hypertension diet, Healthy Eating Index-2015, Alternative Healthy Eating Index (aHEI-2010), and the Alternative Mediterranean diet] using a validated 110-item Block FFQ completed at enrollment. Genome-wide DNA methylation data were generated using the HumanMethylation450 BeadChip on whole blood samples collected at enrollment from a case-cohort sample of 2694 women and were used to calculate 4 measures of epigenetic age acceleration (Hannum AgeAccel, Horvath AgeAccel, PhenoAgeAccel, and GrimAgeAccel). Linear regression models, adjusted for covariates and cohort sampling weights, were used to examine cross-sectional associations between eating patterns and measures of biological age. RESULTS: All 4 healthy eating indexes had inverse associations with epigenetic age acceleration, most notably with PhenoAgeAccel and GrimAgeAccel. Of these, the strongest associations were for aHEI-2010 [per 1-SD increase in diet quality, PhenoAgeAccel ß = -0.5 y (95% CI: -0.8 to -0.2 y) and GrimAgeAccel ß = -0.4 y (95% CI: -0.6 to -0.3 y)]. Although effect modification was not observed for most lifestyle factors, in analyses stratified by physical activity, the benefits of a healthy diet on epigenetic age acceleration were more pronounced among women who did not meet physical activity guidelines (reporting <2.5 h/wk of exercise). CONCLUSIONS: Higher diet quality is inversely associated with methylation-based measures of biological age. Improving diet could have the most benefits in lowering biological age among women with lower levels of physical activity. This trial was registered at clinicaltrials.gov as NCT00047970.
Assuntos
Envelhecimento/genética , Dieta Saudável/mortalidade , Epigênese Genética , Fenômenos Fisiológicos da Nutrição/genética , Adulto , Idoso , Estudos Transversais , Metilação de DNA , Inquéritos sobre Dietas , Dieta Mediterrânea/estatística & dados numéricos , Epigenoma/genética , Exercício Físico , Comportamento Alimentar , Feminino , Humanos , Estilo de Vida , Estudos Longitudinais , Pessoa de Meia-IdadeRESUMO
Past-oriented rumination and future-oriented worry are two aspects of perseverative negative thinking related to the neuroticism endophenotype and associated with depression and anxiety. Our present aim was to investigate the genomic background of these two aspects of perseverative negative thinking within separate groups of individuals with suboptimal versus optimal folate intake. We conducted a genome-wide association study in the UK Biobank database (n = 72,621) on the "rumination" and "worry" items of the Eysenck Personality Inventory Neuroticism scale in these separate groups. Optimal folate intake was related to lower worry, but unrelated to rumination. In contrast, genetic associations for worry did not implicate specific biological processes, while past-oriented rumination had a more specific genetic background, emphasizing its endophenotypic nature. Furthermore, biological pathways leading to rumination appeared to differ according to folate intake: purinergic signaling and circadian regulator gene ARNTL emerged in the whole sample, blastocyst development, DNA replication, and C-C chemokines in the suboptimal folate group, and prostaglandin response and K+ channel subunit gene KCNH3 in the optimal folate group. Our results point to possible benefits of folate in anxiety disorders, and to the importance of simultaneously taking into account genetic and environmental factors to determine personalized intervention in polygenic and multifactorial disorders.
Assuntos
Ansiedade/dietoterapia , Suplementos Nutricionais , Ingestão de Alimentos/fisiologia , Ácido Fólico/administração & dosagem , Fenômenos Fisiológicos da Nutrição/genética , Pessimismo/psicologia , Fatores de Transcrição ARNTL , Adolescente , Adulto , Idoso , Ansiedade/etiologia , Ansiedade/genética , Depressão/etiologia , Canais de Potássio Éter-A-Go-Go , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso , Neuroticismo , Ruminação Cognitiva , Adulto JovemRESUMO
Diet bioactive components, in the concept of nutrigenetics and nutrigenomics, consist of food constituents, which can transfer information from the external environment and influence gene expression in the cell and thus the function of the whole organism. It is crucial to regard food not only as the source of energy and basic nutriments, crucial for living and organism development, but also as the factor influencing health/disease, biochemical mechanisms, and activation of biochemical pathways. Bioactive components of the diet regulate gene expression through changes in the chromatin structure (including DNA methylation and histone modification), non-coding RNA, activation of transcription factors by signalling cascades, or direct ligand binding to the nuclear receptors. Analysis of interactions between diet components and human genome structure and gene activity is a modern approach that will help to better understand these relations and will allow designing dietary guidances, which can help maintain good health.
Assuntos
Fatores Biológicos/genética , Dieta/efeitos adversos , Alimentos/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição/genética , Metilação de DNA/efeitos dos fármacos , Análise de Alimentos , Genoma Humano/efeitos dos fármacos , Código das Histonas/efeitos dos fármacos , Humanos , Nutrigenômica , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genéticaRESUMO
Obese Asians are more susceptible to metabolic diseases than obese Caucasians of the same body mass index (BMI). We hypothesized that the genetic variants associated with obesity risk interact with the lifestyles of middle-aged and elderly adults, possibly allowing the development of personalized interventions based on genotype. We aimed to examine this hypothesis in a large city hospital-based cohort in Korea. The participants with cancers, thyroid diseases, chronic kidney disease, or brain-related diseases were excluded. The participants were divided into case and control according to their BMI: ≥25 kg/m2 (case; n = 17,545) and <25 kg/m2 (control; n = 36,283). The genetic variants that affected obesity risk were selected using a genome-wide association study, and the genetic variants that interacted with each other were identified by generalized multifactor dimensionality reduction analysis. The selected genetic variants were confirmed in the Ansan/Ansung cohort, and polygenetic risk scores (PRS)-nutrient interactions for obesity risk were determined. A high BMI was associated with a high-fat mass (odds ratio (OR) = 20.71) and a high skeletal muscle-mass index (OR = 3.38). A high BMI was positively related to metabolic syndrome and its components, including lipid profiles, whereas the initial menstruation age was inversely associated with a high BMI (OR = 0.78). The best model with 5-SNPs included SEC16B_rs543874, DNAJC27_rs713586, BDNF_rs6265, MC4R_rs6567160, and GIPR_rs1444988703. The high PRS with the 5-SNP model was positively associated with an obesity risk of 1.629 (1.475-1.798) after adjusting for the covariates. The 5-SNP model interacted with the initial menstruation age, fried foods, and plant-based diet for BMI risk. The participants with a high PRS also had a higher obesity risk when combined with early menarche, low plant-based diet, and a high fried-food intake than in participants with late menarche, high plant-based diet, and low fried-food intake. In conclusion, people with a high PRS and earlier menarche age are recommended to consume fewer fried foods and a more plant-based diet to decrease obesity risk. This result can be applied to personalized nutrition for preventing obesity.
Assuntos
Dieta/efeitos adversos , Predisposição Genética para Doença/genética , Menarca/genética , Fenômenos Fisiológicos da Nutrição/genética , Obesidade/etiologia , Adulto , Fatores Etários , Idoso , Povo Asiático/genética , Índice de Massa Corporal , Estudos de Casos e Controles , Estudos de Coortes , Dieta/etnologia , Dieta/métodos , Comportamento Alimentar/etnologia , Feminino , Predisposição Genética para Doença/etnologia , Estudo de Associação Genômica Ampla , Genótipo , Hospitais , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Obesidade/etnologia , Polimorfismo de Nucleotídeo Único/genética , República da Coreia/epidemiologia , República da Coreia/etnologia , Fatores de RiscoRESUMO
In the last decades, the global prevalence of non-alcoholic fatty liver disease (NAFLD) has reached pandemic proportions with derived major health and socioeconomic consequences; this tendency is expected to be further aggravated in the coming years. Obesity, insulin resistance/type 2 diabetes mellitus, sedentary lifestyle, increased caloric intake and genetic predisposition constitute the main risk factors associated with the development and progression of the disease. Importantly, the interaction between the inherited genetic background and some unhealthy dietary patterns has been postulated to have an essential role in the pathogenesis of NAFLD. Weight loss through lifestyle modifications is considered the cornerstone of the treatment for NAFLD and the inter-individual variability in the response to some dietary approaches may be conditioned by the presence of different single nucleotide polymorphisms. In this review, we summarize the current evidence on the influence of the association between genetic susceptibility and dietary habits in NAFLD pathophysiology, as well as the role of gene polymorphism in the response to lifestyle interventions and the potential interaction between nutritional genomics and other emerging therapies for NAFLD, such as bariatric surgery and several pharmacologic agents.
Assuntos
Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/terapia , Terapia Nutricional , Fenômenos Fisiológicos da Nutrição/genética , Polimorfismo de Nucleotídeo Único/genética , Comportamento Alimentar , Predisposição Genética para Doença/genética , Humanos , Estilo de Vida , Fatores de RiscoRESUMO
In chronic obesity, activated adipose tissue proinflammatory cascades are tightly linked to metabolic dysfunction. Yet, close temporal analyses of the responses to obesogenic environment such as high-fat feeding (HFF) in susceptible mouse strains question the causal relationship between inflammation and metabolic dysfunction, and/or raises the possibility that certain inflammatory cascades play adaptive/homeostatic, rather than pathogenic roles. Here, we hypothesized that CTRP6, a C1QTNF family member, may constitute an early responder to acute nutritional changes in adipose tissue, with potential physiological roles. Both 3-days high-fat feeding (3dHFF) and acute obesity reversal [2-wk switch to low-fat diet after 8-wk HFF (8wHFF)] already induced marked changes in whole body fuel utilization. Although adipose tissue expression of classical proinflammatory cytokines (Tnf-α, Ccl2, and Il1b) exhibited no, or only minor, change, C1qtnf6 uniquely increased, and decreased, in response to 3dHFF and acute obesity reversal, respectively. CTRP6 knockout (KO) mouse embryonic fibroblasts (MEFs) exhibited increased adipogenic gene expression (Pparg, Fabp4, and Adipoq) and markedly reduced inflammatory genes (Tnf-α, Ccl2, and Il6) compared with wild-type MEFs, and recombinant CTRP6 induced the opposite gene expression signature, as assessed by RNA sequencing. Consistently, 3dHFF of CTRP6-KO mice induced a greater whole body and adipose tissue weight gain compared with wild-type littermates. Collectively, we propose CTRP6 as a gene that rapidly responds to acute changes in caloric intake, acting in acute overnutrition to induce a "physiological inflammatory response" that limits adipose tissue expansion.NEW & NOTEWORTHY CTRP6 (C1qTNF6), a member of adiponectin gene family, regulates inflammation and metabolism in established obesity. Here, short-term high-fat feeding in mice is shown to increase adipose tissue expression of CTRP6 before changes in the expression of classical inflammatory genes occur. Conversely, CTRP6 expression in adipose tissue decreases early in the course of obesity reversal. Gain- and loss-of-function models suggest CTRP6 as a positive regulator of inflammatory cascades, and a negative regulator of adipogenesis and adipose tissue expansion.
Assuntos
Adipocinas/fisiologia , Tecido Adiposo/patologia , Inflamação/genética , Fenômenos Fisiológicos da Nutrição/genética , Adipogenia/genética , Adipocinas/genética , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica , Embrião de Mamíferos , Feminino , Células HEK293 , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão/genética , Hipernutrição/genética , Hipernutrição/metabolismo , Hipernutrição/patologia , GravidezRESUMO
Mouse models are an essential tool in different areas of research, including nutrition and phytochemical research. Traditional inbred mouse models have allowed the discovery of therapeutical targets and mechanisms of action and expanded our knowledge of health and disease. However, these models lack the genetic variability typically found in human populations, which hinders the translatability of the results found in mice to humans. The development of genetically diverse mouse models, such as the collaborative cross (CC) or the diversity outbred (DO) models, has been a useful tool to overcome this obstacle in many fields, such as cancer, immunology and toxicology. However, these tools have not yet been widely adopted in the field of phytochemical research. As demonstrated in other disciplines, use of CC and DO models has the potential to provide invaluable insights for translation of phytochemicals from rodents to humans, which are desperately needed given the challenges and numerous failed clinical trials in this field. These models may prove informative for personalized use of phytochemicals in humans, including: predicting interindividual variability in phytochemical bioavailability and efficacy, identifying genetic loci or genes governing response to phytochemicals, identifying phytochemical mechanisms of action and therapeutic targets, and understanding the impact of genetic variability on individual response to phytochemicals. Such insights would prove invaluable for personalized implementation of phytochemicals in humans. This review will focus on the current work performed with genetically diverse mouse populations, and the research opportunities and advantages that these models can offer to phytochemical research.
Assuntos
Modelos Animais de Doenças , Variação Genética/genética , Camundongos Endogâmicos/genética , Fenômenos Fisiológicos da Nutrição , Compostos Fitoquímicos , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Fenômenos Fisiológicos da Nutrição/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição/genética , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/farmacologia , Pesquisa Translacional BiomédicaRESUMO
BACKGROUND: Dietary and lifestyle habits constitute a significant contributing factor in the formation of anthropometric and biochemical characteristics of overweight and obese populations. The iMPROVE study recruited overweight and obese Greek adults and investigated the effect of gene-diet interactions on weight management when adhering to a six-month, randomized nutritional trial including two hypocaloric diets of different macronutrient content. The present paper displays the design of the intervention and the baseline findings of the participants' dietary habits and their baseline anthropometric and biochemical characteristics. METHODS: Baseline available data for 202 participants were analyzed and patterns were extracted via principal component analysis (PCA) on 69-item Food-Frequency Questionnaires (FFQ). Relationships with indices at baseline were investigated by multivariate linear regressions. A Lifestyle Index of five variables was further constructed. RESULTS: PCA provided 5 dietary patterns. The "Mixed" pattern displayed positive associations with logBMI and logVisceral fat, whereas the "Traditional, vegetarian-alike" pattern was nominally, negatively associated with body and visceral fat, but positively associated with HDL levels. The Lifestyle Index displayed protective effects in the formation of logBMI and logGlucose levels. CONCLUSIONS: Dietary patterns and a Lifestyle Index in overweight and obese, Greek adults highlighted associations between diet, lifestyle, and anthropometric and biochemical indices.
Assuntos
Comportamento Alimentar , Indicadores Básicos de Saúde , Estilo de Vida , Obesidade/fisiopatologia , Sobrepeso/fisiopatologia , Adulto , Antropometria , Glicemia/análise , Composição Corporal , Índice de Massa Corporal , Restrição Calórica/métodos , Inquéritos sobre Dietas , Feminino , Grécia , Humanos , Gordura Intra-Abdominal/fisiopatologia , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Nutrientes/administração & dosagem , Fenômenos Fisiológicos da Nutrição/genética , Estado Nutricional , Obesidade/genética , Obesidade/terapia , Sobrepeso/genética , Sobrepeso/terapia , Análise de Componente Principal , Estudos Prospectivos , Programas de Redução de Peso/métodosRESUMO
BACKGROUND: Previous studies have shown that the Caveolin-1 (CAV-1) gene variant may be associated with Cardiovascular disease (CVD) risk. Moreover, dietary total antioxidant capacity (DTAC) has been shown to potentially elicit favorable effects on CVD risk. Therefore, this study sought to investigate the effect of DTAC and CAV-1 interaction on CVD risk factors. METHODS: This cross-sectional study consisted of 352 women, with overweight and/or obesity, aged 18-48years from Iran. A food frequency questionnaire (FFQ), with 147 items, was used to assess dietary intake. The CAV-1 rs 3807992 and anthropometric data were measured by the PCR-RFLP method and bioelectrical impedance analysis (BIA), respectively. Serum profiles were measured by standard protocols. Participants were also divided into two groups based on DTAC score and rs3807992 genotype. RESULTS: The mean age of the participants was 37.34 ± 9.11 and 36.01 ± 9.12 years for homozygous (GG) and minor allele carriers (AG + AA) respectively.The mean ± SD of insulin, total cholesterol (TC),high-density lipoprotein (HDL), low-density lipoprotein (LDL) and TG of participants were 1.21 ± 0.23, 185.3 ± 35.77, 46.58 ± 10.86, 95.3 ± 24.12 and 118.1 ± 58.88, respectively. There was a significant difference between genotypes for physical activity (P = 0.05), HDL (P < 0.001), insulin (P = 0.04), CRI-I (TC/HDL-C) (P = 0.01), and CRI-II (LDL-C/HDL-C) (P = 0.04). Our findings also showed, after controlling for confounding factors, significant interactions between DTAC score and the A allele carrier group on TC (Pinteraction = 0.001), LDL (Pinteraction = 0.001), insulin (Pinteraction = 0.08), HOMA-IR (Pinteraction = 0.03), AC ((TC - HDL - C)/HDL - C) (Pinteraction = 0.001), and CHOLINDEX (LDL-C-HDL-C) (Pinteraction = 0.02). CONCLUSION: The results of the present study indicate that high DTAC intake may modify the odds of risk factors for CVD in AA and AG genotypes of rs 3807992. These results highlight that diet, gene variants, and their interaction, should be considered in CVD risk assessment.
Assuntos
Antioxidantes/metabolismo , Doenças Cardiovasculares/genética , Caveolina 1/genética , Dieta/efeitos adversos , Obesidade/genética , Sobrepeso/genética , Adolescente , Adulto , Antropometria , Colesterol/sangue , Estudos Transversais , Inquéritos sobre Dietas , Ingestão de Alimentos/genética , Impedância Elétrica , Exercício Físico/genética , Feminino , Variação Genética , Genótipo , Fatores de Risco de Doenças Cardíacas , Humanos , Insulina/sangue , Irã (Geográfico) , Lipoproteínas HDL/sangue , Lipoproteínas LDL/sangue , Pessoa de Meia-Idade , Fenômenos Fisiológicos da Nutrição/genética , Obesidade/sangue , Razão de Chances , Sobrepeso/sangue , Adulto JovemRESUMO
Tetranectin (TN), a plasminogen-binding protein originally involved in fibrinolysis and bone formation, was later identified as a secreted adipokine from human and rat adipocytes and positively correlated with adipogenesis and lipid metabolism in adipocytes. To elucidate the nutritional regulation of adipogenic TN from diets containing different sources of fatty acids (saturated, n-6, n-3) in adipocytes, we cloned the coding region of porcine TN from a cDNA library and analyzed tissue expressions in weaned piglets fed with 2% soybean oil (SB, enriched in n-6 fatty acids), docosahexaenoic acid oil (DHA, an n-3 fatty acid) or beef tallow (BT, enriched in saturated and n-9 fatty acids) for 30 d. Compared with tissues in the BT- or SB-fed group, expression of TN was reduced in the adipose, liver and lung tissues from the DHA-fed group, accompanied with lowered plasma levels of triglycerides and cholesterols. This in vivo reduction was also confirmed in porcine primary differentiated adipocytes supplemented with DHA in vitro. Then, promoter analysis was performed. A 1956-bp putative porcine TN promoter was cloned and transcription binding sites for sterol regulatory-element binding protein (SREBP)-1c or forkhead box O proteins (FoxO) were predicted on the TN promoter. Mutating binding sites on porcine TN promoters showed that transcriptional suppression of TN by DHA on promoter activity was dependent on specific response elements for SREBP-1c or FoxO. The inhibited luciferase promoter activity by DHA on the TN promoter coincides with reduced gene expression of TN, SREBP-1c, and FoxO1 in human embryonic kidney HEK293T cells supplemented with DHA. To conclude, our current study demonstrated that the adipogenic TN was negatively regulated by nutritional modulation of DHA both in pigs in vivo and in humans/pigs in vitro. The transcriptional suppression by DHA on TN expression was partly through SREBP-1c or FoxO. Therefore, down-regulation of adipogenic tetranectin associated with fibrinolysis and adipogenesis may contribute to the beneficial effects of DHA on ameliorating obesity-induced metabolic syndromes such as atherosclerosis and adipose dysfunctions.
Assuntos
Adipogenia/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Lectinas Tipo C/efeitos dos fármacos , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Adipócitos/efeitos dos fármacos , Animais , Fibrinólise/efeitos dos fármacos , Células HEK293 , Humanos , Fenômenos Fisiológicos da Nutrição/genética , SuínosRESUMO
Cardiometabolic disorders are among the leading causes of mortality in the human population. Dietary polyphenols exert beneficial effects on cardiometabolic health in humans. Molecular mechanisms, however, are not completely understood. Aiming to conduct in-depth integrative bioinformatic analyses to elucidate molecular mechanisms underlying the protective effects of polyphenols on cardiometabolic health, we first conducted a systematic literature search to identify human intervention studies with polyphenols that demonstrate improvement of cardiometabolic risk factors in parallel with significant nutrigenomic effects. Applying the predefined inclusion criteria, we identified 58 differentially expressed genes at mRNA level and 5 miRNAs, analyzed in peripheral blood cells with RT-PCR methods. Subsequent integrative bioinformatic analyses demonstrated that polyphenols modulate genes that are mainly involved in the processes such as inflammation, lipid metabolism, and endothelial function. We also identified 37 transcription factors that are involved in the regulation of polyphenol modulated genes, including RELA/NFKB1, STAT1, JUN, or SIRT1. Integrative bioinformatic analysis of mRNA and miRNA-target pathways demonstrated several common enriched pathways that include MAPK signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway, focal adhesion, or PPAR signaling pathway. These bioinformatic analyses represent a valuable source of information for the identification of molecular mechanisms underlying the beneficial health effects of polyphenols and potential target genes for future nutrigenetic studies.
Assuntos
Síndrome Metabólica/prevenção & controle , Fenômenos Fisiológicos da Nutrição/genética , Polifenóis/farmacologia , Substâncias Protetoras/farmacologia , Adulto , Fatores de Risco Cardiometabólico , Biologia Computacional , Feminino , Humanos , Masculino , Síndrome Metabólica/genética , MicroRNAs/sangue , Pessoa de Meia-Idade , Nutrigenômica , RNA Mensageiro/sangue , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genéticaRESUMO
Nutrition plays an important role in overall human health. Although there is no direct evidence supporting the direct involvement of nutrition in curing disease, for some diseases, good nutrition contributes to disease prevention and our overall well-being, including energy level, optimum internal function, and strength of the immune system. Lately, other major, but more silent players are reported to participate in the body's response to ingested nutrients, as they are involved in different physiological and pathological processes. Furthermore, the genetic profile of an individual is highly critical in regulating these processes and their interactions. In particular, miR-155, a non-coding microRNA, is reported to be highly correlated with such nutritional processes. In fact, miR-155 is involved in the orchestration of various biological processes such as cellular signaling, immune regulation, metabolism, nutritional responses, inflammation, and carcinogenesis. Thus, this review aims to highlight those critical aspects of the influence of dietary components on gene expression, primarily on miR-155 and its role in modulating cancer-associated processes.
Assuntos
MicroRNAs/metabolismo , Fenômenos Fisiológicos da Nutrição/genética , Estado Nutricional/genética , Humanos , Neoplasias/genéticaRESUMO
Selenium (Se) is an essential element for the maintenance of a healthy physiological state. However, due to environmental and dietary factors and the narrow safety range of Se, diseases caused by Se deficiency or excess have gained considerable traction in recent years. In particular, links have been identified between low Se status, cognitive decline, immune disorders, and increased mortality, whereas excess Se increases metabolic risk. Considerable evidence has suggested microRNAs (miRNAs) regulate interactions between the environment (including the diet) and genes, and play important roles in several diseases, including cancer. MiRNAs target messenger RNAs to induce changes in proteins including selenoprotein expression, ultimately generating disease. While a plethora of data exists on the epigenetic regulation of other dietary factors, nutrient Se epigenetics and especially miRNA regulated mechanisms remain unclear. Thus, this review mainly focuses on Se metabolism, pathogenic mechanisms, and miRNAs as key regulatory factors in Se-related diseases. Finally, we attempt to clarify the regulatory mechanisms underpinning Se, miRNAs, selenoproteins, and Se-related diseases.
Assuntos
Doenças Metabólicas/metabolismo , MicroRNAs/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição/genética , Selênio/metabolismo , Selenoproteínas/metabolismo , Epigênese Genética/efeitos dos fármacos , Humanos , Doenças Metabólicas/genéticaRESUMO
The pregnane X receptor (PXR) is the key regulator of our defense mechanism against foreign substances such as drugs, dietary nutrients, or environmental pollutants. Because of increased health consciousness, the use of dietary supplements has gradually increased, and most of them can activate PXR. Therefore, an analysis of the interaction between drugs and nutrients is important because altered levels of drug-metabolizing enzymes or transporters can remarkably affect the efficiency of a co-administered drug. In the present study, we analyzed the effect of vitamin K-mediated PXR activation on drug metabolism-related gene expression in intestine-derived LS180 cells via gene expression studies and western blotting analyses. We demonstrated that menaquinone 4 (MK-4), along with other vitamin Ks, including vitamin K1, has the potential to induce MDR1 and CYP3A4 gene expression. We showed that PXR knockdown reversed MK-4-mediated stimulation of these genes, indicating the involvement of PXR in this effect. In addition, we showed that the expression of MDR1 and CYP3A4 genes increased synergistically after 24 h of rifampicin and MK-4 co-treatment. Our study thus elucidates the importance of drug-nutrient interaction mediated via PXR.
Assuntos
Citocromo P-450 CYP3A/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Receptor de Pregnano X/efeitos dos fármacos , Vitamina K/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Intestinais/tratamento farmacológico , Neoplasias Intestinais/metabolismo , Fenômenos Fisiológicos da Nutrição/genética , Rifampina/administração & dosagem , Vitamina K 1/farmacologia , Vitamina K 2/análogos & derivados , Vitamina K 2/farmacologiaRESUMO
BACKGROUND & AIMS: In a placebo controlled study we sought to determine if a four-weeks tryptophan-enriched diet is able to improve age-related depression or social cognitive impairment, depending on polymorphisms located in the promoter region of Solute Carrier Family 6 Member 4 (SLC6A4), also known as serotonin transporter (SERT1) gene. METHODS: 91 young volunteers (age: 21 ± 2 yrs) and 127 above 50 years old (58 ± 6 yrs) healthy volunteers completed the study. Participants from the placebo and tryptophan group followed the same protocol. Before starting the study blood samples, to measure serotonin-transporter-linked polymorphic region (5-HTTLPR) and rs25531 polymorphisms, were collected. In addition, before and after completing the study urine samples (to measure 5-hydroxyindolacetic acid (5-HIAA) were taken, while psychological questionnaires (to assess depression and social cognition levels), and a one week dietary record (to calculate the tryptophan (TRP) intake) were assessed. RESULTS: The triallelic approach of SLC6A4 showed that in S'S´ subjects there was a positive correlation between TRP intake and 5-HIAA levels. Age of participants, SLC6A4 genotype, and experimental condition were important factors contributing to the outcome of depression and social cognition. CONCLUSIONS: 5-HTTLPR and rs25531 polymorphisms play a key role in the response to the TRP- based nutritional intervention, improving only age-related depressive symptoms and empathy in S'S´ subjects who have a higher risk to show signs of depression during their lifetime.
Assuntos
Depressão/dietoterapia , Dieta/métodos , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Cognição Social , Triptofano/administração & dosagem , Fatores Etários , Alelos , Depressão/genética , Dieta/psicologia , Inquéritos sobre Dietas , Ingestão de Alimentos/genética , Ingestão de Alimentos/psicologia , Empatia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Genótipo , Voluntários Saudáveis , Humanos , Ácido Hidroxi-Indolacético/urina , Masculino , Pessoa de Meia-Idade , Fenômenos Fisiológicos da Nutrição/genética , Polimorfismo Genético , Testes Psicológicos , Método Simples-Cego , Adulto JovemRESUMO
The intestinal epithelium serves the unique and critical function of harvesting dietary nutrients, while simultaneously acting as a cellular barrier separating tissues from the luminal environment and gut microbial ecosystem. Two salient features of the intestinal epithelium enable it to perform these complex functions. First, cells within the intestinal epithelium achieve a wide range of specialized identities, including different cell types and distinct anterior-posterior patterning along the intestine. Second, intestinal epithelial cells are sensitive and responsive to the dynamic milieu of dietary nutrients, xenobiotics and microorganisms encountered in the intestinal luminal environment. These diverse identities and responsiveness of intestinal epithelial cells are achieved in part through the differential transcription of genes encoded in their shared genome. Here, we review insights from mice and other vertebrate models into the transcriptional regulatory mechanisms underlying intestinal epithelial identity and microbial responsiveness, including DNA methylation, chromatin accessibility, histone modifications and transcription factors. These studies are revealing that most transcription factors involved in intestinal epithelial identity also respond to changes in the microbiota, raising both opportunities and challenges to discern the underlying integrative transcriptional regulatory networks.