Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 334: 118582, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009325

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Radiation-induced heart disease (RIHD) is one of the most serious complications in patients receiving chest radiotherapy, partially offsetting its benefits. At present, there is a lack of effective treatments for RIHD. Ferroptosis is a newly discovered type of cell death that results from iron-dependent lipid peroxide accumulation. It was recently shown that irradiation generates severe ferroptosis, providing new insights for the treatment of RIHD. Abelmoschus manihot (L.) possesses excellent pharmacological properties and is widely used in treating various ischemic heart and brain diseases; however, its efficacy and mechanism in treating RIHD are unknown. AIM: This study aimed to investigate the efficacy and mechanism of total extracts from A. manihot (L.) (TEA) in treating RIHD. MATERIALS AND METHODS: C57BL/6 mice and H9C2 cells were exposed to irradiation to induce RIHD in vivo and in vitro, respectively. In vivo, we evaluated the protective effects of TEA (150 and 300 mg/kg) on RIHD. Body and heart weight changes of mice were calculated in each group, and malondialdehyde (MDA) level, glutathione/oxidized glutathione (GSH/GSSH) and nicotinamide adenine dinucleotide phosphate (NADPH/NADP+) ratios, western blot, heart histology, and immunohistochemistry were used to evaluate TEA effectiveness. We identified the potential mechanism of radiation-induced cardiomyocyte injury in H9C2 cells treated with small interfering RNA. We determined the effective dose of TEA (0.6 mg/mL) using a Cell Counting Kit-8 assay. Intracellular Fe2+ and lipid peroxidation levels were detected by Phen Green™ SK diacetate probe, BODIPY 581/591 C11 staining, and MDA, GSH, and NADPH kits, and the level of target protein was evaluated by immunofluorescence and western blot. RESULTS: Radiation inhibited system Xc-cystine (xCT)/glutathione peroxidase 4 (GPX4) expression and activity in cardiomyocytes in a time and dose-dependent manner. After silencing xCT/GPX4, MDA significantly increased and GSH/GSSH and NADPH/NADP+ ratios were reduced. xCT/GPX4 inhibition drove ferroptosis in radiation-induced H9C2 injury. Oxidative stress in H9C2 was significantly enhanced by irradiation, which also significantly increased NADPH oxidase 4 (NOX4) expression and inhibited nuclear factor E2-related factor 2 (Nrf2) expression in vivo and in vitro. Inhibition of xCT/GPX4 drove ferroptosis in radiation-induced H9C2 injury, which was aggravated by inactivation of Nrf2 and alleviated by inhibition of NOX4. Compared with the ionizing radiation-only group, TEA improved body weight loss, MDA levels, and histological changes induced by irradiation in mice hearts, and increased the ratio of GSH/GSSH and NADPH/NADP+in vivo; it also reduced lipid peroxidation and intracellular Fe2+ accumulation, restored MDA levels, and elevated the ratios of GSH/GSSH and NADPH/NADP+ in irradiation-injured H9C2 cells. TEA up-regulated Nrf2, xCT, and GPX4 expression and inhibited NOX4 expression in vivo and in vitro. CONCLUSIONS: Ferroptosis induced by redox imbalance mediated through the NOX4/xCT/GPX4 axis is a potential mechanism behind radiation-induced cardiomyocyte injury, and can be prevented by TEA.


Assuntos
Abelmoschus , Ferroptose , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , NADPH Oxidase 4 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Extratos Vegetais , Animais , Ferroptose/efeitos dos fármacos , Ferroptose/efeitos da radiação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/efeitos da radiação , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Extratos Vegetais/farmacologia , Camundongos , Masculino , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Abelmoschus/química , NADPH Oxidase 4/metabolismo , Linhagem Celular , Oxirredução/efeitos dos fármacos , Ratos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Cardiopatias/prevenção & controle , Cardiopatias/etiologia , Cardiopatias/patologia
2.
Discov Med ; 36(184): 1080-1090, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38798266

RESUMO

BACKGROUND: Skin photoaging is a complex process of skin aging caused by continuous exposure to ultraviolet (UV) radiation through oxidative stress and other pathways, yet effective treatments are scarce. Metformin is a drug with both anti-senescence and antioxidant functions; however, there are fewer studies on photoaging. The study aimed to investigate the role of needle-free injection of metformin in alleviating ultraviolet radiation B (UVB) induced skin photoaging, and to explore the mechanisms through which metformin alleviates fibroblast photoaging by inhibiting ferroptosis and oxidative stress. METHODS: In our study, we initially performed bioinformatic analysis on the gene expression profile (GSE38308), and our RNA sequencing (RNA-Seq) found that photoaging is associated with ferroptosis. We investigated the potential skin-protective mechanism of metformin by utilizing a UVB-induced rat skin photoaging model and human skin fibroblasts (HSF) treated with UVB. For in vitro experiments, cellular senescence was detected using SA-ß-galactosidase staining and p16 in western blot. Ferroptosis and oxidative stress were assessed via western blot (glutathione Peroxidase 4 (GPX4) and nuclear factor erythroid-2-related factor 2 (Nrf2)), reactive oxygen species (ROS) levels, transmission electron microscope, Lillie's staining, and immunofluorescence staining. During in vivo experiments, metformin was administered by needle-free jet injectors injected into the backs of rats. The effectiveness of metformin was detected using the Masson staining and western blot. RESULTS: We found that the ferroptosis pathway was closely associated with photoaging through bioinformatics analysis. In the UVB-induced photoaging HSF cells, treatment with metformin exhibits the following effects: a reduction in blue-stained granules in SA-ß-galactosidase staining and a decrease in the expression of p16, indicating a reduction in cellular senescence. Moreover, metformin leads to decreased ROS levels and increased expression of the oxidative stress-related protein Nrf2, suggesting inhibition of oxidative stress within the cells. Additionally, metformin results in an elevation of GPX4 expression, a decrease in blue-stained granules in Lillie's staining, and a reduction in ferroptosis-associated mitochondrial damage, indicating a decline in ferroptosis. Needle-free injection of metformin could directly achieve therapeutic effects by affecting HSF cells in the dermis. The needle-free injection of metformin treatment effectively improved the photoaging skin in rats compared to the photoaging group, ameliorated oxidative stress, and reduced ferroptosis. CONCLUSIONS: Our data highlights a novel needle-free injection of metformin that improves photoaging and has good therapeutic potential.


Assuntos
Ferroptose , Metformina , Estresse Oxidativo , Envelhecimento da Pele , Raios Ultravioleta , Metformina/farmacologia , Metformina/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Animais , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Ferroptose/efeitos dos fármacos , Ferroptose/efeitos da radiação , Ratos , Humanos , Raios Ultravioleta/efeitos adversos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Pele/efeitos da radiação , Pele/metabolismo , Senescência Celular/efeitos dos fármacos , Senescência Celular/efeitos da radiação , Ratos Sprague-Dawley , Masculino , Fator 2 Relacionado a NF-E2/metabolismo
3.
Protein Pept Lett ; 31(4): 323-331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779733

RESUMO

BACKGROUND: Radiotherapy is the primary treatment choice for Nasopharyngeal Carcinoma (NPC). However, its efficacy is compromised due to radioresistance. Ferroptosis, a novel iron-dependent regulated cell death induced by Ionizing Radiation (IR), plays a role in promoting cancer cell death. Yet, the relationship between enhanced ferroptosis and increased sensitivity of NPC cells to IR remains poorly understood. OBJECTIVE: This study aimed to explore the association between IR and ferroptosis in NPC, as well as the role of the ferroptosis repressor SLC7A11 in IR-treated NPC cells. METHODS: CNE1 and HNE-2 NPC cells were subjected to IR treatment. We performed qPCR and western blotting to evaluate the expression of ferroptosis-related genes in both control and IR-treated NPC cells. Additionally, we used the MTT assay to measure the viability of these NPC cells. JC-1 and DCFH-DA staining were employed to assess mitochondrial membrane potential and Reactive Oxygen Species (ROS) levels in both control and IR-treated NPC cells. Furthermore, we examined the levels of Fe2+, Malondialdehyde (MDA), reduced Glutathione (GSH), and oxidized glutathione (GSSG) in these cells. Moreover, we depleted SLC7A11 in IR-treated NPC cells to investigate its impact on the ferroptosis of these cells. RESULTS: IR upregulated the expression of ferroptosis-related genes, including SLC7A11, ACSL4, COX2, FTH1, and GPX4, in CNE1 and HNE-2 cells. IR treatment also resulted in decreased cell viability, disrupted mitochondrial membrane potential, increased ROS levels, altered glutathione levels, and elevated Fe2+ levels. Knockdown of SLC7A11 enhanced the sensitivity of NPC cells to IR. CONCLUSION: IR may induce ferroptosis in NPC cells, and stimulating ferroptosis could potentially serve as a therapeutic strategy to enhance the efficacy of IR in treating NPC patients.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Ferroptose , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Radiação Ionizante , Espécies Reativas de Oxigênio , Humanos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Ferroptose/efeitos da radiação , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Linhagem Celular Tumoral , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Espécies Reativas de Oxigênio/metabolismo , Tolerância a Radiação , Potencial da Membrana Mitocondrial/efeitos da radiação , Sobrevivência Celular/efeitos da radiação
4.
J Photochem Photobiol B ; 255: 112908, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663336

RESUMO

The prevalence of Light-emitting diodes (LEDs) has exposed us to an excessive amount of blue light (BL) which causes various ophthalmic diseases. Previous studies have shown that conjunctiva is vulnerable to BL. In this study, we aimed to investigate the underlying mechanism of BL-induced injury in conjunctiva. We placed C57BL/6 mice and human conjunctival epithelial cell lines (HCECs) under BL (440 nm ± 15 nm, 0.2 mW/cm2) to establish a BL injury model in vivo and in vitro. Immunohistochemistry and MDA assay were used to identify lipid peroxidation (LPO) in vivo. HE staining was applied to detect morphological damage of conjunctival epithelium. DCFH-DA, C11-BODIPY 581/591, Calcein-AM, and FeRhoNox™-1 probes were performed to identify ferroptosis levels in vitro. Real-time qPCR and Western blotting techniques were employed to uncover signaling pathways of blue light-induced ferroptosis. Our findings demonstrated that BL affected tear film instability and induced conjunctival epithelium injury in vivo. Ferrostatin-1 significantly alleviated blue light-induced ferroptosis in vivo and in vitro. BL downregulates the levels of solute carrier family 7 member 11 (SLC7A11), Ferritin heavy chain (FTH1), and glutathione peroxidase (GPX4) by inhibiting the activation and translocation of the Signal transducer and activator of transcription 3 (STAT3) from inducing Fe2+ burst, ROS and LPO accumulation, ultimately resulting in ferroptosis. This study will offer new insight into BL-induced conjunctival injury and LED-induced dry eye.


Assuntos
Luz Azul , Túnica Conjuntiva , Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fator de Transcrição STAT3 , Animais , Humanos , Camundongos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Linhagem Celular , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/efeitos da radiação , Túnica Conjuntiva/patologia , Cicloexilaminas , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Células Epiteliais/patologia , Epitélio/efeitos da radiação , Epitélio/metabolismo , Epitélio/patologia , Ferroptose/efeitos da radiação , Peroxidação de Lipídeos/efeitos da radiação , Camundongos Endogâmicos C57BL , Fenilenodiaminas/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos da radiação , Fator de Transcrição STAT3/metabolismo
5.
Mol Biotechnol ; 66(5): 1220-1228, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38103098

RESUMO

Astaxanthin (ATX) is known for its antioxidant and anti-inflammation functions yet its role in cancers requires more research. This study is aimed to reveal the potential synergetic effect of ATX with ionizing radiation (IR) in OSCC. Cell survival was measured after human OSCC cells including CAL27 and SCC9, and normal human oral keratinocytes (NHOKs) were treated with different concentrations of ATX for 24 h. Colony formation assays were performed after OSCC cells were treated with IR, ATX (20 µ M), or combined and survival fraction was analyzed. Malondialdehyde (MDA), glutathione (GSH), and intercellular iron levels were measured. Western blot method was used to measure the ferroptosis-related proteins, GPX4, SLC7A11, and ACSL4. In xenograft mice model, we evaluated the tumor volumes, tumor growth, and examined the GPX4/ACSL4 proteins in tumor tissues using Immunohistochemistry (IHC). ATX inhibited viability of OSCC cells but not NHOK. In OSCC cells, ATX further enhanced the cell death induced by IR. In addition, ATX promoted the MDA content, Iron levels but inhibited the GSH regulated by IR in cells. ATX could synergize with IR, further inhibiting GPX4, SLC7A11 and promoting ACSL4 in OSCC cells. In vivo, ATX and IR treatment inhibited OSCC tumor growth and the group with combined treatment showed the most inhibitory effect. GPX4 was inhibited by IR and further inhibited in the combined group while ACSL4 was promoted by IR and enhanced more significantly in the combined group. ATX might synergize with IR treatment in OSCC partly via ferroptosis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Radiação Ionizante , Xantofilas , Ensaios Antitumorais Modelo de Xenoenxerto , Xantofilas/farmacologia , Humanos , Animais , Neoplasias Bucais/radioterapia , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/tratamento farmacológico , Linhagem Celular Tumoral , Camundongos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Coenzima A Ligases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Ferroptose/efeitos dos fármacos , Ferroptose/efeitos da radiação , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Glutationa/metabolismo , Malondialdeído/metabolismo , Camundongos Nus , Ferro/metabolismo , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Queratinócitos/efeitos dos fármacos
6.
ACS Nano ; 17(5): 4261-4278, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36706095

RESUMO

Triple-negative breast cancer (TNBC) is considered more aggressive with a poorer prognosis than other breast cancer subtypes. Through systemic bioinformatic analyses, we established the ferroptosis potential index (FPI) based on the expression profile of ferroptosis regulatory genes and found that TNBC has a higher FPI than non-TNBC in human BC cell lines and tumor tissues. To exploit this finding for potential patient stratification, we developed biologically amenable phototheranostic iron pyrite FeS2 nanocrystals (NCs) that efficiently harness near-infrared (NIR) light, as in photovoltaics, for multispectral optoacoustic tomography (MSOT) and photothermal ablation with a high photothermal conversion efficiency (PCE) of 63.1%. Upon NIR irradiation that thermodynamically enhances Fenton reactions, dual death pathways of apoptosis and ferroptosis are simultaneously triggered in TNBC cells, comprehensively limiting primary and metastatic TNBC by regulating p53, FoxO, and HIF-1 signaling pathways and attenuating a series of metabolic processes, including glutathione and amino acids. As a unitary phototheranostic agent with a safe toxicological profile, the nanocrystal represents an effective way to circumvent the lack of therapeutic targets and the propensity of multisite metastatic progression in TNBC in a streamlined workflow of cancer management with an integrated image-guided intervention.


Assuntos
Nanopartículas , Fármacos Fotossensibilizantes , Terapia Fototérmica , Neoplasias de Mama Triplo Negativas , Humanos , Morte Celular , Linhagem Celular Tumoral , Ferro/administração & dosagem , Ferro/uso terapêutico , Nanopartículas/administração & dosagem , Nanopartículas/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/radioterapia , Feminino , Raios Infravermelhos/uso terapêutico , Terapia Fototérmica/métodos , Sulfetos/administração & dosagem , Sulfetos/uso terapêutico , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Ferroptose/efeitos dos fármacos , Ferroptose/efeitos da radiação
7.
Biochem Biophys Res Commun ; 595: 7-13, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35091109

RESUMO

The intestinal tract is an essential component of the body's immune system, and is extremely sensitive to exposure of ionizing radiation. While ionizing radiation can effectively induce multiple forms of cell death, whether it can also promote ferroptosis in intestinal cells and the possible interrelationship between ferroptosis and intestinal immune function has not been reported so far. Here, we found that radiation-induced major ultrastructural changes in mitochondria of small intestinal epithelial cells and the changes induced in iron content and MDA levels in the small intestine were consistent with that observed during cellular ferroptosis, thus suggesting occurrence of ferroptosis in radiation-induced intestinal damage. Moreover, radiation caused a substantial increase in the expression of ferroptosis-related factors such as LPCAT3 and ALOX15 mRNA, augmented the levels of immune-related factors INF-γ and TGF-ß mRNA, and decreased the levels of IL-17 mRNA thereby indicating that ionizing radiation induced ferroptosis and impairment of intestinal immune function. Liproxstatin-1 is a ferroptosis inhibitor that was found to ameliorate radiation-induced ferroptosis and promote the recovery from immune imbalances. These findings supported the role of ferroptosis in radiation-induced intestinal immune injury and provide novel strategies for protection against radiation injury through regulation of the ferroptosis pathway.


Assuntos
Ferroptose/fisiologia , Intestinos/patologia , Quinoxalinas/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Radiação Ionizante , Compostos de Espiro/farmacologia , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Ferroptose/efeitos dos fármacos , Ferroptose/efeitos da radiação , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Glutationa/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestino Delgado/efeitos da radiação , Intestinos/efeitos dos fármacos , Intestinos/efeitos da radiação , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Mitocôndrias/ultraestrutura , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Superóxido Dismutase/metabolismo
8.
Biochim Biophys Acta Mol Basis Dis ; 1868(1): 166287, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626772

RESUMO

Oxidative stress and lipid peroxidation are major causes of skin injury induced by ultraviolet (UV) irradiation. Ferroptosis is a form of regulated necrosis driven by iron-dependent peroxidation of phospholipids and contributes to kinds of tissue injuries. However, it remains unclear whether the accumulation of lipid peroxides in UV irradiation-induced skin injury could lead to ferroptosis. We generated UV irradiation-induced skin injury mice model to examine the accumulation of the lipid peroxides and iron. Lipid peroxides 4-HNE, the oxidative enzyme COX2, the oxidative DNA damage biomarker 8-OHdG, and the iron level were increased in UV irradiation-induced skin. The accumulation of iron and lipid peroxidation was also observed in UVB-irradiated epidermal keratinocytes without actual ongoing ferroptotic cell death. Ferroptosis was triggered in UV-irradiated keratinocytes stimulated with ferric ammonium citrate (FAC) to mimic the iron overload. Although GPX4 protected UVB-injured keratinocytes against ferroptotic cell death resulted from dysregulation of iron metabolism and the subsequent increase of lipid ROS, keratinocytes enduring constant UVB treatment were markedly sensitized to ferroptosis. Nicotinamide mononucleotide (NMN) which is a direct and potent NAD+ precursor supplement, rescued the imbalanced NAD+/NADH ratio, recruited the production of GSH and promoted resistance to lipid peroxidation in a GPX4-dependent manner. Taken together, our data suggest that NMN recruits GSH to enhance GPX4-mediated ferroptosis defense in UV irradiation-induced skin injury and inhibits oxidative skin damage. NMN or ferroptosis inhibitor might become promising therapeutic approaches for treating oxidative stress-induced skin diseases or disorders.


Assuntos
Glutationa/genética , Ferro/metabolismo , Estresse Oxidativo/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Pele/metabolismo , 8-Hidroxi-2'-Desoxiguanosina/farmacologia , Aldeídos/farmacologia , Animais , Ciclo-Oxigenase 2/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Compostos Férricos/farmacologia , Ferroptose/efeitos dos fármacos , Ferroptose/efeitos da radiação , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Peróxidos Lipídicos/farmacologia , Camundongos , Mononucleotídeo de Nicotinamida/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Compostos de Amônio Quaternário/farmacologia , Pele/efeitos dos fármacos , Pele/lesões , Pele/patologia , Raios Ultravioleta/efeitos adversos
9.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830482

RESUMO

Radiotherapy promotes tumor cell death and senescence through the induction of oxidative damage. Recent work has highlighted the importance of lipid peroxidation for radiotherapy efficacy. Excessive lipid peroxidation can promote ferroptosis, a regulated form of cell death. In this review, we address the evidence supporting a role of ferroptosis in response to radiotherapy and discuss the molecular regulators that underlie this interaction. Finally, we postulate on the clinical implications for the intersection of ferroptosis and radiotherapy.


Assuntos
Metabolismo dos Lipídeos/efeitos da radiação , Peroxidação de Lipídeos/efeitos da radiação , Neoplasias/radioterapia , Morte Celular/efeitos da radiação , Senescência Celular/genética , Senescência Celular/efeitos da radiação , Ferroptose/genética , Ferroptose/efeitos da radiação , Humanos , Metabolismo dos Lipídeos/genética , Neoplasias/genética , Neoplasias/patologia , Estresse Oxidativo/efeitos da radiação
10.
J Clin Lab Anal ; 35(12): e24086, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34752672

RESUMO

BACKGROUND: Ferroptosis is an iron-dependent programmed cell death mechanism that influences the development of malignancy. Lung adenocarcinoma (LUAD) is the most common type of lung cancer with no known cure. Anti-PD-1/PD-L immunotherapy is effective for patients with partial LUAD. Therefore, there is an immediate requirement of novel markers to predict the individualised benefits of immunotherapy. METHODS: We manually collected the ferroptosis-related gene (FERG) set and employed the Wilcoxon rank-sum test to identify the differentially expressed FERGs. Subsequently, we constructed a recursive partitioning and regression tree (RPART) model to predict the benefits of anti-PD-1/PD-L1 immunotherapy. Subsequently, the ROC curve and AUC were used to evaluate the model efficiency in an independent dataset. RESULTS: In this study, we found that the dysregulated FERGs were closely associated with multiple metabolic processes in LUAD. Furthermore, we identified three ferroptosis-related tumour subtypes (F1, F3 and F3). The F3 subtype exhibited higher immunoactivity and lower tumour purity, mutation count and aneuploidy and had better survival outcomes compared with the other two subtypes, implying that FERGs played an important role in intertumoral immune heterogeneity. We further explored the role of FERGs in the anti-PD-1/PD-L1 immunotherapy. We identified a set of three-FERGs signature (CD44, G6PD and ZEB1) that acted as a promising indicator (AUC = 0.697) for the prediction of the benefits of anti-PD-1/PD-L1 immunotherapy. CONCLUSION: Ferroptosis, as emerging programmed cell death mechanism, was associated with cancer development. We used ferroptosis-related genes to predict the immunotherapy benefits that may facilitate the development of individualised anti-cancer treatment strategies.


Assuntos
Adenocarcinoma de Pulmão/terapia , Ferroptose/genética , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/terapia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Idoso , Antígeno B7-H1/antagonistas & inibidores , Feminino , Ferroptose/efeitos dos fármacos , Ferroptose/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucosefosfato Desidrogenase/genética , Humanos , Receptores de Hialuronatos/genética , Imunoterapia/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
11.
Oxid Med Cell Longev ; 2021: 8457521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616505

RESUMO

Ferroptosis is a new type of regulatory cell death that differs from autophagy, apoptosis, necrosis, and pyroptosis; it is caused primarily by the accumulation of iron and lipid peroxides in the cell. Studies have shown that many classical signaling pathways and biological processes are involved in the process of ferroptosis. In recent years, investigations have revealed that ferroptosis plays a crucial role in the progression of tumors, especially lung cancer. In particular, inducing ferroptosis in cells can inhibit the growth of tumor cells, thereby reversing tumorigenesis. In this review, we summarize the characteristics of ferroptosis from its underlying basis and role in lung cancer and provide possible applications for it in lung cancer therapies.


Assuntos
Carcinogênese/metabolismo , Ferroptose/efeitos dos fármacos , Imunoterapia/métodos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/efeitos da radiação , Ferroptose/imunologia , Ferroptose/efeitos da radiação , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Neoplasias Pulmonares/radioterapia , Transdução de Sinais/imunologia , Transdução de Sinais/efeitos da radiação , Resultado do Tratamento
12.
Front Immunol ; 12: 705361, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489957

RESUMO

Immunogenic cell death (ICD) is a form of regulated cell death (RCD) induced by various stresses and produces antitumor immunity via damage-associated molecular patterns (DAMPs) release or exposure, mainly including high mobility group box 1 (HMGB1), calreticulin (CRT), adenosine triphosphate (ATP), and heat shock proteins (HSPs). Emerging evidence has suggested that ionizing radiation (IR) can induce ICD, and the dose, type, and fractionation of irradiation influence the induction of ICD. At present, IR-induced ICD is mainly verified in vitro in mice and there is few clinical evidence about it. To boost the induction of ICD by IR, some strategies have shown synergy with IR to enhance antitumor immune response, such as hyperthermia, nanoparticles, and chemotherapy. In this review, we focus on the molecular mechanisms of ICD, ICD-promoting factors associated with irradiation, the clinical evidence of ICD, and immunogenic forms of cell death. Finally, we summarize various methods of improving ICD induced by IR.


Assuntos
Morte Celular Imunogênica/efeitos da radiação , Alarminas/fisiologia , Animais , Antígenos de Neoplasias/imunologia , Biomarcadores , Terapia Combinada , Citocinas/fisiologia , Relação Dose-Resposta à Radiação , Ferroptose/efeitos da radiação , Proteína HMGB1/fisiologia , Humanos , Hipertermia Induzida , Camundongos , Morfolinas/uso terapêutico , Necroptose/efeitos da radiação , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/radioterapia , Piperazinas/uso terapêutico , Pirróis/uso terapêutico , Tolerância a Radiação , Radiação Ionizante
13.
Cell Death Dis ; 12(2): 195, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602915

RESUMO

Amifostine has been the only small molecule radio-protector approved by FDA for decades; however, the serious adverse effects limit its clinical use. To address the toxicity issues and maintain the good potency, a series of modified small polycysteine peptides had been prepared. Among them, compound 5 exhibited the highest radio-protective efficacy, the same as amifostine, but much better safety profile. To confirm the correlation between the radiation-protective efficacy and the DNA binding capability, each of the enantiomers of the polycysteine peptides had been prepared. As a result, the L-configuration compounds had obviously higher efficacy than the corresponding D-configuration enantiomers; among them, compound 5 showed the highest DNA binding capability and radiation-protective efficacy. To our knowledge, this is the first study that has proved their correlations using direct comparison. Further exploration of the mechanism revealed that the ionizing radiation (IR) triggered ferroptosis inhibition by compound 5 could be one of the pathways for the protection effect, which was different from amifostine. In summary, the preliminary result showed that compound 5, a polycysteine as a new type of radio-protector, had been developed with good efficacy and safety profile. Further study of the compound for potential use is ongoing.


Assuntos
Ferroptose/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Peptídeos/farmacologia , Lesões por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Amifostina/farmacologia , Animais , Linhagem Celular , DNA/metabolismo , Modelos Animais de Doenças , Ferroptose/efeitos da radiação , Glutationa/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Células-Tronco Hematopoéticas/efeitos da radiação , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos da radiação , Jejuno/metabolismo , Jejuno/patologia , Jejuno/efeitos da radiação , Peroxidação de Lipídeos/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos da radiação , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/metabolismo , Doses de Radiação , Lesões por Radiação/genética , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Protetores contra Radiação/síntese química , Protetores contra Radiação/metabolismo , Ratos , Irradiação Corporal Total
14.
Nat Rev Clin Oncol ; 18(5): 280-296, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33514910

RESUMO

The discovery of regulated cell death processes has enabled advances in cancer treatment. In the past decade, ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, has been implicated in the development and therapeutic responses of various types of tumours. Experimental reagents (such as erastin and RSL3), approved drugs (for example, sorafenib, sulfasalazine, statins and artemisinin), ionizing radiation and cytokines (such as IFNγ and TGFß1) can induce ferroptosis and suppress tumour growth. However, ferroptotic damage can trigger inflammation-associated immunosuppression in the tumour microenvironment, thus favouring tumour growth. The extent to which ferroptosis affects tumour biology is unclear, although several studies have found important correlations between mutations in cancer-relevant genes (for example, RAS and TP53), in genes encoding proteins involved in stress response pathways (such as NFE2L2 signalling, autophagy and hypoxia) and the epithelial-to-mesenchymal transition, and responses to treatments that activate ferroptosis. Herein, we present the key molecular mechanisms of ferroptosis, describe the crosstalk between ferroptosis and tumour-associated signalling pathways, and discuss the potential applications of ferroptosis in the context of systemic therapy, radiotherapy and immunotherapy.


Assuntos
Ferroptose/genética , Ferro/metabolismo , Peroxidação de Lipídeos/genética , Neoplasias/genética , Morte Celular/genética , Ferroptose/efeitos da radiação , Humanos , Interferon gama/genética , Peroxidação de Lipídeos/efeitos da radiação , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Piperazinas/uso terapêutico , Radiação Ionizante
15.
Int J Radiat Biol ; 97(4): 464-473, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33464146

RESUMO

PURPOSE: Baicalein (an anti-ferroptosis drug) was recently reported to synergistically improve the survival rate of mice following a high dose of total body irradiation with anti-apoptosis and anti-necroptosis drugs. At the same time, our group has demonstrated that ferrostatin-1, a ferroptosis inhibitor, improves the survival rate of a mouse model of hematopoietic acute radiation syndrome to 60% for 150 days (p < .001). These phenomena suggest that ferroptosis inhibition can mitigate radiation damage. In this study, we continued to study the mechanisms by which ferrostatin-1 alleviated radiation-induced ferroptosis and subsequent hematopoietic acute radiation syndrome. MATERIALS AND METHODS: Male ICR mice (8-10 weeks old) were exposed to doses of 0, 8, or 10 Gy irradiated from a 137Cs source. Ferrostatin-1 was intraperitoneally injected into mice 72 h post-irradiation. Bone marrow mononuclear cells (BMMCs) and peripheral blood cells were counted. The changes in iron-related parameters, lipid metabolic enzymes, lipid peroxidation repair molecules (glutathione peroxidase 4, glutathione, and coenzyme Q10), and inflammatory factors (TNF-α, IL-6, and IL-1ß) were evaluated using biochemical or antibody techniques. RESULTS: Ferrostatin-1 increased the number of red and white blood cells, lymphocytes, and monocytes in the peripheral blood after total body irradiation in mice by mitigating the ferroptosis of BMMCs. Total body irradiation induced ferroptosis in BMMCs by increasing the iron and lipid peroxidation levels and depleting the acyl-CoA synthetase long-chain family member 4 (ASCL4), lipoxygenase 15, glutathione peroxidase 4, and glutathione levels. Ferroptotic BMMCs did not release TNF-α, IL-6, or IL-1ß at the early stage of radiation exposure. Ferrostatin-1 mitigated the lipid peroxidation of radiation-induced ferroptosis by attenuating increases in levels of hemosiderin and liable iron pool and decreases in levels of ASCL4 and glutathione peroxidase 4. CONCLUSIONS: The onset of total body irradiation-induced ferroptosis in BMMCs involved changes in iron, lipid metabolic enzymes, and anti-lipid peroxidation molecules. Ferrostatin-1 could be a potential radiation mitigation agent by acting on these targets.


Assuntos
Síndrome Aguda da Radiação/patologia , Cicloexilaminas/farmacologia , Hematopoese/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Animais , Ferroptose/efeitos dos fármacos , Ferroptose/efeitos da radiação , Hematopoese/efeitos da radiação , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos ICR
16.
Cell Death Dis ; 11(12): 1070, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318476

RESUMO

Lack of effective treatments for aggressive breast cancer is still a major global health problem. We have previously reported that photodynamic therapy using methylene blue as photosensitizer (MB-PDT) massively kills metastatic human breast cancer, marginally affecting healthy cells. In this study, we aimed to unveil the molecular mechanisms behind MB-PDT effectiveness and specificity towards tumor cells. Through lipidomics and biochemical approaches, we demonstrated that MB-PDT efficiency and specificity rely on polyunsaturated fatty acid-enriched membranes and on the better capacity to deal with photo-oxidative damage displayed by non-tumorigenic cells. We found out that, in tumorigenic cells, lysosome membrane permeabilization is accompanied by ferroptosis and/or necroptosis. Our results also pointed at a cross-talk between lysosome-dependent cell death (LDCD) and necroptosis induction after photo-oxidation, and contributed to broaden the understanding of MB-PDT-induced mechanisms and specificity in breast cancer cells. Therefore, we demonstrated that efficient approaches could be designed on the basis of lipid composition and metabolic features for hard-to-treat cancers. The results further reinforce MB-PDT as a therapeutic strategy for highly aggressive human breast cancer cells.


Assuntos
Neoplasias da Mama/patologia , Luz , Antioxidantes/farmacologia , Neoplasias da Mama/tratamento farmacológico , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Carcinogênese/efeitos da radiação , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Feminino , Ferroptose/efeitos dos fármacos , Ferroptose/efeitos da radiação , Humanos , Lipídeos/química , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/efeitos da radiação , Azul de Metileno/farmacologia , Azul de Metileno/uso terapêutico , Modelos Biológicos , Necroptose/efeitos dos fármacos , Necroptose/efeitos da radiação , Oxirredução , Fotoquimioterapia , Neoplasias de Mama Triplo Negativas/patologia
17.
Sci Rep ; 10(1): 18946, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144600

RESUMO

Ultraviolet radiation (UVR) is a major environmental genotoxic agent. In skin, it can lead to the formation of mutagenic DNA damage. Several mechanisms are in place to prevent the conversion of these DNA damage into skin cancer-driver mutations. An important mutation prevention mechanism is the programmed cell death, which can safely dispose of the damaged cells. Apoptosis is the most studied and best characterised programmed cell death, but an increasing amount of new cell death pathways are emerging. Using different pharmacological cell death inhibitors and antioxidants, we have evaluated the implication of apoptosis, necroptosis, ferroptosis and parthanatos in UVB-induced cell death in human diploid dermal fibroblasts. Our results show that apoptosis is the only known cell death mechanism induced by UVB irradiation in fibroblasts. We also showed that lethal UVB irradiation induces a PARP-dependent drastic loss of cellular metabolic activity caused by an overused of NAD+.


Assuntos
Apoptose/efeitos da radiação , Morte Celular/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Raios Ultravioleta , Dano ao DNA/efeitos da radiação , Ferroptose/efeitos da radiação , Humanos , Necroptose/efeitos da radiação , Parthanatos/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos da radiação
18.
Radiat Res ; 193(5): 435-450, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32134361

RESUMO

Mitigation of total-body irradiation (TBI) in C57BL/6 mice by two drugs, which target apoptosis and necroptosis respectively, increases survival compared to one drug alone. Here we investigated whether the biomarker (signature)directed addition of a third anti-ferroptosis drug further mitigated TBI effects. C57BL/6NTac female mice (30-33 g) received 9.25 Gy TBI, and 24 h or later received JP4-039 (20 mg/kg), necrostatin-1 (1.65 mg/kg) and/or lipoxygenase-15 inhibitor (baicalein) (50 mg/kg) in single-, dual- or three-drug regimens. Some animals were sacrificed at days 0, 1, 2, 3, 4 or 7 postirradiation, while the majority in each group were maintained beyond 30 days. For those mice sacrificed at the early time points, femur bone marrow, intestine (ileum), lung and blood plasma were collected and analyzed for radiation-induced and mitigator-modified levels of 33 pro-inflammatory and stress response proteins. Each single mitigator administered [JP4-039 (24 h), necrostatin-1 (48 h) or baicalein (24 h)] improved survival at day 30 after TBI to 25% (P = 0.0432, 0.2816 or 0.1120, respectively) compared to 5% survival of 9.25 Gy TBI controls. Mice were administered the drug individually based on weight (mg/kg). Drug vehicles comprised 30% cyclodextrin for JP4-039 and baicalein, and 10% Cremphor-EL/10% ethanol/80% water for necrostatin-1; thus, dual-vehicle controls were also tested. The dual-drug combinations further enhanced survival: necrostatin-1 (delayed to 72 h) with baicalein 40% (P = 0.0359); JP4-039 with necrostatin-1 50% (P = 0.0062); and JP4-039 with baicalein 60% (P = 0.0064). The three-drug regimen, timed to signature directed evidence of onset after TBI of each death pathway in marrow and intestine, further increased the 30-day survival to 75% (P = 0.0002), and there was optimal normalization to preirradiation levels of inflammatory cytokine and stress response protein levels in plasma, intestine and marrow. In contrast, lung protein levels were minimally altered by 9.25 Gy TBI or mitigators over 7 days. Significantly, elevated intestinal proteins at day 7 after TBI were reduced by necrostatin-1-containing regimens; however, normalization of plasma protein levels at day 7 required the addition of JP4-039 and baicalein. These findings indicate that mitigator targeting to three distinct cell death pathways increases survival after TBI.


Assuntos
Apoptose/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Protetores contra Radiação/farmacologia , Irradiação Corporal Total/efeitos adversos , Animais , Apoptose/efeitos da radiação , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Medula Óssea/efeitos da radiação , Citocinas/metabolismo , Interações Medicamentosas , Feminino , Ferroptose/efeitos da radiação , Íleo/efeitos dos fármacos , Íleo/metabolismo , Íleo/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Necroptose/efeitos da radiação , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/prevenção & controle , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Tempo
19.
Int J Radiat Biol ; 96(5): 584-595, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31906761

RESUMO

Purpose: To study whether radiation-induced bleeding in the bone marrow induced iron accumulation, and subsequently caused ferroptosis in granulocyte-macrophage hematopoietic progenitor cells.Materials and methods: Male mice were subjected to different doses (0, 4, 8, or 10 Gy) of gamma radiation from a 137Cs source. The changes in iron metabolism or ferroptosis-related parameters of irradiated bone marrow were accessed with biochemical, histopathological, and antibody methods. Hematocytes were detected with a hematology analyzer. The counts of granulocyte-macrophage hematopoietic progenitor cells were measured with the granulocyte-macrophage colony-forming unit.Results: Iron accumulation occurred in the bone marrow, which caused by radiation-induced hemorrhage. The iron accumulation triggered an iron regulatory protein-ferroportin 1 axis to increase serum iron levels. Using LDN193189, radiation-induced iron accumulation was demonstrated to decrease white blood cell counts at least partly through a decrease in the counts of granulocyte-macrophage hematopoietic progenitor cells. The reduction in the counts of granulocyte-macrophage hematopoietic progenitor cells was subsequently demonstrated to attribute to ferroptosis with the use of ferroptosis inhibitors and through the detection of ferroptosis related-parameters. The survival rate of irradiated mice was improved using Ferrostatin-1 or LDN193189.Conclusions: These findings suggest that radiation-induced hemorrhage in the bone marrow causes ferroptosis in granulocyte-macrophage hematopoietic progenitor cells, and anti-ferroptosis has the potential to be a radioprotective strategy to ameliorate radiation-induced hematopoietic injury.


Assuntos
Ferroptose/efeitos da radiação , Células Progenitoras de Granulócitos e Macrófagos/efeitos da radiação , Animais , Cicloexilaminas/farmacologia , Raios gama , Células Progenitoras de Granulócitos e Macrófagos/metabolismo , Células Progenitoras de Granulócitos e Macrófagos/patologia , Ferro/metabolismo , Contagem de Leucócitos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fenilenodiaminas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia
20.
Cell Res ; 30(2): 146-162, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31949285

RESUMO

Ferroptosis, a form of regulated cell death caused by lipid peroxidation, was recently identified as a natural tumor suppression mechanism. Here, we show that ionizing radiation (IR) induces ferroptosis in cancer cells. Mechanistically, IR induces not only reactive oxygen species (ROS) but also the expression of ACSL4, a lipid metabolism enzyme required for ferroptosis, resulting in elevated lipid peroxidation and ferroptosis. ACSL4 ablation largely abolishes IR-induced ferroptosis and promotes radioresistance. IR also induces the expression of ferroptosis inhibitors, including SLC7A11 and GPX4, as an adaptive response. IR- or KEAP1 deficiency-induced SLC7A11 expression promotes radioresistance through inhibiting ferroptosis. Inactivating SLC7A11 or GPX4 with ferroptosis inducers (FINs) sensitizes radioresistant cancer cells and xenograft tumors to IR. Furthermore, radiotherapy induces ferroptosis in cancer patients, and increased ferroptosis correlates with better response and longer survival to radiotherapy in cancer patients. Our study reveals a previously unrecognized link between IR and ferroptosis and indicates that further exploration of the combination of radiotherapy and FINs in cancer treatment is warranted.


Assuntos
Ferroptose/efeitos da radiação , Neoplasias/patologia , Radiação Ionizante , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Linhagem Celular Tumoral , Coenzima A Ligases/metabolismo , Dano ao DNA , Reparo do DNA/efeitos da radiação , Glutationa Peroxidase/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/deficiência , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias/radioterapia , Neoplasias/ultraestrutura , Tolerância a Radiação/efeitos da radiação , Regulação para Cima/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA