RESUMO
The molecular pathophysiology underlying lumbar spondylosis development remains unclear. To identify genetic factors associated with lumbar spondylosis, we conducted a genome-wide association study using 83 severe lumbar spondylosis cases and 182 healthy controls and identified 65 candidate disease-associated single nucleotide polymorphisms (SNPs). Replication analysis in 510 case and 911 control subjects from five independent Japanese cohorts identified rs2054564, located in intron 7 of ADAMTS17, as a disease-associated SNP with a genome-wide significance threshold (P = 1.17 × 10-11, odds ratio = 1.92). This association was significant even after adjustment of age, sex, and body mass index (P = 7.52 × 10-11). A replication study in a Korean cohort, including 123 case and 319 control subjects, also verified the significant association of this SNP with severe lumbar spondylosis. Immunohistochemistry revealed that fibrillin-1 (FBN1) and ADAMTS17 were co-expressed in the annulus fibrosus of intervertebral discs (IVDs). ADAMTS17 overexpression in MG63 cells promoted extracellular microfibrils biogenesis, suggesting the potential role of ADAMTS17 in IVD function through interaction with fibrillin fibers. Finally, we provided evidence of FBN1 involvement in IVD function by showing that lumbar IVDs in patients with Marfan syndrome, caused by heterozygous FBN1 gene mutation, were significantly more degenerated. We identified a common SNP variant, located in ADAMTS17, associated with susceptibility to lumbar spondylosis and demonstrated the potential role of the ADAMTS17-fibrillin network in IVDs in lumbar spondylosis development.
Assuntos
Disco Intervertebral , Osteoartrite da Coluna Vertebral , Espondilose , Humanos , Fibrilina-1 , Fibrilinas/análise , Estudo de Associação Genômica Ampla , Disco Intervertebral/química , Microfibrilas , Espondilose/genéticaRESUMO
Cranial cruciate ligament disease (CCLD) is the most common cause of pelvic limb lameness in dogs but its precise aetiopathogenesis is uncertain. Fibrillin microfibrils (FM) are complex macro-molecular assemblies found in many tissues including ligaments, where they are thought to play an important mechanical role. We hypothesised that FM ultrastructural variation correlates with the differing predisposition of canine breeds to CCLD. Non-diseased cranial and caudal cruciate ligaments (CCLs and CaCLs) were obtained from Greyhound (GH) and Staffordshire Bull Terrier (SBT) cadavers. Fibrillin microfibrils were extracted from the ligaments by bacterial collagenase digestion, purified by size-exclusion chromatography and subsequently visualized by atomic force microscopy (AFM). With AFM, FMs have a characteristic beads-on-a-string appearance. For each FM, periodicity (bead-bead distance) and length (number of beads/FM) was measured. Fibrillin microfibril length was found to be similar for GH and SBT, with non-significant inter-breed and inter-ligament differences. Fibrillin microfibril periodicity varied when comparing GH and SBT for CCL (GH 60.2 ± 1.4 nm; SBT 56.2 ± 0.8 nm) and CaCL (GH 55.5 ± 1.6 nm; SBT 61.2 ± 1.2 nm). A significant difference was found in the periodicity distribution when comparing CCL for both breeds (P < 0.00001), further, intra-breed differences in CCL vs CaCL were statistically significant within both breeds (P < 0.00001). The breed at low risk of CCLD exhibited a periodicity profile which may be suggestive of a repair and remodelling within the CCL.
Assuntos
Lesões do Ligamento Cruzado Anterior/veterinária , Ligamento Cruzado Anterior/química , Cães/lesões , Fibrilinas/análise , Microfibrilas/química , Animais , Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/genética , Cruzamento , Suscetibilidade a Doenças/veterinária , Doenças do Cão/diagnóstico por imagem , Doenças do Cão/genética , Cães/genética , Microfibrilas/ultraestrutura , Microscopia de Força Atômica/veterinária , Periodicidade , Ruptura Espontânea/genética , Ruptura Espontânea/veterináriaRESUMO
The geometric organization of collagen fibers in human reticular dermis and its relationship to that of elastic fibers remain unclear. The tight packing and complex intertwining of dermal collagen fibers hinder accurate analysis of fiber orientation. We hypothesized that combined multiphoton microscopy and biaxial extension could overcome this issue. Continuous observation of fresh dermal sheets under biaxial extension revealed that the geometry of the elastic fiber network is maintained during expansion. Full-thickness human thigh skin samples were biaxially extended and cleared to visualize the entire reticular dermis. Throughout the dermis, collagen fibers straightened with increased inter-fiber spaces, making them more clearly identifiable after extension. The distribution of collagen fibers was evaluated with compilation of local orientation data. Two or three modes were confirmed in all superficial reticular layer samples. A high degree of local similarities in the direction of collagen and elastic fibers was observed. More than 80% of fibers had directional differences of ≤15°, regardless of layer. Understanding the geometric organization of fibers in the reticular dermis improves the understanding of mechanisms underlying the pliability of human skin. Combined multiphoton imaging and biaxial extension provides a research tool for studying the fibrous microarchitecture of the skin.