Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Cancer Sci ; 113(6): 2179-2193, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35332604

RESUMO

Hepatocyte growth factor (HGF) activator inhibitor type-1 (HAI-1), encoded by the SPINT1 gene, is a transmembrane protease inhibitor that regulates membrane-anchored serine proteases, particularly matriptase. Here, we explored the role of HAI-1 in tongue squamous cell carcinoma (TSCC) cells. An immunohistochemical study of HAI-1 in surgically resected TSCC revealed the cell surface immunoreactivity of HAI-1 in the main portion of the tumor. The immunoreactivity decreased in the infiltrative front, and this decrease correlated with enhanced lymphatic invasion as judged by podoplanin immunostaining. In vitro homozygous deletion of SPINT1 (HAI-1KO) in TSCC cell lines (HSC3 and SAS) suppressed the cell growth rate but significantly enhanced invasion in vitro. The loss of HAI-1 resulted in enhanced pericellular activities of proteases, such as matriptase and urokinase-type plasminogen activator, which induced activation of HGF/MET signaling in the co-culture with pro-HGF-expressing fibroblasts and plasminogen-dependent plasmin generation, respectively. The enhanced plasminogen-dependent plasmin generation was abrogated partly by matriptase silencing. Culture supernatants of HAI-1KO cells had enhanced potency for converting the proform of vascular endothelial growth factor-C (VEGF-C), a lymphangiogenesis factor, into the mature form in a plasminogen-dependent manner. Furthermore, HGF significantly stimulated VEGF-C expression in TSCC cells. Orthotopic xenotransplantation into nude mouse tongue revealed enhanced lymphatic invasion of HAI-1KO TSCC cells compared to control cells. Our results suggest that HAI-1 insufficiency leads to dysregulated pericellular protease activity, which eventually orchestrates robust activation of protease-dependent growth factors, such as HGF and VEGF-C, in a tumor microenvironment to contribute to TSCC progression.


Assuntos
Carcinoma de Células Escamosas , Proteínas Secretadas Inibidoras de Proteinases , Neoplasias da Língua , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Fibrinolisina/genética , Homozigoto , Humanos , Camundongos , Plasminogênio/genética , Proteínas Secretadas Inibidoras de Proteinases/genética , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Deleção de Sequência , Serina Endopeptidases , Neoplasias da Língua/genética , Neoplasias da Língua/patologia , Microambiente Tumoral , Fator C de Crescimento do Endotélio Vascular/genética
2.
Nat Commun ; 12(1): 7112, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876572

RESUMO

Cardiac ATTR amyloidosis, a serious but much under-diagnosed form of cardiomyopathy, is caused by deposition of amyloid fibrils derived from the plasma protein transthyretin (TTR), but its pathogenesis is poorly understood and informative in vivo models have proved elusive. Here we report the generation of a mouse model of cardiac ATTR amyloidosis with transgenic expression of human TTRS52P. The model is characterised by substantial ATTR amyloid deposits in the heart and tongue. The amyloid fibrils contain both full-length human TTR protomers and the residue 49-127 cleavage fragment which are present in ATTR amyloidosis patients. Urokinase-type plasminogen activator (uPA) and plasmin are abundant within the cardiac and lingual amyloid deposits, which contain marked serine protease activity; knockout of α2-antiplasmin, the physiological inhibitor of plasmin, enhances amyloid formation. Together, these findings indicate that cardiac ATTR amyloid deposition involves local uPA-mediated generation of plasmin and cleavage of TTR, consistent with the previously described mechano-enzymatic hypothesis for cardiac ATTR amyloid formation. This experimental model of ATTR cardiomyopathy has potential to allow further investigations of the factors that influence human ATTR amyloid deposition and the development of new treatments.


Assuntos
Neuropatias Amiloides Familiares/metabolismo , Amiloide/metabolismo , Fibrinolisina/genética , Fibrinolisina/metabolismo , Placa Amiloide/metabolismo , Animais , Cardiomiopatias , Humanos , Camundongos Transgênicos , Pré-Albumina/metabolismo , Dobramento de Proteína , Proteólise
3.
Iran J Med Sci ; 46(6): 454-467, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34840386

RESUMO

Background: Ocriplasmin has been developed for the induction of posterior vitreous detachment in patients with vitreomacular adhesion. At physiological pH, ocriplasmin is susceptible to autolytic and proteolytic degradation, limiting its activity duration. These undesirable properties of ocriplasmin can be reduced by site-directed mutagenesis, so that its enzymatic activities can be augmented. This study aimed to design ocriplasmin variants with improved biological/physicochemical characteristics via bioinformatics tools. Methods: This study was performed in Tabriz University of Medical Sciences, Tabriz, Iran, 2019. Through site-directed mutagenesis, three ocriplasmin variants were designed. Structural analysis was performed on the wild-type variant and the mutant variants using the Protein Interactions Calculator (PIC) server. The interactions between the S-2403 substrate and the ocriplasmin variants were studied by molecular docking simulations, and binding capability was evaluated by the calculation of free binding energy. The conformational features of protein-substrate complex systems for all the variants were evaluated using molecular dynamic simulations at 100 nanoseconds. Results: The structural analysis of ocriplasmin revealed that the substitution of threonine for alanine 59 significantly reduced proteolytic activity, while the substitution of glutamic acid for lysine 156 influenced autolytic function. The molecular docking simulation results indicated the appropriate binding of the substrate to the ocriplasmin variants with high-to-low affinities. The binding affinity of the wild-type variant for the substrate was higher than that between the mutant variants and the substrate. Simulation analyses, consisting of the root-mean-square deviation, the root-mean-square fluctuation, and the center-of-mass average distance showed a higher affinity of the substrate for the wild type than for the mutant variants. Conclusion: The mutational analysis of ocriplasmin revealed that A59T and K156E mutagenesis could be used for the development of a new variant with higher therapeutic efficacy.


Assuntos
Biologia Computacional , Oftalmopatias/tratamento farmacológico , Fibrinolisina/administração & dosagem , Fibrinolisina/efeitos adversos , Fibrinolisina/genética , Fragmentos de Peptídeos/genética , Descolamento do Vítreo/induzido quimicamente , Análise Mutacional de DNA , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutagênese , Proteólise , Aderências Teciduais/tratamento farmacológico , Corpo Vítreo
4.
Blood ; 138(3): 259-272, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-33827130

RESUMO

Acetaminophen (APAP)-induced liver injury is associated with activation of coagulation and fibrinolysis. In mice, both tissue factor-dependent thrombin generation and plasmin activity have been shown to promote liver injury after APAP overdose. However, the contribution of the contact and intrinsic coagulation pathways has not been investigated in this model. Mice deficient in individual factors of the contact (factor XII [FXII] and prekallikrein) or intrinsic coagulation (FXI) pathway were administered a hepatotoxic dose of 400 mg/kg of APAP. Neither FXII, FXI, nor prekallikrein deficiency mitigated coagulation activation or hepatocellular injury. Interestingly, despite the lack of significant changes to APAP-induced coagulation activation, markers of liver injury and inflammation were significantly reduced in APAP-challenged high-molecular-weight kininogen-deficient (HK-/-) mice. Protective effects of HK deficiency were not reproduced by inhibition of bradykinin-mediated signaling, whereas reconstitution of circulating levels of HK in HK-/- mice restored hepatotoxicity. Fibrinolysis activation was observed in mice after APAP administration. Western blotting, enzyme-linked immunosorbent assay, and mass spectrometry analysis showed that plasmin efficiently cleaves HK into multiple fragments in buffer or plasma. Importantly, plasminogen deficiency attenuated APAP-induced liver injury and prevented HK cleavage in the injured liver. Finally, enhanced plasmin generation and HK cleavage, in the absence of contact pathway activation, were observed in plasma of patients with acute liver failure due to APAP overdose. In summary, extrinsic but not intrinsic pathway activation drives the thromboinflammatory pathology associated with APAP-induced liver injury in mice. Furthermore, plasmin-mediated cleavage of HK contributes to hepatotoxicity in APAP-challenged mice independently of thrombin generation or bradykinin signaling.


Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fibrinolisina/metabolismo , Fibrinólise/efeitos dos fármacos , Cininogênios/metabolismo , Proteólise/efeitos dos fármacos , Acetaminofen/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fator XII/genética , Fator XII/metabolismo , Feminino , Fibrinolisina/genética , Humanos , Cininogênios/genética , Masculino , Camundongos , Camundongos Knockout , Pré-Calicreína/genética , Pré-Calicreína/metabolismo
5.
PLoS One ; 16(3): e0248431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33720950

RESUMO

BACKGROUND: Ischemic stroke is a common and debilitating disease with limited treatment options. Protease activated receptor 1 (PAR1) is a fundamental cell signaling mediator in the central nervous system (CNS). It can be activated by many proteases including thrombin and plasmin, with various down-stream effects, following brain ischemia. METHODS: A permanent middle cerebral artery occlusion (PMCAo) model was used in PAR1 KO and WT C57BL/6J male mice. Mice were evaluated for neurological deficits (neurological severity score, NSS), infarct volume (Tetrazolium Chloride, TTC), and for plasmin and thrombin activity in brain slices. RESULTS: Significantly low levels of plasmin and thrombin activities were found in PAR1 KO compared to WT (1.6±0.4 vs. 3.2±0.6 ng/µl, p<0.05 and 17.2±1.0 vs. 21.2±1.0 mu/ml, p<0.01, respectively) along with a decreased infarct volume (178.9±14.3, 134.4±13.3 mm3, p<0.05). CONCLUSIONS: PAR1 KO mice have smaller infarcts, with lower thrombin and plasmin activity levels. These findings may suggest that modulation of PAR1 is a potential target for future pharmacological treatment of ischemic stroke.


Assuntos
Encéfalo , Fibrinolisina/metabolismo , AVC Isquêmico , Receptor PAR-1/deficiência , Trombina/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Fibrinolisina/genética , AVC Isquêmico/genética , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Masculino , Camundongos , Camundongos Knockout , Receptor PAR-1/metabolismo , Trombina/genética
6.
PLoS One ; 15(5): e0233640, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32453766

RESUMO

Understanding the coagulation process is critical to developing treatments for trauma and coagulopathies. Clinical studies on tranexamic acid (TXA) have resulted in mixed reports on its efficacy in improving outcomes in trauma patients. The largest study, CRASH-2, reported that TXA improved outcomes in patients who received treatment prior to 3 hours after the injury, but worsened outcomes in patients who received treatment after 3 hours. No consensus has been reached about the mechanism behind the duality of these results. In this paper we use a computational model for coagulation and fibrinolysis to propose that deficiencies or depletions of key anti-fibrinolytic proteins, specifically antiplasmin, a1-antitrypsin and a2-macroglobulin, can lead to worsened outcomes through urokinase-mediated hyperfibrinolysis.


Assuntos
Transtornos da Coagulação Sanguínea/tratamento farmacológico , Ácido Tranexâmico/uso terapêutico , Ativador de Plasminogênio Tipo Uroquinase/genética , Ferimentos e Lesões/tratamento farmacológico , Antifibrinolíticos/uso terapêutico , Coagulação Sanguínea/genética , Transtornos da Coagulação Sanguínea/sangue , Transtornos da Coagulação Sanguínea/genética , Transtornos da Coagulação Sanguínea/patologia , Simulação por Computador , Fibrina/genética , Tempo de Lise do Coágulo de Fibrina , Fibrinolisina/genética , Fibrinólise/efeitos dos fármacos , Hemorragia/sangue , Hemorragia/tratamento farmacológico , Hemorragia/genética , Humanos , Proteínas de Membrana/genética , Mortalidade , alfa 2-Macroglobulinas Associadas à Gravidez/genética , Trombina/genética , Trombina/metabolismo , Ferimentos e Lesões/sangue , Ferimentos e Lesões/genética , Ferimentos e Lesões/patologia , alfa 1-Antitripsina/genética
7.
Sci Rep ; 9(1): 6824, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048760

RESUMO

The goal of this study was to develop a cheap and simple medium and to optimize fermentation parameters for fibrinolytic enzyme production by Bacillus subtilis WR350. A low-cost medium containing 35 g/L sucrose, 20 g/L corn steep powder and 2 g/L MgSO4·7H2O was developed via single-factor and orthogonal experiments. A cheap nitrogen source, corn steep powder, was used to replace the soy peptone present in the initial medium. The highest fibrinolytic activity of 5865 U/mL was achieved using the optimized medium in a 100-L fermenter with an aeration rate of 1.0 vvm and an agitation speed of 200 rpm. The resulting enzyme yield was among the highest described in the literature with respect to fibrinolytic activity, as determined by the fibrin plate method. Techno-economic evaluation indicated that the cost of the optimized medium was only 8.5% of the cost of the initial medium, and the total fermentation cost of fibrinolytic enzyme production using the optimized medium was 23.35% of the cost of using the initial medium.


Assuntos
Bacillus subtilis/enzimologia , Meios de Cultura , Fermentação , Fibrinolisina/biossíntese , Engenharia Genética , Sacarose/metabolismo , Bacillus subtilis/genética , Reatores Biológicos , Carbono/metabolismo , Análise Custo-Benefício , Ativação Enzimática , Fibrinolisina/genética , Zea mays
8.
J Microbiol Biotechnol ; 29(3): 347-356, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30661324

RESUMO

Bacillus sp. BS2 showing strong fibrinolytic activity was isolated from sea squirt (munggae) jeotgal, a traditional Korean fermented seafood. BS2 was identified as B. velezensis by molecular biological methods.B. velezensis BS2 grows well at 15% NaCl and at 10oC. When B. velezensis BS2 was cultivated in TSB broth for 96 h at 37°C, the culture showed the highest fibrinolytic activity (131.15 mU/µl) at 96 h. Three bands of 27, 35 and 60 kDa were observed from culture supernatant by SDS-PAGE, and fibrin zymography showed that the major fibrinolytic protein was the 27 kDa band. The gene (aprEBS2) encoding the major fibrinolytic protein was cloned, and overexpressed in heterologous hosts, B. subtilis WB600 and E. coli BL21 (DE3). B. subtilis transformant showed 1.5-fold higher fibrinolytic activity than B. velezensis BS2. Overproduced AprEBS2 in E. coli was purified by affinity chromatography. The optimum pH and temperature were pH 8.0 and 37°C, respectively. Km and Vmax were 0.15 mM and 39.68 µM/l/min, respectively, when N-succinyl-Ala-Ala-Pro-Phe-pNA was used as the substrate. AprEBS2 has strong α-fibrinogenase and moderate ß-fibrinogenase activity. Considering its high fibrinolytic activity, significant salt tolerance, and ability to grow at 10°C, B. velezensis BS2 can be used as a starter for jeotgal.


Assuntos
Bacillus/enzimologia , Bacillus/isolamento & purificação , Alimentos Fermentados/microbiologia , Fibrinolisina/metabolismo , Fibrinolíticos/metabolismo , Urocordados/microbiologia , Animais , Bacillus/genética , Bacillus/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Ensaios Enzimáticos , Estabilidade Enzimática , Escherichia coli/genética , Fibrina , Fibrinogênio/metabolismo , Fibrinolisina/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Concentração de Íons de Hidrogênio , Cinética , Tolerância ao Sal , Temperatura
9.
Biosci Rep ; 38(5)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30166455

RESUMO

Pathogens have developed particular strategies to infect and invade their hosts. Amongst these strategies' figures the modulation of several components of the innate immune system participating in early host defenses, such as the coagulation and complement cascades, as well as the fibrinolytic system. The components of the coagulation cascade and the fibrinolytic system have been proposed to be interfered during host invasion and tissue migration of bacteria, fungi, protozoa, and more recently, helminths. One of the components that has been proposed to facilitate pathogen migration is plasminogen (Plg), a protein found in the host's plasma, which is activated into plasmin (Plm), a serine protease that degrades fibrin networks and promotes degradation of extracellular matrix (ECM), aiding maintenance of homeostasis. However, pathogens possess Plg-binding proteins that can activate it, therefore taking advantage of the fibrin degradation to facilitate establishment in their hosts. Emergence of Plg-binding proteins appears to have occurred in diverse infectious agents along evolutionary history of host-pathogen relationships. The goal of the present review is to list, summarize, and analyze different examples of Plg-binding proteins used by infectious agents to invade and establish in their hosts. Emphasis was placed on mechanisms used by helminth parasites, particularly taeniid cestodes, where enolase has been identified as a major Plg-binding and activating protein. A new picture is starting to arise about how this glycolytic enzyme could acquire an entirely new role as modulator of the innate immune system in the context of the host-parasite relationship.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Doenças Transmissíveis/genética , Plasminogênio/genética , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/patologia , Matriz Extracelular/química , Matriz Extracelular/genética , Fibrina/genética , Fibrinolisina/genética , Fibrinólise/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Evasão da Resposta Imune/genética , Imunidade Inata/genética , Proteólise
10.
PLoS One ; 12(7): e0180981, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686706

RESUMO

Plasminogen (Plg) is a precursor of plasmin that degrades fibrin. A race-specific A620T mutation in Plg, also known as Plg-Tochigi, originally identified in a patient with recurrent venous thromboembolism, causes dysplasminogenemia with reduced plasmin activity. The Plg-A620T mutation is present in 3-4% of individuals in East Asian populations, and as many as 50,000 Japanese are estimated to be homozygous for the mutant 620T allele. In the present study, to understand the changes of thrombotic phenotypes in individuals with the mutant 620T allele, we generated knock-in mice carrying the homozygous Plg-A622T mutation (PlgT/T), an equivalent to the A620T mutation in human Plg. PlgT/T mice grew normally but showed severely reduced plasmin activity activated by urokinase, equivalent to ~8% of that in wild-type mice. In vitro fibrin clot lysis in plasma was significantly slower in PlgT/T mice than in wild-type mice. However, all experimental models of electrolytic deep vein thrombosis, tissue factor-induced pulmonary embolism, transient focal brain ischaemic stroke, or skin-wound healing showed largely similar phenotypes between PlgT/T mice and wild-type mice. Protein S-K196E mutation (Pros1E/E) is a race-specific genetic risk factor for venous thromboembolism. Coexistence in mice of PlgT/T and Pros1E/E did not affect pulmonary embolism symptoms, compared with those in Pros1E/E mice. Hence, the present study showed that the Plg-A622T mutation, which confers ~8% plasmin activity, does not increase the risk of thrombotic diseases in mice under experimental thrombotic conditions and does not modify the thrombotic phenotype observed in Pros1E/E mice. PlgT/T mice can be used to investigate the potential pathophysiological impact of the Plg-A620T mutation.


Assuntos
Conjuntivite/genética , Técnicas de Introdução de Genes , Mutação , Fenótipo , Plasminogênio/deficiência , Plasminogênio/genética , Dermatopatias Genéticas/genética , Tromboembolia Venosa/genética , Substituição de Aminoácidos , Animais , Isquemia Encefálica/sangue , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Conjuntivite/sangue , Conjuntivite/patologia , Modelos Animais de Doenças , Feminino , Fibrina/genética , Fibrina/metabolismo , Fibrinolisina/genética , Fibrinolisina/metabolismo , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Plasminogênio/metabolismo , Proteína S/genética , Proteína S/metabolismo , Embolia Pulmonar/sangue , Embolia Pulmonar/genética , Embolia Pulmonar/patologia , Dermatopatias Genéticas/sangue , Dermatopatias Genéticas/patologia , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Tromboembolia Venosa/sangue , Tromboembolia Venosa/patologia , Trombose Venosa/sangue , Trombose Venosa/genética , Trombose Venosa/patologia , Cicatrização/fisiologia
11.
Immunol Allergy Clin North Am ; 37(3): 571-584, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28687110

RESUMO

A new form of hereditary angioedema (HAE) was identified in the year 2000. Its clinical appearance resembles HAE types I and II, which are caused by mutations that result in a deficiency of C1 inhibitor (C1-INH). In patients with the new form of HAE, C1-INH plasma levels and function values are normal, so it's termed HAE with normal C1-INH (HAE-nC1). HAE-nC1, in a subgroup of patients, is thought to be caused by mutations that affect the F12 gene. The diagnosis of HAE-nC1 is based on history and clinical criteria. There are no licensed drugs with proven treatment effects for HAE-nC1.


Assuntos
Angioedemas Hereditários/tratamento farmacológico , Proteína Inibidora do Complemento C1/uso terapêutico , Angioedemas Hereditários/diagnóstico , Angioedemas Hereditários/etiologia , Angioedemas Hereditários/prevenção & controle , Bradicinina/metabolismo , Diagnóstico Diferencial , Gerenciamento Clínico , Fator XII/genética , Fator XII/metabolismo , Fibrinolisina/genética , Fibrinolisina/metabolismo , Predisposição Genética para Doença , Humanos , Mutação , Fenótipo , Pré-Medicação , Ligação Proteica , Transdução de Sinais , Resultado do Tratamento
12.
Blood ; 130(1): 59-72, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28325863

RESUMO

Macrophage activation syndrome (MAS) is a life-threatening disorder characterized by a cytokine storm and multiorgan dysfunction due to excessive immune activation. Although abnormalities of coagulation and fibrinolysis are major components of MAS, the role of the fibrinolytic system and its key player, plasmin, in the development of MAS remains to be solved. We established a murine model of fulminant MAS by repeated injections of Toll-like receptor-9 (TLR-9) agonist and d-galactosamine (DG) in immunocompetent mice. We found plasmin was excessively activated during the progression of fulminant MAS in mice. Genetic and pharmacological inhibition of plasmin counteracted MAS-associated lethality and other related symptoms. We show that plasmin regulates the influx of inflammatory cells and the production of inflammatory cytokines/chemokines. Collectively, our findings identify plasmin as a decisive checkpoint in the inflammatory response during MAS and a potential novel therapeutic target for MAS.


Assuntos
Fibrinolisina/metabolismo , Síndrome de Ativação Macrofágica/metabolismo , Animais , Modelos Animais de Doenças , Fibrinolisina/genética , Galactosamina/farmacologia , Humanos , Síndrome de Ativação Macrofágica/tratamento farmacológico , Síndrome de Ativação Macrofágica/genética , Síndrome de Ativação Macrofágica/patologia , Camundongos , Camundongos Knockout , Células RAW 264.7 , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
13.
Blood ; 129(21): 2896-2907, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28320709

RESUMO

Inflammation resolution is an active process that functions to restore tissue homeostasis. The participation of the plasminogen (Plg)/plasmin (Pla) system in the productive phase of inflammation is well known, but its involvement in the resolution phase remains unclear. Therefore, we aimed to investigate the potential role of Plg/Pla in key events during the resolution of acute inflammation and its underlying mechanisms. Plg/Pla injection into the pleural cavity of BALB/c mice induced a time-dependent influx of mononuclear cells that were primarily macrophages of anti-inflammatory (M2 [F4/80high Gr1- CD11bhigh]) and proresolving (Mres [F4/80med CD11blow]) phenotypes, without changing the number of macrophages with a proinflammatory profile (M1 [F4/80low Gr1+ CD11bmed]). Pleural injection of Plg/Pla also increased M2 markers (CD206 and arginase-1) and secretory products (transforming growth factor ß and interleukin-6) and decreased the expression of inducible nitric oxide synthase (M1 marker). During the resolving phase of lipopolysaccharide (LPS)-induced inflammation when resolving macrophages predominate, we found increased Plg expression and Pla activity, further supporting a link between the Plg/Pla system and key cellular events in resolution. Indeed, Plg or Pla given at the peak of inflammation promoted resolution by decreasing neutrophil numbers and increasing neutrophil apoptosis and efferocytosis in a serine-protease inhibitor-sensitive manner. Next, we confirmed the ability of Plg/Pla to both promote efferocytosis and override the prosurvival effect of LPS via annexin A1. These findings suggest that Plg and Pla regulate several key steps in inflammation resolution, namely, neutrophil apoptosis, macrophage reprogramming, and efferocytosis, which have a major impact on the establishment of an efficient resolution process.


Assuntos
Anexina A1/metabolismo , Reprogramação Celular , Fibrinolisina/metabolismo , Macrófagos/metabolismo , Plasminogênio/metabolismo , Doença Aguda , Animais , Anexina A1/genética , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Fibrinolisina/genética , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neutrófilos/metabolismo , Neutrófilos/patologia , Plasminogênio/genética , Células RAW 264.7
14.
PLoS One ; 12(3): e0174827, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28358853

RESUMO

Cleavage activation of the hemagglutinin (HA) protein by host proteases is a crucial step in the infection process of influenza A viruses (IAV). However, IAV exists in eighteen different HA subtypes in nature and their cleavage sites vary considerably. There is uncertainty regarding which specific proteases activate a given HA in the human respiratory tract. Understanding the relationship between different HA subtypes and human-specific proteases will be valuable in assessing the pandemic potential of circulating viruses. Here we utilized fluorogenic peptides mimicking the HA cleavage motif of representative IAV strains causing disease in humans or of zoonotic/pandemic potential and tested them with a range of proteases known to be present in the human respiratory tract. Our results show that peptides from the H1, H2 and H3 subtypes are cleaved efficiently by a wide range of proteases including trypsin, matriptase, human airway tryptase (HAT), kallikrein-related peptidases 5 (KLK5) and 12 (KLK12) and plasmin. Regarding IAVs currently of concern for human adaptation, cleavage site peptides from H10 viruses showed very limited cleavage by respiratory tract proteases. Peptide mimics from H6 viruses showed broader cleavage by respiratory tract proteases, while H5, H7 and H9 subtypes showed variable cleavage; particularly matriptase appeared to be a key protease capable of activating IAVs. We also tested HA substrate specificity of Factor Xa, a protease required for HA cleavage in chicken embryos and relevant for influenza virus production in eggs. Overall our data provide novel tool allowing the assessment of human adaptation of IAV HA subtypes.


Assuntos
Hemaglutininas/metabolismo , Vírus da Influenza A/metabolismo , Peptídeos/metabolismo , Fator Xa/genética , Fator Xa/metabolismo , Fibrinolisina/genética , Fibrinolisina/metabolismo , Hemaglutininas/genética , Humanos , Vírus da Influenza A Subtipo H9N2/metabolismo , Vírus da Influenza A/genética , Calicreínas/genética , Calicreínas/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Peptídeos/genética , Proteólise , Sistema Respiratório/metabolismo , Tripsina/genética , Tripsina/metabolismo
15.
PLoS Pathog ; 13(1): e1006110, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28081265

RESUMO

Most bacterial glycoproteins identified to date are virulence factors of pathogenic bacteria, i.e. adhesins and invasins. However, the impact of protein glycosylation on the major human pathogen Staphylococcus aureus remains incompletely understood. To study protein glycosylation in staphylococci, we analyzed lysostaphin lysates of methicillin-resistant Staphylococcus aureus (MRSA) strains by SDS-PAGE and subsequent periodic acid-Schiff's staining. We detected four (>300, ∼250, ∼165, and ∼120 kDa) and two (>300 and ∼175 kDa) glycosylated surface proteins with strain COL and strain 1061, respectively. The ∼250, ∼165, and ∼175 kDa proteins were identified as plasmin-sensitive protein (Pls) by mass spectrometry. Previously, Pls has been demonstrated to be a virulence factor in a mouse septic arthritis model. The pls gene is encoded by the staphylococcal cassette chromosome (SCC)mec type I in MRSA that also encodes the methicillin resistance-conferring mecA and further genes. In a search for glycosyltransferases, we identified two open reading frames encoded downstream of pls on the SCCmec element, which we termed gtfC and gtfD. Expression and deletion analysis revealed that both gtfC and gtfD mediate glycosylation of Pls. Additionally, the recently reported glycosyltransferases SdgA and SdgB are involved in Pls glycosylation. Glycosylation occurs at serine residues in the Pls SD-repeat region and modifying carbohydrates are N-acetylhexosaminyl residues. Functional characterization revealed that Pls can confer increased biofilm formation, which seems to involve two distinct mechanisms. The first mechanism depends on glycosylation of the SD-repeat region by GtfC/GtfD and probably also involves eDNA, while the second seems to be independent of glycosylation as well as eDNA and may involve the centrally located G5 domains. Other previously known Pls properties are not related to the sugar modifications. In conclusion, Pls is a glycoprotein and Pls glycosyl residues can stimulate biofilm formation. Thus, sugar modifications may represent promising new targets for novel therapeutic or prophylactic measures against life-threatening S. aureus infections.


Assuntos
Antibacterianos/farmacologia , Fibrinolisina/metabolismo , Resistência a Meticilina , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/microbiologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fibrinolisina/genética , Glicoproteínas , Humanos , Meticilina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Fatores de Virulência
16.
J Thromb Haemost ; 14(12): 2509-2523, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27797450

RESUMO

Essentials Current antifibrinolytics - aminocaproic acid and tranexamic acid-can cause seizures or renal injury. KD1L17R -KT , aprotinin and tranexamic acid were tested in a modified mouse tail-amputation model. S2'-subsite variations between human and mouse factor XIa result in vastly different inhibition profiles. KD1L17R -KT reduces blood loss and D-dimer levels in mouse with unobserved seizures or renal injury. SUMMARY: Background Using tissue factor pathway inhibitor (TFPI)-2 Kunitz domain1 (KD1), we obtained a bifunctional antifibrinolytic molecule (KD1L17R -KT ) with C-terminal lysine (kringle domain binding) and P2'-residue arginine (improved specificity towards plasmin). KD1L17R -KT strongly inhibited human plasmin (hPm), with no inhibition of human kallikrein (hKLK) or factor XIa (hXIa). Furthermore, KD1L17R -KT reduced blood loss comparable to aprotinin in a mouse liver-laceration model of organ hemorrhage. However, effectiveness of these antifibrinolytic agents in a model of hemorrhage mimicking extremity trauma and their inhibition efficiencies for mouse enzymes (mPm, mKLK or mXIa) remain to be determined. Objective To determine potential differences in inhibition constants of various antifibrinolytic agents against mouse and human enzymes and test their effectiveness in a modified mouse tail-amputation hemorrhage model. Methods/Results Unexpectedly, mXIa was inhibited with ~ 17-fold increased affinity by aprotinin (Ki ~ 20 nm) and with measurable affinity for KD1L17R -KT (Ki ~ 3 µm); in contrast, KD1WT -VT inhibited hXIa or mXIa with similar affinity. Compared with hPm, mPm had ~ 3-fold reduced affinity, whereas species specificity for hKLK and mKLK was comparable for each inhibitor. S2'-subsite variations largely accounted for the observed differences. KD1L17R -KT and aprotinin were more effective than KD1WT -VT or tranexamic acid in inhibiting tPA-induced mouse plasma clot lysis. Further, KD1L17R -KT was more effective than KD1WT -VT and was comparable to aprotinin and tranexamic acid in reducing blood loss and D-dimer levels in the mouse tail-amputation model. Conclusions Inhibitor potencies differ between antifibrinolytic agents against human and mouse enzymes. KD1L17R -KT is effective in reducing blood loss in a tail-amputation model that mimics extremity injury.


Assuntos
Fator XIa/genética , Fibrinolisina/genética , Glicoproteínas/química , Calicreínas/genética , Animais , Antifibrinolíticos , Aprotinina/química , Bovinos , Produtos de Degradação da Fibrina e do Fibrinogênio/química , Fibrinólise , Glicoproteínas/genética , Hemorragia , Humanos , Leucina/química , Fígado/metabolismo , Camundongos , Modelos Moleculares , Mutação , Peptídeo Hidrolases/química , Domínios Proteicos , Convulsões , Especificidade da Espécie , Ácido Tranexâmico/química , Tripsina/química
17.
Endocrinology ; 157(11): 4487-4498, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27690691

RESUMO

Rupture of fetal membranes (ROM) can initiate parturition at both term and preterm birth. Apoptosis of the amnion epithelium plays a key role in structural remodeling of the membranes preceding ROM. However, the causative factors for apoptosis remain unidentified. Toward the end of gestation, a feed-forward regeneration of cortisol via 11ß-hydroxysteroid dehydrogenase 1 exists in the fetal membranes. Here, we have examined whether cortisol accumulation is a causative factor for amnion cells apoptosis. By using primary human amnion epithelial and fibroblast cells, we demonstrated cortisol induced apoptosis specifically in epithelial cells but not in fibroblasts via reciprocal regulation of tissue-type plasminogen activator (tPA)/plasmin system. Cortisol increased PLAT expression, the gene encoding tPA, via glucocorticoid receptor binding to a glucocorticoid response element in PLAT promoter, thereby increasing plasmin activity in epithelial cells. Further study revealed that a Fas-mediated extrinsic apoptotic pathway was involved in the induction of epithelial cells apoptosis by cortisol, which was blocked by inhibiting either tPA or plasmin. Consistently, cortisol increased cleaved-caspase-3 and tPA abundance in amnion tissue explants. Moreover, the abundance of cortisol, cleaved-caspase-3, and tPA was significantly increased in amnion tissue after labor-initiated spontaneous rupture of membranes. In conclusion, local accumulation of cortisol is a causative factor for amnion epithelial apoptosis via activation of tPA/plasmin system toward the end of gestation. This may contribute to the ROM at both term and preterm birth.


Assuntos
Âmnio/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Âmnio/metabolismo , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Caspase 3/metabolismo , Células Cultivadas , Imunoprecipitação da Cromatina , Membranas Extraembrionárias/metabolismo , Feminino , Fibrinolisina/genética , Fibrinolisina/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Hidrocortisona/metabolismo , Marcação In Situ das Extremidades Cortadas , Técnicas In Vitro , Gravidez , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Interferente Pequeno , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/metabolismo
18.
Oncotarget ; 7(30): 47720-47737, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27351226

RESUMO

The link between oncogenic RAS expression and the acquisition of the invasive phenotype has been attributed to alterations in cellular activities that control degradation of the extracellular matrix. Oncogenic RAS-mediated upregulation of matrix metalloproteinase 2 (MMP-2), MMP-9 and urokinase-type plasminogen activator (uPA) is critical for invasion through the basement membrane and extracellular matrix. The uPA converts cell surface-bound plasminogen to plasmin, a process that is regulated by the binding of plasminogen to specific receptors on the cell surface, however, the identity of the plasminogen receptors that function in this capacity is unclear. We have observed that transformation of cancer cells with oncogenic forms of RAS increases plasmin proteolytic activity by 2- to 4-fold concomitant with a 3-fold increase in cell invasion. Plasminogen receptor profiling revealed RAS-dependent increases in both S100A10 and cytokeratin 8. Oncogenic RAS expression increased S100A10 gene expression which resulted in an increase in S100A10 protein levels. Analysis with the RAS effector-loop mutants that interact specifically with Raf, Ral GDS pathways highlighted the importance of the RalGDS pathways in the regulation of S100A10 gene expression. Depletion of S100A10 from RAS-transformed cells resulted in a loss of both cellular plasmin generation and invasiveness. These results strongly suggest that increases in cell surface levels of S100A10, by oncogenic RAS, plays a critical role in RAS-stimulated plasmin generation, and subsequently, in the invasiveness of oncogenic RAS expressing cancer cells.


Assuntos
Anexina A2/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas S100/metabolismo , Proteínas ras/genética , Células A549 , Animais , Anexina A2/genética , Linhagem Celular Tumoral , Ativação Enzimática , Fibrinolisina/genética , Fibrinolisina/metabolismo , Genes ras , Células HCT116 , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Células NIH 3T3 , Peptídeo Hidrolases/genética , Proteínas S100/genética , Transfecção , Proteínas ras/biossíntese
19.
J Microbiol Biotechnol ; 25(12): 2090-9, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26403822

RESUMO

Recently, the cardiovascular disease has been widely problematic in humans probably due to fibrin formation via the unbalanced Western style diet. Although direct (human plasmin) and indirect methods (plasminogen activators) have been available, bacterial enzyme methods have been studied because of their cheap and mass production. To detect a novel bacterial fibrinolytic enzyme, 111 bacterial strains with fibrinolytic activity were selected from kimchi. Among them, 14 strains were selected because of their stronger activity than 0.02 U of plasmin. Their 16S rRNA sequence analysis revealed that they belong to Bacillus, Leuconostoc, Propionibacterium, Weissella, Staphylococcus, and Bifidobacterium. The strain B. subtilis ZA400, with the highest fibrinolytic activity, was selected and the gene encoding fibrinolytic enzyme (bsfA) was cloned and expressed in the E. coli overexpression system. The purified enzyme was analyzed with SDS-PAGE, western blot, and MALDI-TOF analyses, showing to be 28.4 kDa. Subsequently, the BsfA was characterized to be stable under various stress conditions such as temperature (4-40°C), metal ions (Mn(2+), Ca(2+), K(2+), and Mg(2+)), and inhibitors (EDTA and SDS), suggesting that BsfA could be a good candidate for development of a novel fibrinolytic enzyme for thrombosis treatment and may even be useful as a new bacterial starter for manufacturing functional fermented foods.


Assuntos
Bacillus subtilis/enzimologia , Fibrinolisina/metabolismo , Microbiologia de Alimentos , Proteínas Recombinantes/metabolismo , Bacillus subtilis/classificação , Bacillus subtilis/genética , Bacillus subtilis/isolamento & purificação , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Fibrinolisina/química , Fibrinolisina/genética , Fibrinolisina/isolamento & purificação , Expressão Gênica , Humanos , Peso Molecular , RNA Ribossômico 16S/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Trombose/tratamento farmacológico
20.
J Microbiol Biotechnol ; 25(11): 1863-70, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26198120

RESUMO

Fibrinolytic enzyme genes (aprE2, aprE176, and aprE179) were introduced into the Bacillus subtilis 168 chromosome without any antibiotic resistance gene. An integration vector, pDG1662, was used to deliver the genes into the amyE site of B. subtilis 168. Integrants, SJ3-5nc, SJ176nc, and SJ179nc, were obtained after two successive homologous recombinations. The integration of each fibrinolytic gene into the middle of the amyE site was confirmed by phenotypes (Amy(-), Spec(S)) and colony PCR results for these strains. The fibrinolytic activities of the integrants were higher than that of B. subtilis 168 by at least 3.2-fold when grown in LB broth. Cheonggukjang was prepared by inoculating each of B. subtilis 168, SJ3-5nc, SJ176nc, and SJ179nc, and the fibrinolytic activity of cheonggukjang was 4.6 ± 0.7, 10.8 ± 0.9, 7.0 ± 0.6, and 8.0 ± 0.2 (U/g of cheonggukjang), respectively at 72 h. These results showed that construction of B. subtilis strains with enhanced fibrinolytic activities is possible by integration of a strong fibrinolytic gene via a marker-free manner.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Cromossomos Bacterianos , Fibrinolisina/genética , Fibrinolisina/metabolismo , Fibrinólise , Genes Bacterianos , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Meios de Cultura/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA