Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.017
Filtrar
1.
Exp Biol Med (Maywood) ; 249: 10112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715976

RESUMO

Chronic inflammation is a key element in the progression of essential hypertension (EH). Calcium plays a key role in inflammation, so its receptor, the calcium-sensing receptor (CaSR), is an essential mediator of the inflammatory process. Compelling evidence suggests that CaSR mediates inflammation in tissues and immune cells, where it mediates their activity and chemotaxis. Macrophages (Mφs) play a major role in the inflammatory response process. This study provided convincing evidence that R568, a positive regulator of CaSR, was effective in lowering blood pressure in spontaneously hypertensive rats (SHRs), improving cardiac function by alleviating cardiac hypertrophy and fibrosis. R568 can increase the content of CaSR and M2 macrophages (M2Mφs, exert an anti-inflammatory effect) in myocardial tissue, reduce M1 macrophages (M1Mφs), which have a pro-inflammatory effect in this process. In contrast, NPS2143, a negative state regulator of CaSR, exerted the opposite effect in all of the above experiments. Following this study, R568 increased CaSR content in SHR myocardial tissue, lowered blood pressure, promoted macrophages to M2Mφs and improved myocardial fibrosis, but interestingly, both M1Mφs and M2Mφs were increased in the peritoneal cavity of SHRs, the number of M2Mφs remained lower than M1Mφs. In vitro, R568 increased CaSR content in RAW264.7 cells (a macrophage cell line), regulating intracellular Ca2+ ([Ca2+]i) inhibited NOD-like receptor family protein 3 (NLRP3) inflammasome activation and ultimately prevented its conversion to M1Mφs. The results showed that a decrease in CaSR in hypertensive rats causes further development of hypertension and cardiac damage. EH myocardial remodeling can be improved by CaSR overexpression by suppressing NLRP3 inflammasome activation and macrophage polarization toward M1Mφs and increasing M2Mφs.


Assuntos
Macrófagos , Ratos Endogâmicos SHR , Receptores de Detecção de Cálcio , Animais , Receptores de Detecção de Cálcio/metabolismo , Macrófagos/metabolismo , Ratos , Masculino , Remodelação Ventricular/fisiologia , Miocárdio/patologia , Miocárdio/metabolismo , Fibrose/metabolismo , Pressão Sanguínea , Camundongos , Hipertensão/metabolismo , Hipertensão/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
2.
J Pharm Biomed Anal ; 245: 116197, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723558

RESUMO

The dysregulated levels of branched chain amino acids (BCAA) contribute to renal fibrosis in chronic kidney disease (CKD), yet specific analysis of BCAA contents and how they are regulated still remain unclear. It is therefore of great scientific interest to understand BCAA catabolism in CKD and develop a sensitive method for simultaneous determination of individual BCAA and their metabolites branched chain α-ketoacids (BCKA). In this work, the important role of BCAA metabolism that drives renal fibrosis in the process of CKD was first revealed by using transcriptomics. The key target genes controlling BCAA metabolism were then validated, that is, mRNA levels of BCKDHA and BCKDHB, the regulating rate-limiting enzymes during BCAA metabolism were abnormally reduced by quantitative PCR (qPCR), and a similar drop-off trend of protein expression of BCKDH, HIBCH and MCCC2 that are closely related to BCAA metabolism was also confirmed by western blotting. Furthermore, we established a novel strategy that simultaneously determines 6 individual BCAA and BCKA in serum and tissue. The method based on dansylhydrazine derivatization and ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry (UHPLC-QQQ-MS) achieved to simultaneously determine the contents of BCAA and BCKA, which is efficient and stable. Compared with normal rats, levels of BCAA including leucine, isoleucine and valine in serum and kidney of CKD rats was decreased, while BCKA including α-ketoisocaproic acid, α-ketomethylvaleric acid and α-ketoisovaleric acid was increased. Together, these findings revealed the abnormality of BCAA metabolism in driving the course of kidney fibrosis and CKD. Our current study sheds new light on changes in BCAA metabolism during CKD, and may facilitate development of drugs to treat CKD and renal fibrosis.


Assuntos
Aminoácidos de Cadeia Ramificada , Fibrose , Rim , Ratos Sprague-Dawley , Insuficiência Renal Crônica , Animais , Aminoácidos de Cadeia Ramificada/metabolismo , Ratos , Masculino , Cromatografia Líquida de Alta Pressão/métodos , Fibrose/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/genética , Rim/metabolismo , Rim/patologia , Cetoácidos/metabolismo , Transcriptoma , Espectrometria de Massas em Tandem/métodos , Perfilação da Expressão Gênica/métodos
3.
Clin Transl Med ; 14(5): e1686, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769658

RESUMO

BACKGROUND: Renal allograft interstitial fibrosis/tubular atrophy (IF/TA) constitutes the principal histopathological characteristic of chronic allograft dysfunction (CAD) in kidney-transplanted patients. While renal vascular endothelial-mesenchymal transition (EndMT) has been verified as an important contributing factor to IF/TA in CAD patients, its underlying mechanisms remain obscure. Through single-cell transcriptomic analysis, we identified Rictor as a potential pivotal mediator for EndMT. This investigation sought to elucidate the role of Rictor/mTORC2 signalling in the pathogenesis of renal allograft interstitial fibrosis and the associated mechanisms. METHODS: The influence of the Rictor/mTOR2 pathway on renal vascular EndMT and renal allograft fibrosis was investigated by cell experiments and Rictor depletion in renal allogeneic transplantation mice models. Subsequently, a series of assays were conducted to explore the underlying mechanisms of the enhanced mitophagy and the ameliorated EndMT resulting from Rictor knockout. RESULTS: Our findings revealed a significant activation of the Rictor/mTORC2 signalling in CAD patients and allogeneic kidney transplanted mice. The suppression of Rictor/mTORC2 signalling alleviated TNFα-induced EndMT in HUVECs. Moreover, Rictor knockout in endothelial cells remarkably ameliorated renal vascular EndMT and allograft interstitial fibrosis in allogeneic kidney transplanted mice. Mechanistically, Rictor knockout resulted in an augmented BNIP3-mediated mitophagy in endothelial cells. Furthermore, Rictor/mTORC2 facilitated the MARCH5-mediated degradation of BNIP3 at the K130 site through K48-linked ubiquitination, thereby regulating mitophagy activity. Subsequent experiments also demonstrated that BNIP3 knockdown nearly reversed the enhanced mitophagy and mitigated EndMT and allograft interstitial fibrosis induced by Rictor knockout. CONCLUSIONS: Consequently, our study underscores Rictor/mTORC2 signalling as a critical mediator of renal vascular EndMT and allograft interstitial fibrosis progression, exerting its impact through regulating BNIP3-mediated mitophagy. This insight unveils a potential therapeutic target for mitigating renal allograft interstitial fibrosis.


Assuntos
Fibrose , Transplante de Rim , Alvo Mecanístico do Complexo 2 de Rapamicina , Proteínas de Membrana , Mitofagia , Proteína Companheira de mTOR Insensível à Rapamicina , Transdução de Sinais , Animais , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Camundongos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Humanos , Transplante de Rim/efeitos adversos , Fibrose/metabolismo , Masculino , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Aloenxertos , Rim/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas
4.
Nat Aging ; 4(5): 664-680, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760576

RESUMO

Hyaline cartilage fibrosis is typically considered an end-stage pathology of osteoarthritis (OA), which results in changes to the extracellular matrix. However, the mechanism behind this is largely unclear. Here, we found that the RNA helicase DDX5 was dramatically downregulated during the progression of OA. DDX5 deficiency increased fibrosis phenotype by upregulating COL1 expression and downregulating COL2 expression. In addition, loss of DDX5 aggravated cartilage degradation by inducing the production of cartilage-degrading enzymes. Chondrocyte-specific deletion of Ddx5 led to more severe cartilage lesions in the mouse OA model. Mechanistically, weakened DDX5 resulted in abundance of the Fn1-AS-WT and Plod2-AS-WT transcripts, which promoted expression of fibrosis-related genes (Col1, Acta2) and extracellular matrix degradation genes (Mmp13, Nos2 and so on), respectively. Additionally, loss of DDX5 prevented the unfolding Col2 promoter G-quadruplex, thereby reducing COL2 production. Together, our data suggest that strategies aimed at the upregulation of DDX5 hold significant potential for the treatment of cartilage fibrosis and degradation in OA.


Assuntos
Processamento Alternativo , RNA Helicases DEAD-box , Fibrose , Quadruplex G , Osteoartrite , Animais , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Camundongos , Osteoartrite/patologia , Osteoartrite/genética , Osteoartrite/metabolismo , Fibrose/metabolismo , Fibrose/genética , Fibrose/patologia , Humanos , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Modelos Animais de Doenças , Masculino
5.
Artigo em Chinês | MEDLINE | ID: mdl-38664034

RESUMO

Skin fibrosis diseases mainly include hypertrophic scar, keloid, and systemic sclerosis, etc. The main pathological features are excessive activation of fibroblasts and abnormal deposition of extracellular matrix. In recent years, studies have shown that aerobic glycolysis is closely related to the occurrence and development of skin fibrosis diseases. Drugs targeting aerobic glycolysis has provided new ideas for skin anti-fibrosis treatment. This article reviews the role of enzymes and products related to aerobic glycolysis in the occurrence and development of skin fibrosis diseases and the drugs targeting aerobic glycolysis for the treatment of skin fibrosis diseases.


Assuntos
Fibrose , Glicólise , Humanos , Fibrose/metabolismo , Fibrose/patologia , Dermatopatias/metabolismo , Dermatopatias/patologia , Dermatopatias/tratamento farmacológico , Pele/patologia , Pele/metabolismo , Queloide/metabolismo , Queloide/patologia , Queloide/tratamento farmacológico , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/tratamento farmacológico
6.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38670633

RESUMO

Mutations in Cl-/H+ antiporter ClC-5 cause Dent's disease type 1 (DD1), a rare tubulopathy that progresses to renal fibrosis and kidney failure. Here, we have used DD1 human cellular models and renal tissue from DD1 mice to unravel the role of ClC-5 in renal fibrosis. Our results in cell systems have shown that ClC-5 deletion causes an increase in collagen I (Col I) and IV (Col IV) intracellular levels by promoting their transcription through the ß-catenin pathway and impairing their lysosomal-mediated degradation. Increased production of Col I/IV in ClC-5-depleted cells ends up in higher release to the extracellular medium, which may lead to renal fibrosis. Furthermore, our data have revealed that 3-mo-old mice lacking ClC-5 (Clcn5 +/- and Clcn5 -/- ) present higher renal collagen deposition and fibrosis than WT mice. Altogether, we describe a new regulatory mechanism for collagens' production and release by ClC-5, which is altered in DD1 and provides a better understanding of disease progression to renal fibrosis.


Assuntos
Canais de Cloreto , Fibrose , Lisossomos , Camundongos Knockout , beta Catenina , Animais , Canais de Cloreto/metabolismo , Canais de Cloreto/genética , Lisossomos/metabolismo , Humanos , Camundongos , beta Catenina/metabolismo , Fibrose/metabolismo , Rim/metabolismo , Rim/patologia , Colágeno Tipo I/metabolismo , Doença de Dent/metabolismo , Doença de Dent/genética , Proteólise , Transdução de Sinais
7.
Life Sci ; 346: 122644, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614300

RESUMO

Fibrosis is a pathological phenomenon characterized by the aberrant accumulation of extracellular matrix (ECM) in tissues. Fibrosis is a universally age-related disease involving that many organs and is the final stage of many chronic inflammatory diseases, which often threaten the patient's health. Undoubtedly, fibrosis has become a serious economic and health burden worldwide, However, the pathogenesis of fibrosis is complex. Further, the key molecules still remain to be unraveled. Hence, so far, there have been no effective treatments designed against the key targets of fibrosis. The methylation modification on the nitrogen atom at position 6 of adenine (m6A) is the most common mRNA modification in mammals. There is increasing evidence that m6A is actively involved in the pathogenesis of fibrosis. This review aims to highlight m6A-associated mechanisms and functions in several organic fibrosis, which implies that m6A is universal and critical for fibrosis and summarize the outlook of m6A in the treatment of fibrosis. This may light up the unknown aspects of this condition for researchers interested to explore fibrosis further.


Assuntos
Fibrose , Humanos , Fibrose/metabolismo , Metilação , Animais , Matriz Extracelular/metabolismo , Adenosina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adenina/metabolismo , Adenina/análogos & derivados , RNA/genética , RNA/metabolismo , Metilação de RNA
8.
Iran J Kidney Dis ; 18(2): 87-98, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38660700

RESUMO

INTRODUCTION: One of the most significant clinical features of chronic  kidney disease is renal interstitial fibrosis (RIF). This study aimed  to investigate the role and mechanism of Shenqi Pill (SQP) on RIF. METHODS: RIF model was established by conducting unilateral  ureteral obstruction (UUO) surgery on rat or stimulating human  kidney-2 (HK-2) cell with transforming growth factor ß1 (TGFß1).  After modeling, the rats in the SQP low dose group (SQP-L), SQP  middle dose group (SQP-M) and SQP high dose group (SQP-H)  were treated with SQP at 1.5, 3 or 6 g/kg/d, and the cells in the  TGFß1+SQP-L/M/H were treated with 2.5%, 5%, 10% SQP-containing  serum. In in vivo assays, serum creatinine (SCr) and blood urea  nitrogen (BUN) content were measured, kidney histopathology  was evaluated., and α-smooth muscle actin (α-SMA) expression  was detected by immunohistochemistry. Interleukin-1ß (IL-1ß),  interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) content,  inhibitor of kappa B alpha (IKBα) and P65 phosphorylation were  assessed. Meanwhile, cell viability, inflammatory cytokines content,  α-SMA expression, IKBα and P65 phosphorylation were detected  in vitro experiment.  Results. SQP exhibited reno-protective effect by decreasing SCr  and BUN content, improving renal interstitial damage, blunting  fibronectin (FN) and α-SMA expression in RIF rats. Similarly, after  the treatment with SQP-containing serum, viability and α-SMA  expression were remarkably decreased in TGFß1-stimulated HK-2  cell. Furthermore, SQP markedly down-regulated IL-1ß, IL-6, and  TNF-α content, IKBα and RelA (P65) phosphorylation both in vivo and in vitro.  Conclusion. SQP has a reno-protective effect against RIF in vivo and in vitro, and the effect is partly linked to nuclear factor-kappa  B (NF-κB) pathway related inflammatory response, which indicates  that SQP may be a candidate drug for RIF. DOI: 10.52547/ijkd.7546.


Assuntos
Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Fibrose , Rim , NF-kappa B , Animais , Humanos , Ratos , Actinas/metabolismo , Nitrogênio da Ureia Sanguínea , Linhagem Celular , Creatinina/sangue , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Fibrose/patologia , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Ratos Sprague-Dawley , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/patologia , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico
9.
Iran J Kidney Dis ; 18(2): 99-107, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38660698

RESUMO

INTRODUCTION: We recently discovered that microvesicles (MVs)  derived from mesenchymal stem cells (MSCs) overexpressing  miRNA-34a can alleviate experimental kidney injury in mice. In  this study, we further explored the effects of miR34a-MV on renal  fibrosis in the unilateral ureteral obstruction (UUO) models.  Methods. Bone marrow MSCs were modified by lentiviruses  overexpressing miR-34a, and MVs were collected from the  supernatants of MSCs. C57BL6/J mice were divided into control,  unilateral ureteral obstruction (UUO), UUO + MV, UUO + miR-34aMV and UUO + miR-34a-inhibitor-MV groups. MVs were injected  to mice after surgery. The mice were then euthanized on day 7  and 14 of modeling, and renal tissues were collected for further  analyses by Hematoxylin and eosin, Masson's trichrome,  and Immunohistochemical (IHC) staining.  Results. The UUO + MV group exhibited a significantly reduced  degree of renal interstitial fibrosis with inflammatory cell infiltration,  tubular epithelial cell atrophy, and vacuole degeneration compared  with the UUO group. Surprisingly, overexpressing miR-34a enhanced  these effects of MSC-MV on the UUO mice.  Conclusion. Our study demonstrates that miR34a further enhances  the effects of MSC-MV on renal fibrosis in mice through the  regulation of epithelial-to-mesenchymal transition (EMT) and  Notch pathway. miR-34a may be a candidate molecular therapeutic  target for the treatment of renal fibrosis. DOI: 10.52547/ijkd.7673.


Assuntos
Micropartículas Derivadas de Células , Nefropatias , Rim , Células-Tronco Mesenquimais , MicroRNAs , Animais , Masculino , Camundongos , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/transplante , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Rim/patologia , Rim/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , Transdução de Sinais , Obstrução Ureteral
10.
Mol Biol Rep ; 51(1): 541, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642208

RESUMO

BACKGROUND AND PURPOSE: Liver fibrosis is a reversible liver injury that occurs as a result of many chronic inflammatory diseases and can lead to cirrhosis, which is irreversible and fatal. So, we studied the anti-fibrotic effects of saroglitazar on LX-2 cell lines, as a dual PPARα/γ agonist. METHODS: Cells, after 80% confluence, were treated with TGF-ß (2 ng/mL) for 24 h. Then cells were treated with saroglitazar at different doses (2.5, 5, 10 µM) for 24 h. After same incubation, the cells of control group, TGF-ß group, and TGF-ß + saroglitazar group were harvested for RNA and protein extraction to determine the effects of saroglitazar. RT-PCR and western blot methods were used to express genes related to fibrosis. RESULTS: Our results show that the relative expression of α-SMA, collagen1α, N-cadherin, NOX (1, 2, and 4), and phosphorylated Smad3 protein was significantly higher in TGF-ß-treated cells compared with the normal group, and E-cadherin expression was decreased in TGF-ß-treated cells. After TGF-ß-treated cells were exposed to saroglitazar, the expression of these genes was significantly reversed (P < 0.05). CONCLUSIONS: Our results clearly show the short-term inhibitory role of saroglitazar in the expression of fibrotic factors using the TGF-ß/Smad signaling pathway. These results suggest that saroglitazar can be considered as a suitable therapeutic strategy for fibrotic patients. Although more studies are needed.


Assuntos
Cirrose Hepática , Fenilpropionatos , Pirróis , Proteína Smad3 , Fator de Crescimento Transformador beta , Humanos , Linhagem Celular , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Fenilpropionatos/farmacologia , Fosforilação/efeitos dos fármacos , Pirróis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
11.
Sci Rep ; 14(1): 9497, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664418

RESUMO

Raine syndrome (RNS) is a rare autosomal recessive osteosclerotic dysplasia. RNS is caused by loss-of-function disease-causative variants of the FAM20C gene that encodes a kinase that phosphorylates most of the secreted proteins found in the body fluids and extracellular matrix. The most common RNS clinical features are generalized osteosclerosis, facial dysmorphism, intracerebral calcifications and respiratory defects. In non-lethal RNS forms, oral traits include a well-studied hypoplastic amelogenesis imperfecta (AI) and a much less characterized gingival phenotype. We used immunomorphological, biochemical, and siRNA approaches to analyze gingival tissues and primary cultures of gingival fibroblasts of two unrelated, previously reported RNS patients. We showed that fibrosis, pathological gingival calcifications and increased expression of various profibrotic and pro-osteogenic proteins such as POSTN, SPARC and VIM were common findings. Proteomic analysis of differentially expressed proteins demonstrated that proteins involved in extracellular matrix (ECM) regulation and related to the TGFß/SMAD signaling pathway were increased. Functional analyses confirmed the upregulation of TGFß/SMAD signaling and subsequently uncovered the involvement of two closely related transcription cofactors important in fibrogenesis, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Knocking down of FAM20C confirmed the TGFß-YAP/TAZ interplay indicating that a profibrotic loop enabled gingival fibrosis in RNS patients. In summary, our in vivo and in vitro data provide a detailed description of the RNS gingival phenotype. They show that gingival fibrosis and calcifications are associated with, and most likely caused by excessed ECM production and disorganization. They furthermore uncover the contribution of increased TGFß-YAP/TAZ signaling in the pathogenesis of the gingival fibrosis.


Assuntos
Anormalidades Múltiplas , Proteínas Adaptadoras de Transdução de Sinal , Fissura Palatina , Hipoplasia do Esmalte Dentário , Exoftalmia , Fibroblastos , Fibrose , Gengiva , Osteosclerose , Proteômica , Transdução de Sinais , Fatores de Transcrição , Fator de Crescimento Transformador beta , Proteínas de Sinalização YAP , Humanos , Fator de Crescimento Transformador beta/metabolismo , Gengiva/metabolismo , Gengiva/patologia , Proteômica/métodos , Fibrose/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Osteosclerose/metabolismo , Osteosclerose/genética , Osteosclerose/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Hipoplasia do Esmalte Dentário/metabolismo , Hipoplasia do Esmalte Dentário/genética , Hipoplasia do Esmalte Dentário/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Microcefalia/metabolismo , Microcefalia/genética , Microcefalia/patologia , Feminino , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Masculino , Transativadores/metabolismo , Transativadores/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Caseína Quinase I/metabolismo , Caseína Quinase I/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Amelogênese Imperfeita/metabolismo , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Células Cultivadas
12.
PeerJ ; 12: e17260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680884

RESUMO

Chronic kidney disease (CKD) represents a significant global health concern, with renal fibrosis emerging as a prevalent and ultimate manifestation of this condition. The absence of targeted therapies presents an ongoing and substantial challenge. Accumulating evidence suggests that the integrity and functionality of mitochondria within renal tubular epithelial cells (RTECs) often become compromised during CKD development, playing a pivotal role in the progression of renal fibrosis. Mitophagy, a specific form of autophagy, assumes responsibility for eliminating damaged mitochondria to uphold mitochondrial equilibrium. Dysregulated mitophagy not only correlates with disrupted mitochondrial dynamics but also contributes to the advancement of renal fibrosis in CKD. While numerous studies have examined mitochondrial metabolism, ROS (reactive oxygen species) production, inflammation, and apoptosis in kidney diseases, the precise pathogenic mechanisms underlying mitophagy in CKD remain elusive. The exact mechanisms through which modulating mitophagy mitigates renal fibrosis, as well as its influence on CKD progression and prognosis, have not undergone systematic investigation. The role of mitophagy in AKI has been relatively clear, but the role of mitophagy in CKD is still rare. This article presents a comprehensive review of the current state of research on regulating mitophagy as a potential treatment for CKD. The objective is to provide fresh perspectives, viable strategies, and practical insights into CKD therapy, thereby contributing to the enhancement of human living conditions and patient well-being.


Assuntos
Mitofagia , Insuficiência Renal Crônica , Animais , Humanos , Progressão da Doença , Fibrose/patologia , Fibrose/metabolismo , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo
13.
Free Radic Biol Med ; 218: 68-81, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574975

RESUMO

Sarcopenia is associated with reduced quality of life and premature mortality. The sex disparities in the processes underlying sarcopenia pathogenesis, which include mitochondrial dysfunction, are ill-understood and can be decisive for the optimization of sarcopenia-related interventions. To improve the knowledge regarding the sex differences in skeletal muscle aging, the gastrocnemius muscle of young and old female and male rats was analyzed with a focus on mitochondrial remodeling through the proteome profiling of mitochondria-enriched fractions. To the best of our knowledge, this is the first study analyzing sex differences in skeletal muscle mitochondrial proteome remodeling. Data demonstrated that age induced skeletal muscle atrophy and fibrosis in both sexes. In females, however, this adverse skeletal muscle remodeling was more accentuated than in males and might be attributed to an age-related reduction of 17beta-estradiol signaling through its estrogen receptor alpha located in mitochondria. The females-specific mitochondrial remodeling encompassed increased abundance of proteins involved in fatty acid oxidation, decreased abundance of the complexes subunits, and enhanced proneness to oxidative posttranslational modifications. This conceivable accretion of damaged mitochondria in old females might be ascribed to low levels of Parkin, a key mediator of mitophagy. Despite skeletal muscle atrophy and fibrosis, males maintained their testosterone levels throughout aging, as well as their androgen receptor content, and the age-induced mitochondrial remodeling was limited to increased abundance of pyruvate dehydrogenase E1 component subunit beta and electron transfer flavoprotein subunit beta. Herein, for the first time, it was demonstrated that age affects more severely the skeletal muscle mitochondrial proteome of females, reinforcing the necessity of sex-personalized approaches towards sarcopenia management, and the inevitability of the assessment of mitochondrion-related therapeutics.


Assuntos
Envelhecimento , Músculo Esquelético , Sarcopenia , Animais , Masculino , Feminino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Ratos , Envelhecimento/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patologia , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Estradiol/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Fibrose/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteoma/metabolismo , Fatores Sexuais , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitofagia
14.
Adv Sci (Weinh) ; 11(19): e2401254, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38483920

RESUMO

Pancreatic fibrosis (PF) is primarily characterized by aberrant production and degradation modes of extracellular matrix (ECM) components, resulting from the activation of pancreatic stellate cells (PSCs) and the pathological cross-linking of ECM mediated by lysyl oxidase (LOX) family members. The excessively deposited ECM increases matrix stiffness, and the over-accumulated reactive oxygen species (ROS) induces oxidative stress, which further stimulates the continuous activation of PSCs and advancing PF; challenging the strategy toward normalizing ECM homeostasis for the regression of PF. Herein, ROS-responsive and Vitamin A (VA) decorated micelles (named LR-SSVA) to reverse the imbalanced ECM homeostasis for ameliorating PF are designed and synthesized. Specifically, LR-SSVA selectively targets PSCs via VA, thereby effectively delivering siLOXL1 and resveratrol (RES) into the pancreas. The ROS-responsive released RES inhibits the overproduction of ECM by eliminating ROS and inactivating PSCs, meanwhile, the decreased expression of LOXL1 ameliorates the cross-linked collagen for easier degradation by collagenase which jointly normalizes ECM homeostasis and alleviates PF. This research shows that LR-SSVA is a safe and efficient ROS-response and PSC-targeted drug-delivery system for ECM normalization, which will propose an innovative and ideal platform for the reversal of PF.


Assuntos
Matriz Extracelular , Fibrose , Nanopartículas , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Matriz Extracelular/metabolismo , Animais , Fibrose/metabolismo , Resveratrol/farmacologia , Humanos , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatopatias/metabolismo , Modelos Animais de Doenças , Estresse Oxidativo/efeitos dos fármacos , Vitamina A/metabolismo , Camundongos , Ratos , Sistemas de Liberação de Medicamentos/métodos
15.
J Transl Med ; 22(1): 161, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365674

RESUMO

BACKGROUND: The autophagy adapter SQSTM1/p62 is crucial for maintaining homeostasis in various organs and cells due to its protein-protein interaction domains and involvement in diverse physiological and pathological processes. Vascular endothelium cells play a unique role in vascular biology and contribute to vascular health. METHODS: Using the Cre-loxP system, we generated mice with endothelium cell-specific knockout of p62 mediated by Tek (Tek receptor tyrosine kinase)-cre to investigate the essential role of p62 in the endothelium. In vitro, we employed protein mass spectrometry and IPA to identify differentially expressed proteins upon knockdown of p62. Immunoprecipitation assays were conducted to demonstrate the interaction between p62 and FN1 or LAMC2 in human umbilical vein endothelium cells (HUVECs). Additionally, we identified the degradation pathway of FN1 and LAMC2 using the autophagy inhibitor 3-methyladenine (3-MA) or proteasome inhibitor MG132. Finally, the results of immunoprecipitation demonstrated that the interaction between p62 and LAMC2 was abolished in the PB1 truncation group of p62, while the interaction between p62 and FN1 was abolished in the UBA truncation group of p62. RESULTS: Our findings revealed that p62 Endo mice exhibited heart, lung, and kidney fibrosis compared to littermate controls, accompanied by severe cardiac dysfunction. Immunoprecipitation assays provided evidence of p62 acting as an autophagy adapter in the autophagy-lysosome pathway for FN1 and LAMC2 degradation respectively through PB1 and UBA domain with these proteins rather than proteasome system. CONCLUSIONS: Our study demonstrates that defects in p62 within endothelium cells induce multi-organ fibrosis and cardiac dysfunction in mice. Our findings indicate that FN1 and LAMC2, as markers of (EndoMT), have detrimental effects on HUVECs and elucidate the autophagy-lysosome degradation mechanism of FN1 and LAMC2.


Assuntos
Cardiopatias , Proteína Sequestossoma-1 , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Endotélio/metabolismo , Cardiopatias/genética , Cardiopatias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Fibrose/genética , Fibrose/metabolismo
16.
Histochem Cell Biol ; 161(5): 367-379, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38347221

RESUMO

Valvular heart disease leads to ventricular pressure and/or volume overload. Pressure overload leads to fibrosis, which might regress with its resolution, but the limits and details of this reverse remodeling are not known. To gain more insight into the extent and nature of cardiac fibrosis in valve disease, we analyzed needle biopsies taken from the interventricular septum of patients undergoing surgery for valve replacement focusing on the expression and distribution of major extracellular matrix protein involved in this process. Proteomic analysis performed using mass spectrometry revealed an excellent correlation between the expression of collagen type I and III, but there was little correlation with the immunohistochemical staining performed on sister sections, which included antibodies against collagen I, III, fibronectin, sarcomeric actin, and histochemistry for wheat germ agglutinin. Surprisingly, the immunofluorescence intensity did not correlate significantly with the gold standard for fibrosis quantification, which was performed using Picrosirius Red (PSR) staining, unless multiplexed on the same tissue section. There was also little correlation between the immunohistochemical markers and pressure gradient severity. It appears that at least in humans, the immunohistochemical pattern of fibrosis is not clearly correlated with standard Picrosirius Red staining on sister sections or quantitative proteomic data, possibly due to tissue heterogeneity at microscale, comorbidities, or other patient-specific factors. For precise correlation of different types of staining, multiplexing on the same section is the best approach.


Assuntos
Estenose da Valva Aórtica , Proteínas da Matriz Extracelular , Fibrose , Humanos , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Estenose da Valva Aórtica/cirurgia , Fibrose/metabolismo , Fibrose/patologia , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/análise , Insuficiência da Valva Aórtica/metabolismo , Insuficiência da Valva Aórtica/patologia , Insuficiência da Valva Aórtica/cirurgia , Masculino , Septo Interventricular/patologia , Septo Interventricular/metabolismo , Feminino , Idoso , Pessoa de Meia-Idade
17.
Burns ; 50(4): 936-946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369439

RESUMO

BACKGROUND: To identify the anti-fibrosis effect of PRAS40 in scar, and its potential mechanism. METHODS: We constructed a rat model of hypertrophic scarthat was locally injected the PRAS40 overexpression adenoviruses, mTORC1 inhibitor MHY1485 and activator rapamycin, and further observed the pathological changes of skin tissue and the severity of fibrosis by HE, Masson and sirius red staining, and analyzed the deposition of a-SMA and collagen I by western blot and immunofluorescence test. Meanwhile, the co-localization of KLF4 with a-SMA and type I collagen was analyzed, as well as the regulatory effect of PRAS40 on KLF4. In addition, we also verified whether the inhibition of scar fibrosis by PRAS40 is related to mTORC1, and whether the upregulation of KLF4 is related to mTORC1. RESULTS: The results showed that the expression of PRAS40 was low and p-PRAS40 was high in scar skin tissue. After local injection of PRAS40 overexpression adenovirus, the expression of PRAS40 in skin tissue was increased. The overexpression of PRAS40 can inhibit scar skin fibrosis and reduce the content of a-SMA and collagen I. Further mechanism analysis confirms that the inhibitory effect of PRAS40 on skin fibrosis is related to mTORC1, and PRAS40 inhibits the activation of mTORC1. The expression of KLF4 is relatively low in scar tissue. PRAS40 administration upregulated the expression of KLF4, which is related to mTORC1 CONCLUSIONS: PRAS40 significantly improves fibrosis of scar skin tissue and increases the expression of KLF4 in scars. The anti-fibrotic effect of PRAS40 depends on mTORC1.


Assuntos
Cicatriz Hipertrófica , Fibrose , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Alvo Mecanístico do Complexo 1 de Rapamicina , Animais , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fibrose/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Ratos , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patologia , Cicatriz Hipertrófica/prevenção & controle , Colágeno Tipo I/metabolismo , Pele/metabolismo , Pele/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças , Actinas/metabolismo , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Masculino , Regulação para Cima , Colágeno/metabolismo
18.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279278

RESUMO

Fibrosis, characterized by excessive extracellular matrix accumulation, disrupts normal tissue architecture, causes organ dysfunction, and contributes to numerous chronic diseases. This review focuses on Krüppel-like factor 10 (KLF10), a transcription factor significantly induced by transforming growth factor-ß (TGF-ß), and its role in fibrosis pathogenesis and progression across various tissues. KLF10, initially identified as TGF-ß-inducible early gene-1 (TIEG1), is involved in key biological processes including cell proliferation, differentiation, apoptosis, and immune responses. Our analysis investigated KLF10 gene and protein structures, interaction partners, and context-dependent functions in fibrotic diseases. This review highlights recent findings that underscore KLF10 interaction with pivotal signaling pathways, such as TGF-ß, and the modulation of gene expression in fibrotic tissues. We examined the dual role of KLF10 in promoting and inhibiting fibrosis depending on tissue type and fibrotic context. This review also discusses the therapeutic potential of targeting KLF10 in fibrotic diseases, based on its regulatory role in key pathogenic mechanisms. By consolidating current research, this review aims to enhance the understanding of the multifaceted role of KLF10 in fibrosis and stimulate further research into its potential as a therapeutic target in combating fibrotic diseases.


Assuntos
Fibrose , Fatores de Transcrição Kruppel-Like , Humanos , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Fibrose/metabolismo , Fibrose/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais
19.
Apoptosis ; 29(5-6): 570-585, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38127283

RESUMO

Integrin ß6 (ITGB6), a member of the integrin family of proteins, is only present in epithelial tissues and frequently associates with integrin subunit αv to form transmembrane heterodimers named integrin αvß6. Importantly, ITGB6 determines αvß6 expression and availability. In addition to being engaged in organ fibrosis, ITGB6 is also directly linked to the emergence of cancer, periodontitis, and several potential genetic diseases. Therefore, it is of great significance to study the molecular-biological mechanism of ITGB6, which could provide novel insights for future clinical diagnosis and therapy. This review introduces the structure, distribution, and biological function of ITGB6. This review also expounds on ITGB6-related diseases, detailing the known biological effects of ITGB6.


Assuntos
Antígenos de Neoplasias , Fibrose , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fibrose/genética , Fibrose/metabolismo , Animais , Cadeias beta de Integrinas/metabolismo , Cadeias beta de Integrinas/genética , Integrinas/metabolismo , Integrinas/genética , Periodontite/genética , Periodontite/metabolismo , Periodontite/patologia
20.
Free Radic Biol Med ; 208: 516-529, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714438

RESUMO

Hypoxia has long been considered to play an active role in the progression of fibrosis in chronic kidney disease, but its specific mechanism is not fully understood. The stimulator of interferon genes (STING) has been a research hotspot in the fields of tumor, immunity, and infection in recent years, and its role in immune and inflammatory responses related to kidney disease has gradually attracted attention. This study mainly explores the role and mechanism of STING in hypoxia-related renal fibrosis. To address this issue, we stimulated human proximal tubular epithelial (HK-2) cells with hypoxia for 48 h to construct cell models. Meanwhile, C57BL/6J male mice were used to establish a renal fibrosis model induced by renal ischemia-reperfusion injury (IRI). In our present study, we found that the GMP-AMP synthase (cGAS)-STING signaling pathway can promote the progression of renal fibrosis after hypoxic exposure, and this effect is closely related to 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3)-mediated glycolysis. Furthermore, inhibition of both STING and its downstream interferon regulatory factor 3 (IRF3) reversed elevated PFKFB3 expression, thereby attenuating hypoxia-induced renal fibrosis. Taken together, our data suggest that the cGAS-STING-IRF3-PFKFB3 signaling pathway activated under hypoxia may provide new ideas and targets for the treatment of early renal fibrosis.


Assuntos
Nefropatias , Fosfofrutoquinase-2 , Animais , Humanos , Masculino , Camundongos , Fibrose/metabolismo , Glicólise , Hipóxia/metabolismo , Nefropatias/metabolismo , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA