Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
1.
J Innate Immun ; 16(1): 159-172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38354709

RESUMO

INTRODUCTION: Interleukin-4 (IL-4) is a central regulator of type 2 immunity, crucial for the defense against multicellular parasites like helminths. This study focuses on its roles and cellular sources during Litomosoides sigmodontis infection, a model for human filarial infections. METHODS: Utilizing an IL-4 secretion assay, investigation into the sources of IL-4 during the progression of L. sigmodontis infection was conducted. The impact of eosinophils on the Th2 response was investigated through experiments involving dblGATA mice, which lack eosinophils and, consequently, eosinophil-derived IL-4. RESULTS: The absence of eosinophils notably influenced Th2 polarization, leading to impaired production of type 2 cytokines. Interestingly, despite this eosinophil deficiency, macrophage polarization, proliferation, and antibody production remained unaffected. CONCLUSION: Our research uncovers eosinophils as a major source of IL-4, especially during the early phase of filarial infection. Consequently, these findings shed new light on IL-4 dynamics and eosinophil effector functions in filarial infections.


Assuntos
Eosinófilos , Filariose , Filarioidea , Interleucina-4 , Células Th2 , Animais , Feminino , Camundongos , Células Cultivadas , Modelos Animais de Doenças , Eosinófilos/imunologia , Filariose/imunologia , Filarioidea/imunologia , Interleucina-4/metabolismo , Interleucina-4/imunologia , Macrófagos/imunologia , Camundongos Endogâmicos BALB C , Células Th2/imunologia
2.
Front Immunol ; 12: 777860, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868049

RESUMO

Despite long-term mass drug administration programmes, approximately 220 million people are still infected with filariae in endemic regions. Several research studies have characterized host immune responses but a major obstacle for research on human filariae has been the inability to obtain adult worms which in turn has hindered analysis on infection kinetics and immune signalling. Although the Litomosoides sigmodontis filarial mouse model is well-established, the complex immunological mechanisms associated with filarial control and disease progression remain unclear and translation to human infections is difficult, especially since human filarial infections in rodents are limited. To overcome these obstacles, we performed adoptive immune cell transfer experiments into RAG2IL-2Rγ-deficient C57BL/6 mice. These mice lack T, B and natural killer cells and are susceptible to infection with the human filaria Loa loa. In this study, we revealed a long-term release of L. sigmodontis offspring (microfilariae) in RAG2IL-2Rγ-deficient C57BL/6 mice, which contrasts to C57BL/6 mice which normally eliminate the parasites before patency. We further showed that CD4+ T cells isolated from acute L. sigmodontis-infected C57BL/6 donor mice or mice that already cleared the infection were able to eliminate the parasite and prevent inflammation at the site of infection. In addition, the clearance of the parasites was associated with Th17 polarization of the CD4+ T cells. Consequently, adoptive transfer of immune cell subsets into RAG2IL-2Rγ-deficient C57BL/6 mice will provide an optimal platform to decipher characteristics of distinct immune cells that are crucial for the immunity against rodent and human filarial infections and moreover, might be useful for preclinical research, especially about the efficacy of macrofilaricidal drugs.


Assuntos
Transferência Adotiva , Filariose/imunologia , Filariose/terapia , Filarioidea/imunologia , Subpopulações de Linfócitos T/imunologia , Transferência Adotiva/métodos , Animais , Citocinas/biossíntese , Proteínas de Ligação a DNA/deficiência , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Filariose/parasitologia , Interações Hospedeiro-Patógeno/imunologia , Subunidade gama Comum de Receptores de Interleucina/deficiência , Camundongos , Camundongos Knockout , Carga Parasitária , Subpopulações de Linfócitos T/metabolismo
3.
Front Immunol ; 12: 784141, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992602

RESUMO

Helminths still infect a quarter of the human population. They manage to establish chronic infections by downmodulating the immune system of their hosts. Consequently, the immune response of helminth-infected individuals to vaccinations may be impaired as well. Here we study the impact of helminth-induced immunomodulation on vaccination efficacy in the mouse system. We have previously shown that an underlying Litomosoides sigmodontis infection reduced the antibody (Ab) response to anti-influenza vaccination in the context of a systemic expansion of type 1 regulatory T cells (Tr1). Most important, vaccine-induced protection from a challenge infection with the 2009 pandemic H1N1 influenza A virus (2009 pH1N1) was impaired in vaccinated, L. sigmodontis-infected mice. Here, we aim at the restoration of vaccination efficacy by drug-induced deworming. Treatment of mice with Flubendazole (FBZ) resulted in elimination of viable L. sigmodontis parasites in the thoracic cavity after two weeks. Simultaneous FBZ-treatment and vaccination did not restore Ab responses or protection in L. sigmodontis-infected mice. Likewise, FBZ-treatment two weeks prior to vaccination did not significantly elevate the influenza-specific Ig response and did not protect mice from a challenge infection with 2009 pH1N1. Analysis of the regulatory T cell compartment revealed that L. sigmodontis-infected and FBZ-treated mice still displayed expanded Tr1 cell populations that may contribute to the sustained suppression of vaccination responses in successfully dewormed mice. To outcompete this sustained immunomodulation in formerly helminth-infected mice, we finally combined the drug-induced deworming with an improved vaccination regimen. Two injections with the non-adjuvanted anti-influenza vaccine Begripal conferred 60% protection while MF59-adjuvanted Fluad conferred 100% protection from a 2009 pH1N1 infection in FBZ-treated, formerly L. sigmodontis-infected mice. Of note, applying this improved prime-boost regimen did not restore protection in untreated L. sigmodontis-infected mice. In summary our findings highlight the risk of failed vaccinations due to helminth infection.


Assuntos
Antinematódeos/administração & dosagem , Coinfecção/terapia , Filariose/terapia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/terapia , Animais , Coinfecção/imunologia , Coinfecção/parasitologia , Coinfecção/virologia , Modelos Animais de Doenças , Feminino , Filariose/imunologia , Filariose/parasitologia , Filariose/virologia , Filarioidea/imunologia , Humanos , Imunização Secundária , Imunomodulação , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Influenza Humana/parasitologia , Influenza Humana/virologia , Mebendazol/administração & dosagem , Mebendazol/análogos & derivados , Camundongos , Ácaros/parasitologia , Sigmodontinae/parasitologia , Vacinação/métodos
4.
PLoS Negl Trop Dis ; 14(7): e0008534, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32735561

RESUMO

Mast cells are innate effector cells that due to their localization in the tissue form the first line of defense against parasites. We have previously shown that specifically mucosal mast cells were essential for the termination of the intestinal Strongyloides ratti infection. Here, we analyze the impact of mast cells on the immune response and defense against the tissue-dwelling filarial nematode Litomosoides sigmodontis using mast cell-deficient Cpa3cre mice. Despite an increase and an activation of mast cells at the site of infection in wildtype BALB/c mice the outcome of L. sigmodontis infection was not changed in mast cell-deficient BALB/c Cpa3cre mice. In Cpa3cre mice neither vascular permeability induced by blood-sucking mites nor the migration of L3 was altered compared to Cpa3 wildtype littermates. Worm burden in the thoracic cavity was alike in the presence and absence of mast cells during the entire course of infection. Although microfilaremiae in the peripheral blood increased in mast cell-deficient mice at some time points, the infection was cleared with comparable kinetics in the presence and absence of mast cells. Moreover, mast cell deficiency had no impact on the cytokine and antibody response to L. sigmodontis. In summary, our findings suggest that mast cells are not mandatory for the initiation of an appropriate immune response and host defense during L. sigmodontis infection in mice.


Assuntos
Filariose/imunologia , Filarioidea/imunologia , Mastócitos/fisiologia , Animais , Permeabilidade Capilar , Carboxipeptidases A/genética , Carboxipeptidases A/metabolismo , Filariose/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Infestações por Ácaros , Mutação
5.
Front Immunol ; 11: 706, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373129

RESUMO

Filarial infections are known to modulate cytokine responses in pulmonary tuberculosis by their propensity to induce Type 2 and regulatory cytokines. However, very little is known about the effect of filarial infections on extra-pulmonary forms of tuberculosis. Thus, we have examined the effect of filarial infections on the plasma levels of various families of (IL-1, IL-12, γC, and regulatory) cytokines and (CC and CXC) chemokines in tuberculous lymphadenitis coinfection. We also measured lymph node culture grades in order to assess the burden of Mycobacterium tuberculosis in the two study groups [Fil+ (n = 67) and Fil- (n = 109)]. Our data reveal that bacterial burden was significantly higher in Fil+ compared to Fil- individuals. Plasma levels of IL-1 family (IL-1α, IL-ß, IL-18) cytokines were significantly lower with the exception of IL-33 in Fil+ compared to Fil- individuals. Similarly, plasma levels of IL-12 family cytokines -IL-12 and IL-23 were significantly reduced, while IL-35 was significantly elevated in Fil+ compared to Fil- individuals. Filarial infection was also associated with diminished levels of IL-2, IL-9 and enhanced levels of IL-4, IL-10, and IL-1Ra. Similarly, the Fil+ individuals were linked to elevated levels of different CC (CCL-1, CCL-2, CCL-3, CCL-11) and CXC (CXCL-2, CXCL-8, CXCL-9, CXCL-11) chemokines. Therefore, we conclude that filarial infections exert powerful bystander effects on tuberculous lymphadenitis, effects including modulation of protective cytokines and chemokines with a direct impact on bacterial burdens.


Assuntos
Quimiocinas/sangue , Coinfecção/imunologia , Filariose/complicações , Filariose/imunologia , Filarioidea/imunologia , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose dos Linfonodos/complicações , Tuberculose dos Linfonodos/imunologia , Adolescente , Adulto , Idoso , Animais , Antígenos de Helmintos/sangue , Carga Bacteriana , Coinfecção/microbiologia , Coinfecção/parasitologia , Estudos Transversais , Feminino , Filariose/sangue , Filariose/parasitologia , Humanos , Linfonodos/microbiologia , Linfonodos/patologia , Masculino , Pessoa de Meia-Idade , Tuberculose dos Linfonodos/sangue , Tuberculose dos Linfonodos/microbiologia , Adulto Jovem
6.
Parasite Immunol ; 42(7): e12708, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32145033

RESUMO

Litomosoides sigmodontis is the only filarial nematode where the full life cycle, from larval delivery to the skin through to circulating microfilaria, can be completed in immunocompetent laboratory mice. It is thus an invaluable tool for the study of filariasis. It has been used for the study of novel anti-helminthic therapeutics, the development of vaccines against filariasis, the development of immunomodulatory drugs for the treatment of inflammatory disease and the study of basic immune responses to filarial nematodes. This review will focus on the latter and aims to summarize how the L sigmodontis model has advanced our basic understanding of immune responses to helminths, led to major discoveries in macrophage biology and provided new insights into the immunological functions of the pleural cavity. Finally, and most importantly L sigmodontis represents a suitable platform to study how host genotype affects immune responses, with the potential for further discovery in myeloid cell biology and beyond.


Assuntos
Filariose/imunologia , Filarioidea/imunologia , Interações Hospedeiro-Parasita/imunologia , Animais , Anti-Helmínticos/farmacologia , Modelos Animais de Doenças , Feminino , Filariose/tratamento farmacológico , Filariose/prevenção & controle , Genótipo , Interações Hospedeiro-Parasita/genética , Estágios do Ciclo de Vida , Camundongos , Camundongos Endogâmicos BALB C , Microfilárias/imunologia , Células Mieloides/imunologia
7.
PLoS Negl Trop Dis ; 14(2): e0008119, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32107497

RESUMO

Neutrophils are essentially involved in protective immune responses against invading infective larvae of filarial nematodes. The present study investigated the impact of S100A8/S100A9 on protective immune responses against the rodent filarial nematode Litomosoides sigmodontis. S100A9 forms with S100A8 the heterodimer calprotectin, which is expressed by circulating neutrophils and monocytes and mitigates or amplifies tissue damage as well as inflammation depending on the immune environment. Mice deficient for S100A8/A9 had a significantly reduced worm burden in comparison to wildtype (WT) animals 12 days after infection (dpi) with infective L3 larvae, either by the vector or subcutaneous inoculation, the latter suggesting that circumventing natural immune responses within the epidermis and dermis do not alter the phenotype. Nevertheless, upon intradermal injection of L3 larvae, increased total numbers of neutrophils, eosinophils and macrophages were observed within the skin of S100A8/A9-/- mice. Furthermore, upon infection the bronchoalveolar and thoracic cavity lavage of S100A8/A9-/- mice showed increased concentrations of CXCL-1, CXCL-2, CXCL-5, as well as elastase in comparison to the WT controls. Neutrophils from S100A8/A9-/- mice exhibited an increased in vitro activation and reduced L3 larval motility more effectively in vitro compared to WT neutrophils. The depletion of neutrophils from S100A8/A9-/- mice prior to L. sigmodontis infection until 5dpi abrogated the protective effect and led to an increased worm burden, indicating that neutrophils mediate enhanced protective immune responses against invading L3 larvae in S100A8/A9-/- mice. Interestingly, complete circumvention of protective immune responses in the skin and the lymphatics by intravenous injection of L3 larvae reversed the phenotype and resulted in an increased worm burden in S100A8/A9-/- mice. In summary, our results reveal that lack of S100A8/S100A9 triggers L3-induced inflammatory responses, increasing chemokine levels, granulocyte recruitment as well as neutrophil activation and therefore impairs larval migration and susceptibility for filarial infection.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Filariose/imunologia , Filarioidea/imunologia , Animais , Regulação da Expressão Gênica , Larva/imunologia , Pulmão/parasitologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Neutrófilos/fisiologia
8.
Sci Rep ; 10(1): 1055, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974398

RESUMO

Controlled infection with intestinal nematodes has therapeutic potential for preventing the symptoms of allergic and autoimmune diseases. Here, we engineered larvae of the filarial nematode Litomosoides sigmodontis as a vaccine strategy to induce adaptive immunity against a foreign, crosslinked protein, chicken egg ovalbumin (OVA), in the absence of an external adjuvant. The acylation of filarial proteins with fluorescent probes or biotin was not immediately detrimental to larval movement and survival, which died 3 to 5 days later. At least some of the labeled and skin-inoculated filariae migrated through lymphatic vessels to draining lymph nodes. The immunization potential of OVA-biotin-filariae was compared to that of an OVA-bound nanoparticulate carrier co-delivered with a CpG adjuvant in a typical vaccination scheme. Production of IFNγ and TNFα by restimulated CD4+ cells but not CD8+ confirmed the specific ability of filariae to stimulate CD4+ T cells. This alternative method of immunization exploits the intrinsic adjuvancy of the attenuated nematode carrier and has the potential to shift the vaccination immune response towards cellular immunity.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Hipersensibilidade a Ovo/imunologia , Filarioidea/imunologia , Larva/imunologia , Ovalbumina/imunologia , Imunidade Adaptativa , Animais , Linfócitos T CD4-Positivos/imunologia , Galinhas , Hipersensibilidade a Ovo/etiologia , Filarioidea/genética , Proteínas de Helminto/administração & dosagem , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Humanos , Imunização , Larva/genética , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/administração & dosagem , Ovalbumina/efeitos adversos , Ovalbumina/química
9.
Clin Exp Allergy ; 50(2): 213-221, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31834940

RESUMO

BACKGROUND: Immunoglobulin E (IgE)-mediated anaphylaxis is a potentially fatal condition in which allergy effector cells rapidly discharge pre-formed inflammatory mediators. Treatments that address the immune component of allergic anaphylaxis are inadequate. Helminths have been previously shown to suppress effector cell function; however, their ability to treat pre-existing allergy remains unclear. OBJECTIVE: To evaluate the ability of chronic helminth infection to protect against anaphylaxis in previously sensitized mice. METHODS: A sublethal model of anaphylaxis was used, in which BALB/c mice were sensitized by three intraperitoneal (i.p.) injections of OVA/alum. Temperature drop was then monitored after systemic OVA challenge in uninfected mice and in mice infected chronically with Litomosoides sigmodontis, a tissue-invasive filarial nematode. RESULTS: Litomosoides sigmodontis-infected mice exhibited significantly lower serum levels of mMCP-1 and were less hypothermic at 30-minute post-challenge compared to uninfected OVA-challenged controls. Characterization of anaphylaxis revealed that FcԑR1 and mast cells were required for hypothermia and elevated serum mMCP-1. OVA-IgE and OVA-IgG1 serum levels were not significantly altered by L sigmodontis infection, and experiments with IL-10-/- mice demonstrated that IL-10 was not required for protection against anaphylaxis. However, peritoneal mast cell numbers were significantly lower in infected mice, and those that were present exhibited decreased granularity by flow cytometry and marked depletion of intracytoplasmic granules by light microscopy. Mast cells from infected mice had lower expression of the activation markers CD200R and CD63 and contained significantly lower basal stores of histamine. CONCLUSIONS: Chronic L sigmodontis infection protects against anaphylaxis, likely due to reduction in mast cell numbers and depletion of pre-formed inflammatory mediators in remaining mast cells.


Assuntos
Anafilaxia/imunologia , Degranulação Celular/imunologia , Filariose/imunologia , Filarioidea/imunologia , Mastócitos/imunologia , Anafilaxia/genética , Anafilaxia/patologia , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Doença Crônica , Filariose/genética , Filariose/patologia , Interleucina-10/genética , Interleucina-10/imunologia , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
10.
PLoS Negl Trop Dis ; 13(12): e0007908, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31815932

RESUMO

T cell-intrinsic regulation, such as anergy, adaptive tolerance and exhaustion, is central to immune regulation. In contrast to Type 1 and Type 17 settings, knowledge of the intrinsic fate and function of Th2 cells in chronic Type 2 immune responses is lacking. We previously showed that Th2 cells develop a PD-1/PD-L2-dependent intrinsically hypo-responsive phenotype during infection with the filarial nematode Litomosoides sigmodontis, denoted by impaired functionality and parasite killing. This study aimed to elucidate the transcriptional changes underlying Th2 cell-intrinsic hypo-responsiveness, and whether it represents a unique and stable state of Th2 cell differentiation. We demonstrated that intrinsically hypo-responsive Th2 cells isolated from L. sigmodontis infected mice stably retained their dysfunctional Th2 phenotype upon transfer to naïve recipients, and had a divergent transcriptional profile to classical Th2 cells isolated prior to hypo-responsiveness and from mice exposed to acute Type 2 stimuli. Hypo-responsive Th2 cells displayed a distinct transcriptional profile to exhausted CD4+ T cells, but upregulated Blimp-1 and the anergy/regulatory-associated transcription factors Egr2 and c-Maf, and shared characteristics with tolerised T cells. Hypo-responsive Th2 cells increased mRNA expression of the soluble regulatory factors Fgl2, Cd38, Spp1, Areg, Metrnl, Lgals3, and Csf1, and a subset developed a T-bet+IFN-γ+ Th2/Th1 hybrid phenotype, indicating that they were not functionally inert. Contrasting with their lost ability to produce Th2 cytokines, hypo-responsive Th2 cells gained IL-21 production and IL-21R blockade enhanced resistance to L. sigmodontis. IL-21R blockade also increased the proportion of CD19+PNA+ germinal centre B cells and serum levels of parasite specific IgG1. This indicates a novel regulatory role for IL-21 during filarial infection, both in controlling protection and B cell responses. Thus, Th2 cell-intrinsic hypo-responsiveness is a distinct and stable state of Th2 cell differentiation associated with a switch from a classically active IL-4+IL-5+ Th2 phenotype, to a non-classical dysfunctional and potentially regulatory IL-21+Egr2+c-Maf+Blimp-1+IL-4loIL-5loT-bet+IFN-γ+ Th2 phenotype. This divergence towards alternate Th2 phenotypes during chronicity has broad implications for the outcomes and treatment of chronic Type 2-related infections and diseases.


Assuntos
Antígenos de Helmintos/imunologia , Filariose/patologia , Filarioidea/imunologia , Células Th2/imunologia , Animais , Modelos Animais de Doenças , Feminino , Filariose/imunologia , Perfilação da Expressão Gênica , Camundongos Endogâmicos BALB C , Fenótipo , Células Th2/patologia
11.
PLoS Negl Trop Dis ; 13(8): e0007691, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31469835

RESUMO

Lung disease is regularly reported in human filarial infections but the molecular pathogenesis of pulmonary filariasis is poorly understood. We used Litomosoides sigmodontis, a rodent filaria residing in the pleural cavity responsible for pleural inflammation, to model responses to human filarial infections and probe the mechanisms. Wild-type and Th2-deficient mice (ΔdblGata1 and Il-4receptor(r)a-/-/IL-5-/-) were infected with L. sigmodontis. Survival and growth of adult filariae and prevalence and density of microfilariae were evaluated. Cells and cytokines in the pleural cavity and bronchoalveolar space were characterized by imaging, flow cytometry and ELISA. Inflammatory pathways were evaluated by transcriptomic microarrays and lungs were isolated and analyzed for histopathological signatures. 40% of WT mice were amicrofilaremic whereas almost all mutant mice display blood microfilaremia. Microfilariae induced pleural, bronchoalveolar and lung-tissue inflammation associated with an increase in bronchoalveolar eosinophils and perivascular macrophages, production of mucus, visceral pleura alterations and fibrosis. Inflammation and pathology were decreased in Th2-deficient mice. An IL-4R-dependent increase of CD169 was observed on pleural and bronchoalveolar macrophages in microfilaremic mice. CD169+ tissue-resident macrophages were identified in the lungs with specific localizations. Strikingly, CD169+ macrophages increased significantly in the perivascular area in microfilaremic mice. These data describe lung inflammation and pathology in chronic filariasis and emphasize the role of Th2 responses according to the presence of microfilariae. It is also the first report implicating CD169+ lung macrophages in response to a Nematode infection.


Assuntos
Filariose/patologia , Filarioidea/imunologia , Inflamação/patologia , Pulmão/imunologia , Macrófagos/imunologia , Receptores de Interleucina-4/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/análise , Animais , Modelos Animais de Doenças , Feminino , Filariose/imunologia , Inflamação/imunologia , Pulmão/patologia , Macrófagos/química , Camundongos Endogâmicos BALB C , Células Th2/imunologia
12.
Parasitol Res ; 118(2): 539-549, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30643971

RESUMO

Worldwide approximately 68 million people are infected with lymphatic filariasis (Lf), provoked by Wuchereria bancrofti, Brugia malayi and Brugia timori. This disease can lead to massive swelling of the limbs (elephantiasis) and disfigurement of the male genitalia (hydrocele). Filarial induced immune regulation is characterised by dominant type 2 helper T cell and regulatory immune responses. In vitro studies have provided evidence that signalling via Toll-like receptor-mediated pathways is triggered by filarial associated factors. Nevertheless, until now, less is known about the role of the adapter molecule TRIF during in vivo infections. Here, we used the rodent-specific nematode Litomosoides sigmodontis to investigate the role of TLR signalling and the corresponding downstream adapter and regulatory molecules TRIF, MyD88, IRF1 and IRF3 during an ongoing infection in semi-susceptible C57BL/6 mice. Interestingly, lack of the central adapter molecule TRIF led to higher worm burden and reduced overall absolute cell numbers in the thoracic cavity (the site of infection) 30 days post-infection. In addition, frequencies of macrophages and lymphocytes in the TC were increased in infected TRIF-/- C57BL/6 mice, whereas frequencies of eosinophils, CD4+ and CD8+ T cells were reduced. Nevertheless, cytokine levels and regulatory T cell populations remained comparable between TRIF-deficient and wildtype C57BL/6 mice upon 30 days of L. sigmodontis infection. In summary, this study revealed a crucial role of the adapter molecule TRIF on worm recovery and immune cell recruitment into the site of infection 30 days upon L. sigmodontis infection in C57BL/6 mice.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Filariose/imunologia , Filariose/parasitologia , Filarioidea/crescimento & desenvolvimento , Filarioidea/imunologia , Transdução de Sinais , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Citocinas/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia , Células Th2/imunologia
13.
J Vector Borne Dis ; 56(4): 323-329, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33269732

RESUMO

BACKGROUND & OBJECTIVES: Generally filarial antigens have been found to be cross-reactive in nature. Identification of genus and species-specific antigens has not been successful so far. Due to lack of human adult filarial parasite, researchers have been using other adult worms like Setaria digitata, a cattle parasite or Brugia malayi, a rodent model for their research work. In this situation, specificity of the prepared antigen (S. digitata or B. malayi) to detect the antibodies to Wuchereria bancrofti is questionable. METHODS: In the present investigation, we have tested a panel of human sera (collected from the areas, endemic for bancroftian filariasis) to correlate the immune reactivity against somatic antigens of adult stages and microfilarial stages of S. digitata and B. malayi. Further, using intact microfilariae (mf) from the above two parasites along with W. bancrofti, we have analyzed the antibody response to the sheath antigens. A panel of infected human and cattle sera was tested by immunoperoxidase assay using intact mf of three different parasites, viz. W. bancrofti, B. malayi, and S. digitata. RESULTS: A very significant positive correlation in filarial Igs (polyvalent), IgG, IgM, IgE and IgG4 levels were found between the two adult somatic antigens of B. malayi and S. digitata when tested against human filarial sera. However, such a correlation was not found when mf antigens of B. malayi and S. digitata were tested against a panel of W. bancrofti sera indicating that antigens present in mf could be far less cross-reactive in comparison to those in adult stage parasites. INTERPRETATION & CONCLUSION: The results indicated the differential cross-reactivity of antisheath antibodies to the mf sheath of three different filarial parasites. Soluble antigens of S. digitata could inhibit antisheath antibody reactivity to only S. digitata mf sheath and not to mf sheath of W. bancrofti further confirming the specificity of sheath antigen.


Assuntos
Antígenos de Helmintos/imunologia , Brugia Malayi/imunologia , Filarioidea/imunologia , Animais , Anticorpos Anti-Helmínticos/sangue , Anticorpos Anti-Helmínticos/imunologia , Brugia Malayi/genética , Reações Cruzadas , Feminino , Filariose/sangue , Filariose/parasitologia , Filarioidea/genética , Humanos , Índia , Masculino
14.
Int J Parasitol ; 48(12): 925-935, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30176234

RESUMO

IL-6 has a wide range of biological activities that includes anti- and pro-inflammatory aspects. In this study, we investigated the role of IL-6 in immune responses to the rodent filarial nematode Litomosoides sigmodontis, a model for human filarial infections. IL-6-/- mice had a significantly increased worm burden after natural infection compared with wild type controls at early time points p.i. Given that the worm burden in IL-6-/- mice was already increased at the time point the infective larvae reached the pleural cavity, immune responses that may facilitate the migration from the site of infection (skin) via the lymphatics to the pleural cavity were analysed. Increased vascular permeability may facilitate larval migration, but blocking of histamine receptors had no effect on worm burden and vascular permeability was similar between IL-6-/- mice and wild type controls. In contrast, blocking mast cell degranulation reduced the worm burden in IL-6-/- mice partially, suggesting that release of mast cell-derived mediators improves larval migration to some degree. Protective immune responses within the skin were involved, as bypassing the skin barrier by inoculating infective L3s subcutaneously resulted in a comparable worm recovery in both mouse strains. Analysis of the cellular composition by flow cytometry and PCR array in the skin after exposure to filarial extract or L3s, respectively, indicate that the absence of IL-6 results in a delayed recruitment of neutrophils and macrophages to the site of initial infection. These results demonstrate that IL-6 is essentially involved in protective immune responses within the skin that impair migration of infective L3s.


Assuntos
Filariose/imunologia , Filarioidea/imunologia , Interleucina-6/metabolismo , Animais , Movimento Celular , Modelos Animais de Doenças , Filariose/parasitologia , Filarioidea/fisiologia , Interleucina-6/deficiência , Macrófagos/imunologia , Mastócitos/imunologia , Camundongos , Neutrófilos/imunologia , Cavidade Pleural/parasitologia , Pele/imunologia , Pele/parasitologia
15.
Parasitol Res ; 117(8): 2665-2675, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29931394

RESUMO

Lymphatic filariasis, onchocerciasis and loiasis are widespread neglected tropical diseases causing serious public health problems and impacting the socio-economic climate in endemic communities. More than 100 million people currently suffer from filarial infections but disease-related symptoms and infection-induced immune mechanisms are still ambiguous. Although most infected individuals have dominant Th2 and regulatory immune responses leading to a homeostatic regulated state, filarial-induced overt pathology like lymphedema, dermal pathologies or blindness can occur. Interestingly, besides dominant Th2 and regulatory T cell activation, increased Th17-induced immune responses were associated with filarial infection and overt helminth-induced pathology in humans. However, the immunological mechanisms of Th17 cells and the release of IL-17A during filarial infections remain unclear. To decipher the role of IL-17A during filarial infection, we naturally infected IL-17A-/- and wildtype C57BL/6 mice with the rodent filariae Litomosoides sigmodontis and analysed parasite development and immune alterations. Our study reveals that infected IL-17A-deficient C57BL/6 mice present reduced worm burden on days 7 and 28 p.i. but had longer adult worms on day 28 p.i. in the thoracic cavity (TC), the site of infection. In addition, infiltration of CD4+ T cells, CD4+Foxp3+ regulatory T and functional CD4+Rorγt+pStat3+ Th17 cells in the TC was reduced in IL-17A-deficient mice accompanied by reduced eotaxin-1 and CCL17 levels. Furthermore, mediastinal lymph node cells isolated from IL-17A-/- mice showed increased filarial-specific IFN-γ but not IL-4, IL-6, or IL-21 secretion. This study shows that Th17 signalling is important for host immune responses against filarial infection but appears to facilitate worm growth in those that reach the TC.


Assuntos
Filariose/imunologia , Filarioidea/imunologia , Interferon gama/imunologia , Interleucina-17/imunologia , Células Th17/imunologia , Animais , Feminino , Interleucina-17/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Elife ; 72018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29299998

RESUMO

Both TH2-dependent helminth killing and suppression of the TH2 effector response have been attributed to macrophages (MΦ) activated by IL-4 (M(IL-4)). To investigate how M(IL-4) contribute to diverse infection outcomes, the MΦ compartment of susceptible BALB/c mice and more resistant C57BL/6 mice was profiled during infection of the pleural cavity with the filarial nematode, Litomosoides sigmodontis. C57BL/6 mice exhibited a profoundly expanded resident MΦ (resMΦ) population, which was gradually replenished from the bone marrow in an age-dependent manner. Infection status did not alter the bone-marrow derived contribution to the resMΦ population, confirming local proliferation as the driver of resMΦ expansion. Significantly less resMΦ expansion was observed in the susceptible BALB/c strain, which instead exhibited an influx of monocytes that assumed an immunosuppressive PD-L2+ phenotype. Inhibition of monocyte recruitment enhanced nematode killing. Thus, the balance of monocytic vs. resident M(IL-4) numbers varies between inbred mouse strains and impacts infection outcome.


Assuntos
Movimento Celular , Proliferação de Células , Filariose/imunologia , Filariose/patologia , Filarioidea/crescimento & desenvolvimento , Filarioidea/imunologia , Macrófagos/fisiologia , Animais , Resistência à Doença , Suscetibilidade a Doenças , Macrófagos/parasitologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Cavidade Pleural/imunologia , Cavidade Pleural/parasitologia
17.
Parasite Immunol ; 40(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28504838

RESUMO

Filarial infections are characteristically chronic and can cause debilitating diseases governed by parasite-induced innate and adaptive immune responses. Filarial parasites traverse or establish niches in the skin (migrating infective larvae), in nonmucosal tissues (adult parasite niche) and in the blood or skin (circulating microfilariae) where they intersect with the host immune response. While several studies have demonstrated that filarial parasites and their antigens can modulate myeloid cells (monocyte, macrophage and dendritic cell subsets), T- and B-lymphocytes and skin resident cell populations, the role of innate lymphoid cells during filarial infections has only recently emerged. Despite the identification and characterization of innate lymphoid cells (ILCs) in murine helminth infections, little is actually known about the role of human ILCs during parasitic infections. The focus of this review will be to highlight the composition of ILCs in the skin, lymphatics and blood; where the host-parasite interaction is well-defined and to examine the role of ILCs during filarial infections.


Assuntos
Filariose/imunologia , Filarioidea/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Filariose/parasitologia , Interações Hospedeiro-Parasita/imunologia , Humanos , Linfonodos/imunologia , Linfonodos/parasitologia , Macrófagos/imunologia , Camundongos , Monócitos/imunologia , Pele/imunologia , Pele/parasitologia
18.
Int J Parasitol ; 47(14): 951-960, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28859850

RESUMO

Approximately 100 million people suffer from filarial diseases including lymphatic filariasis (elephantiasis), onchocerciasis (river blindness) and loiasis. These diseases are amongst the most devastating of the neglected tropical diseases in terms of social and economic impact. Moreover, many infection-induced immune mechanisms in the host, their relationship to disease-related symptoms and the development of pathology within the site of infection remain unclear. To improve on current drug therapies or vaccines, further studies are necessary to decipher the mechanisms behind filaria-driven immune responses and pathology development, and thus the rodent model of Litomosoides sigmodontis can be used to unravel host-filaria interactions. Interestingly, BALB/c mice develop a patent state (release of microfilariae, the transmission life-stage, into the periphery) when exposed to L. sigmodontis. Thus, using this model, we determined levels of host inflammation and pathology development during a L. sigmodontis infection in vivo for the first known time. Our study reveals that after 30days p.i., inflammation and pathology began to develop in infected wild type BALB/c mice between the lung and diaphragm, close to the site of infection - the thoracic cavity. Interestingly, infected IL-4Rα/IL-5-/- BALB/c mice had accentuated inflammation of the pleural lung and pleural diaphragm, and higher parasite burdens. Corresponding to the pleural inflammation, levels of IP-10, MIP-1α, MIP-1ß, MIP-2 and RANTES were significantly elevated in the thoracic cavity fluid of infected IL-4Rα/IL-5-/- mice compared with wild type controls. Moreover, upon L. sigmodontis antigen stimulation, IFN-γ and IL-17A secretions by cells isolated from draining lymph nodes of IL-4Rα/IL-5-/- mice were significantly elevated, whereas secretion of IL-5, IL-13 and IL-10 was reduced. Elevated filaria-specific IFN-γ secretion was also observed in spleen-derived CD4+ T cell co-cultures from IL-4Rα/IL-5-/- mice. In summary, this study unravels the essential role of IL-4/IL-5 signalling in controlling immunity against filarial infections and demonstrates the requirement of this pathway for the host to control ensuing pathology and inflammation.


Assuntos
Filariose/imunologia , Filarioidea/imunologia , Interleucina-4/fisiologia , Interleucina-5/fisiologia , Animais , Quimiocinas/metabolismo , Diafragma/parasitologia , Diafragma/patologia , Feminino , Filariose/patologia , Filarioidea/patogenicidade , Interferon gama/metabolismo , Pulmão/parasitologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Cavidade Pleural/parasitologia , Cavidade Pleural/patologia , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Baço/citologia , Baço/imunologia
19.
PLoS Negl Trop Dis ; 11(5): e0005596, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28486498

RESUMO

Filarial infections are tropical diseases caused by nematodes of the Onchocercidae family such as Mansonella perstans. The infective larvae (L3) are transmitted into the skin of vertebrate hosts by blood-feeding vectors. Many filarial species settle in the serous cavities including M. perstans in humans and L. sigmodontis, a well-established model of filariasis in mice. L. sigmodontis L3 migrate to the pleural cavity where they moult into L4 around day 9 and into male and female adult worms around day 30. Little is known of the early phase of the parasite life cycle, after the L3 is inoculated in the dermis by the vector and enters the afferent lymphatic vessels and before the moulting processes in the pleural cavity. Here we reveal a pulmonary phase associated with lung damage characterized by haemorrhages and granulomas suggesting L3 reach the lung via pulmonary capillaries and damage the endothelium and parenchyma by crossing them to enter the pleural cavity. This study also provides evidence for a transient inflammation in the lung characterized by a very early recruitment of neutrophils associated with high expression levels of S100A8 and S100A9 proteins.


Assuntos
Calgranulina B/análise , Filariose/patologia , Filarioidea/crescimento & desenvolvimento , Filarioidea/imunologia , Pulmão/patologia , Neutrófilos/imunologia , Animais , Modelos Animais de Doenças , Feminino , Filariose/parasitologia , Humanos , Pulmão/parasitologia , Camundongos Endogâmicos BALB C
20.
Scand J Immunol ; 85(4): 251-257, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28168837

RESUMO

Our understanding of immunity to filarial infection is enigmatic and continues to be passionately debated. The mechanisms whereby filarial nematodes are killed in vivo and how these parasites avoid these mechanisms are poorly understood. Although vaccination studies in permissive animals took off seven decades ago, the exact mechanisms driving protective immunity are extensively being investigated. Currently, little is known regarding the collective functions or counter-regulatory mechanisms of the antibody isotypes in filarial infection with respect to protective immunity. Establishing the functional role of antibody isotypes and cytokines in the various infection phenotypes can contribute immensely to current knowledge in filarial immunology. This paper reviews insight into protective immunity in filarial infection with focus on humoral and cellular responses from animal models and human studies.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Filariose/imunologia , Filarioidea/imunologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Antígenos de Helmintos/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Filariose/parasitologia , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA